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Lyon, UMR mycoplasmoses des ruminants, Lyon, France, 7 Université de Bordeaux, UMR1332, Villenave d’Ornon, France, 8 Institut National de Recherche Agronomique,

UMR1332, Villenave d’Ornon, France

Abstract

Mycoplasma mycoides subsp. mycoides ‘‘Small Colony’’ (MmmSC) is responsible for contagious bovine pleuropneumonia
(CBPP) in bovidae, a notifiable disease to the World Organization for Animal Health (OIE). Although its origin is not
documented, the disease was known in Europe in 1773. It reached nearly world-wide distribution in the 19th century
through the cattle trade and was eradicated from most continents by stamping-out policies. During the 20th century it
persisted in Africa, and it reappeared sporadically in Southern Europe. Yet, classical epidemiology studies failed to explain
the re-occurrence of the disease in Europe in the 1990s. The objectives of this study were to obtain a precise phylogeny of
this pathogen, reconstruct its evolutionary history, estimate the date of its emergence, and determine the origin of the most
recent European outbreaks. A large-scale genomic approach based on next-generation sequencing technologies was
applied to construct a robust phylogeny of this extremely monomorphic pathogen by using 20 representative strains of
various geographical origins. Sixty two polymorphic genes of the MmmSC core genome were selected, representing
83601 bp in total and resulting in 139 SNPs within the 20 strains. A robust phylogeny was obtained that identified a lineage
specific to European strains; African strains were scattered in various branches. Bayesian analysis allowed dating the most
recent common ancestor for MmmSC around 1700. The strains circulating in Sub-Saharan Africa today, however, were
shown to descend from a strain that existed around 1810. MmmSC emerged recently, about 300 years ago, and was most
probably exported from Europe to other continents, including Africa, during the 19th century. Its diversity is now greater in
Africa, where CBPP is enzootic, than in Europe, where outbreaks occurred sporadically until 1999 and where CBPP may now
be considered eradicated unless MmmSC remains undetected.
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Introduction

Epizootic diseases have threatened cattle since their domestica-

tion. Two of them played a prominent role in the last three

centuries: rinderpest and contagious bovine pleuropneumonia

(CBPP), threatening the livelihood of whole populations [1] and

hindering international cattle trade. However, while rinderpest has

been successfully eradicated world-wide [2], CBPP is still present

in many African countries.

Although the spread of CBPP in Europe and throughout the

world in the middle of the 19th century is well documented, little is

known about its origin [3]. The earliest documents by ‘‘Testienne’’

and Scheuchzer do not contain precise descriptions that could be

unequivocally linked to CBPP [4,5]. The first unambiguous

description of the disease may well be that of B de Haller in

Switzerland in 1773 [6]. In any case, historical documents on

CBPP do not provide any indication regarding the date of

appearance of the disease or whether it existed from time

immemorial.

Similar questions can be raised regarding the origin of CBPP in

Africa. Its introduction in the southern part of the continent in

1853 is well documented [3] but there is no information regarding

the existence of the disease prior to colonial times. Fulani

herdsmen in Senegal had developed an original inoculation

procedure to combat CBPP, by inserting pieces of infected tissue

under the skin of the bridge of the nose. The resulting

inflammation often caused the formation of ‘‘third horns’’, which

led to the description of a ‘‘new’’ bovine race (‘‘Bos triceros’’) by

French zoologists [7]. This site of inoculation was unknown in

Europe, where inoculation procedures were performed at the tip
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of the tail [8] Hence, de Rochebrune (1885) suggested that local

tribes had known CBPP before colonial times [9].

In many countries in Sub-Saharan Africa, CBPP control is

based on vaccination alone, but this strategy does not eradicate the

disease. In fact, CBPP has recently re-entered countries, such as

Tanzania, that had earlier been considered disease-free. Northern

Africa has always been CBPP-free and countries in Southern

Africa, such as Botswana, maintain their CBPP-free status by strict

stamping-out policies. In the other continents, such as Northern

America and Europe, CBPP was successfully eradicated between

1896 and 1935 by strict stamping-out programs; Australia initiated

control by vaccination before adopting stamping-out policies. In

Southern Europe the disease persisted in the Iberic peninsula, with

outbreaks occurring sporadically at 10–15 years of interval. The

reoccurrence of CBPP in Europe in the early 1990s was quite

unexpected, especially for Italy where the risk of contamination

should have been minimal because it borders exclusively CBPP-

free countries. Classical epidemiology studies failed to explain the

origin of these outbreaks [10]. At that time there was a lack of

genetic tools to detect, identify, and subtype precisely Mycoplasma

mycoides subsp. mycoides ‘‘Small Colony’’ (MmmSC), the causative

agent of CBPP.

Recent genetic data may bring new insights into epidemiolog-

ical questions. Molecular typing has been instrumental in

determining the population structure and evolution of bacterial

pathogens. Multi-locus sequence typing (MLST) [11] was first

developed as a typing tool. But, being based on sequence data

from housekeeping genes that are not prone to horizontal gene

transfer (HGT), MLST can be used to reconstruct phylogenies.

The relevance of this technique depends on the mutation rates

within the selected genes and on a long-enough evolutionary

period to afford sufficient variability. However, highly pathogenic

bacteria are often genetically monomorphic and their lack of

diversity makes it difficult to investigate their evolutionary histories

[12]. MmmSC is one of the five species and subspecies composing

the so-called ‘‘mycoides’’ cluster [13]. Taxonomic changes

followed a thorough phylogenetic analysis of this cluster based

on five housekeeping gene sequences [14]. Before that study,

MmmSC was considered just a biotype of M. mycoides subsp.

mycoides, together with the ‘‘Large Colony’’ biotype. The latter

biotype was thereafter united to the much more variable M.

mycoides subsp. capri (Mmc), leaving the ‘‘Small Colony’’ strains as

sole representatives of M. mycoides subsp. mycoides. MmmSC

constitutes an extremely monomorphic clade within the species

Mycoplasma mycoides and the MLST analysis was not sufficiently

discriminating to distinguish MmmSC strains.

MmmSC subtyping was achieved by other techniques such as

multi-locus sequence analysis, which is based on alternative, more

variable molecular markers selected after comparison of two whole

genome MmmSC sequences [15], and multi-locus variant analysis,

which is based on variable numbers of tandem repeats [16].

However, these two techniques are not suited for phylogenetic

inference because they target DNA sequences without a constant

molecular clock, in which sites may present very high mutation

rates, possibly leading to homoplasies [17] [18].

Large-scale genomic approaches now allow the reconstruction

of phylogenies for bacterial pathogens with very low mutation

rates such as Yersinia pestis [19] and Salmonella typhi [20] or for taxa

that have evolved recently and therefore did not accumulate high

amounts of mutations [21]. In this work, next-generation

sequencing technologies were applied to perform global compar-

isons of MmmSC strains representing, with the limitation of

historical strain availability, the overall diversity of this monomor-

phic pathogen. The objectives of this study were to construct a

robust phylogeny for this pathogen, establish when the most recent

common ancestor of all MmmSC strains appeared, determine

whether CBPP existed in Africa or, more likely, it was imported

from Europe during colonization, and find the origins of the CBPP

outbreaks that occurred in Southern Europe in the last decades.

Results and Discussion

Phylogenetically informative set of genes from the
MmmSC core genome

The genome of six MmmSC strains from Africa and Europe

was sequenced by next-generation sequencing technologies and

assembled into drafts comprising 34 to 76 contigs. After

annotation, the MmmSC core genome comprised 473 genes with

a predicted function, 249 of which showed identical amino acid

sequences and thus were not further included in the study. From

the 224 remaining genes, 162 were also removed, notably because

of complete or partial intragenomic duplications that may have

biased SNP search. Sixty two genes were finally retained (Table

S1). These results show the very low diversity among MmmSC

genomes. Concatenation of the 62 genes resulted in an 83,601 bp-

long sequence for all strains studied except for PG1T, which had

an additional codon within the gene phnE. The concatenated

sequence represented about 1/15 of the total genome length.

Additional MmmSC concatenated sequences were obtained

from 14 strains representing the diversity of this pathogen

worldwide (Figure 1, Table S2). Similar numbers of strains were

obtained from Europe and Africa and, for this continent, strains

originated from all the sub-regions where CBPP is present.

Alignment of the concatenated sequences of the final 20 MmmSC

strains resulted in the identification of 139 SNPs, which were the

basis for phylogenetic and molecular dating analyses. Most of these

SNPs were non synonymous (N = 122), essentially due to our

initial gene selection process. Besides, there was no indel nor any

additional stop codon leading to truncation of predicted proteins.

Strain GM12, belonging to subspecies Mmc, the closest relative of

MmmSC, was used as outgroup for phylogenetic analysis.

Addition of this sequence to the alignment procedure resulted in

a dramatic increase in the number of SNPs (2,716) although the

similarity between GM12 concatenated sequence and that of

MmmSC averaged 97%.

Accurate phylogenetic inference relies on the fact that detected

SNPs result from mutation and not from recombination, which

may bias the phylogenetic inference and the molecular dating

process. As Enright and Spratt said, ‘‘Bacteria have quite variable

sex lives, ranging from near celibacy to evident promiscuity’’ [22].

In the case of ruminant mycoplasmas, horizontal gene transfer

(HGT) had already been evidenced between M. agalactiae and the

‘‘mycoides cluster’’, whose sole available genome was that of

MmmSC at that time [23]. This HGT may probably have

occurred between M. agalactiae and Mmc, which colonize the same

hosts and organs. By comparison, recombination between

MmmSC strains is very unlikely, since the genes recG and recR

are truncated in MmmSC genomes, which may preclude

homologous recombination [24]. Furthermore, the coexistence

of two or more MmmSC strains within a single animal is very

improbable. CBPP transmission can take place only between

infected and naı̈ve animals, whereas those that recover are

completely immune which would hamper the multiplication of any

MmmSC strain. In addition, recombination between MmmSC

and other bacterial species, including the closest relative Mmc,

should have been easily spotted, as it would have led to an

accumulation of SNPs in the implicated genes. However, clusters

Evolutionary History of CBPP
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of SNPs were not observed in this study. The selected gene-set was

therefore suitable for phylogenetic inference.

Phylogeny of Mycoplasma mycoides subsp. mycoides
‘‘Small Colony’’

A phylogenetic tree was inferred from the concatenated

nucleotidic sequences of the 20 selected MmmSC strains and an

Mmc outgroup by using PhyML (Figure 2). The topology of this

tree was confirmed by other methods such as maximum

parsimony using Dnapars (Figure S1) and statistical parsimony

using TCS (Figure S2). Yet, congruence of the phylogenies

obtained by different methods is not always achieved [25]. In the

case of MmmSC, the congruence could be explained by a very

limited degree of genetic variation, which makes homoplasy highly

improbable in our dataset. All the European strains were grouped

within a single long branch supported by a high bootstrap value

and may be considered a lineage. Interestingly, all strains isolated

after 1980 derived from a common ancestor. This finding showed

that a single strain may have spread in Southern Europe (France,

Spain, Portugal and Italy) between 1980 and 1993. Further proof

for this common origin was that all these strains presented the

same 8.8 kb deletion [26], which must have occurred in that

ancestor. In each of these European countries, the descendants

from this common ancestor presented 1 to 5 additional SNPs and

this could sometimes give an indication of the filiations of the

strains. For example, strain 112/4 isolated in Puglia presented an

additional SNP as compared to strain 6969 isolated in Lombardia

and 112/4 is therefore a direct descendant from strain 6969. The

Figure 1. Geographical distribution and diversity of the M. mycoides subsp. mycoides ‘‘Small Colony’’ (MmmSC) strains studied.
Twenty MmmSC strains were included in this study. Two strains were chosen from each European country that was infected in the 20th century (blue
dots). Eight strains from Sub-Saharan Africa were selected to reflect the widest geographical diversity in this region (red dots). One strain was chosen
to represent the southern part of the African continent (orange dot). In addition, one strain from Australia and one from India were also included
(green dots). The reference strain, PG1T, is not represented as its origin is not known. The arrows indicate the routes of contagious bovine
pleuropneumonia (CBPP) expansion during the 19th century as inferred from historical documents. The dates of introduction are indicated at the tip
of the arrows. The red and orange shaded areas in Africa represent the most probable zones where CBPP is now enzootic.
doi:10.1371/journal.pone.0046821.g001
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most likely explanation is that Puglia was contaminated by animals

from Lombardia, where CBPP was first detected in Italy and

where the disease may have been present since 1988 [10]. Within

our subset of MmmSC strains, we did not identify any bearing the

‘‘recent’’ European ancestral sequence and the 8,8 kb deletion.

This would have given the origin of the CBPP outbreaks in Europe

after 1980. It is unlikely the origin of these outbreaks can be found,

given the paucity of MmmSC strains in laboratory collections,

especially those from 1967–1980, when CBPP was not reported.

CBPP control in Europe has been based on detection and

stamping-out of affected herds. In this context, ancestral genotypes

certainly did not persist over time, resulting in a characteristic tree

topology presenting strains clustered at the tip of a long branch,

which is consistent with a ‘‘bottleneck and broomstick’’ kind of

evolution [27]. In the case of CBPP in Europe, the long-term

unnoticed persistence of some strains may be related to their lower

virulence, survival in an unusual host such as small ruminants, or

the use of antibiotics that may mask the infection.

Five branches were located at the vicinity of the root of the tree.

This was the case for two branches corresponding to strains from

Australasia (Gladysdale and 99048) and from Zambia (2004-003),

which are known to have been imported from Europe in the 19th

century [3]. These strains are then the direct descendants of the

strains that prevailed in Europe at that time. The close proximity

of the genotypes found in Australia and India also agrees with the

introduction of CBPP in Asia with milking cattle exported from

Australia. The disease entered India in 1910, China in 1919, and

from Mongolia, it reached Japan in 1924 [28]. These countries are

now considered CBPP-free. Two other branches near the root of

the tree corresponded to strains isolated in East Africa, namely

Eritrea (2003-11) and Tanzania (T1-44). Their ancestor may have

been very similar to the ancestral genotype found in Europe when

CBPP was exported to Australia. The fifth branch near the root

corresponded to type strain PG1T and was particularly long, but

this may reflect extensive in-vitro passages rather than natural

evolution. Finally, another highly supported branch grouped six

strains isolated from Sub-Saharan Africa. These strains originated

from West Africa (Senegal and Mali), Central Africa (Cameroon

and Southern Sudan), and East Africa (Rwanda and Ethiopia)

(Table S2), indicating that their common ancestor may have

gradually invaded the African Continent. In contrast to Europe,

CBPP control in Sub-Saharan Africa is based on vaccination. But

vaccination is insufficient to effectively control the disease, hence

allowing diverse genotypes to persist over time. This may explain

why the overall diversity of African strains is greater than that

found among recent European strains. That East African strains

are distributed in separate, dissociated groups may be correlated

with several introductions in that sub-region.

Figure 2. Phylogeny of Mycoplasma mycoides subsp. mycoides ‘‘Small Colony’’ (MmmSC) inferred by the maximum likelihood
method. The maximum likelihood tree was reconstructed using PhyML (GTR with invariable sites) based on the alignment of 62 concatenated core
genes of MmmSC. Bootstrap values .80% are shown. Strain names are colored according to the sampling location (see Figure 1). Country codes are
indicated in brackets. The branch corresponding to the outgroup (GM12) was shortened, as indicated by two parallel bars. The scale indicates the
number of substitutions per site. Abbreviations: AU = Australia; CM = Cameroon; ES = Spain; ER = Eritrea; ET = Ethiopia; FR = France; GN = Guinea;
IN = India; IT = Italy; ML = Mali; PT = Portugal; RW = Rwanda; SD = Sudan; TZ = Tanzania; ZM = Zambia.
doi:10.1371/journal.pone.0046821.g002

Evolutionary History of CBPP

PLOS ONE | www.plosone.org 4 October 2012 | Volume 7 | Issue 10 | e46821



In spite of the very low genetic diversity within MmmSC strains,

many branches of the trees that were generated in our study were

supported by high bootstrap values. This is due to the

concatenation of a high number of genes, 62, as opposed to

classical MLST approaches that include only 7 to 8 gene

fragments. The use of next-generation sequencing technology

was central to this phylogenetic approach but it also paves the way

for the rapid, robust and fine typing of MmmSC strains.

MmmSC divergence time estimations
The divergence time for the MmmSC strains was estimated

using BEAST, which performs a Bayesian Markov chain Monte

Carlo (MCMC) analysis and infers time-measured phylogenies

through molecular clock models. The initial tests used a strict

molecular clock, a GTR+I substitution model as established by

Modeltest and a mutation rate of 5 1027/site/year as a prior.

BEAST generated a phylogenetic tree and a date estimate for each

of the nodes of the tree (Figure 3) taking into consideration the

isolation dates of the strains. The overall tree topology was very

similar to that of the tree generated by PhyML except that BEAST

is not able to generate multifurcations. This slightly altered the

branch topology of European strains but did not prevent the use of

BEAST-generated trees to date ancestral nodes.

The date estimate of the node leading to the South African and

Australasian strains was used to evaluate the model accuracy.

BEAST-estimated mean time for the most recent common

ancestor (tMRCA) for these strains was 1852. This agrees well

with historical data establishing that CBPP was imported in those

continents exactly in 1853 and 1858 [3] and that the MRCA must

have emerged shortly before. The range for the 95% upper and

lower highest posterior densities (95% HPD), containing 95% of

the sampled values generated by BEAST, expanded from 1764 to

1927, and the mean value, 1852, was in complete agreement with

historical data.

The estimated date of emergence of the MRCA of all MmmSC

strains was 1704. The 95% HPD range was established at 1552 to

1831 These values are also in agreement with historical data as

CBPP was already identified in 1773 by B de Haller [6], which

makes the 1704 estimate very plausible. Furthermore, the lowest

value of the 95% HPD range (1552) clearly rules out the possibility

that CBPP may have been evolving in Africa since cattle

domestication and introduction into that continent before colonial

times. In Africa, the first wave of bovine introduction from the

Middle-East occurred around 4000 years BC for Bos taurus and the

second between 2000 years BC and 700 years AD for Bos indicus

[29].. A recent study indicated that this could have been the case

for the ancestor of the ‘‘mycoides cluster’’ [30].

The estimated date for the emergence of the MRCA of all

African strains, except those exported to South Africa, was 1814

(95% HPD: 1716–1894). At this time, CBPP was well known in

Europe and started to expand over the continent. Notably, CBPP

affected milking cattle in the Paris region [31]. The expansion of

CBPP from Europe to other continents or islands is well

documented [32]: Great Britain in 1841, USA in 1858, Australia

in 1858. Contrarily to what was suggested in 1885 after the

discovery of ‘‘Bos triceros’’, dating by BEAST strongly suggests that

CBPP was not indigenous to Africa ‘‘from time immemorial’’ and

that it was most likely introduced from Europe, as for the other

continents. The first European colonial settlements were estab-

lished as early as 1462 in the Islands of Cape Verde, followed by

numerous settlements in West Africa during the 16th century.

European settlers may have imported cattle at some time for milk

production. CBPP may therefore have been introduced in Africa

any time between the 16th and 19th centuries, and BEAST

analysis suggests probably around 1814.

The date of emergence of the MRCA of all European strains,

1884, is very recent considering that CBPP was present in Europe

at least since 1773. The stamping-out strategies certainly wiped

out many MmmSC ancestral strains, thus drastically reducing the

variability within MmmSC strains in Europe.

The robustness of the molecular dating analysis by BEAST was

evaluated by performing multiple trials using various molecular

clock priors (1029 to 1026/site/year) and substitution models

(HKY, GTR, NT93). Modifying these settings did not significantly

alter the final estimated mutation rate for this set of genes

(posterior probability, 5 1027/site/year) or the dating evaluation

for the tMRCA. However the 95% HPD range was strongly

influenced by priors on the type of variation around the mean

mutation clock rate. In bacteria, mutation rate has been estimated

for decades in vitro by detecting phenotypic traits that depend on

SNPs, such as antibiotic resistance. The in vitro mutation rate for

mycoplasmas is similar to that of other bacteria [33]. This finding

is surprising since mycoplasmas lack the methylation-mediated

DNA repair system commonly found in other bacteria whose

genome has not been drastically reduced in size. Mycoplasmas

must have found alternative ways to correct errors occurring

during DNA replication, putative candidates have recently been

identified [34]. Estimates of in vitro mutation rates certainly do not

reflect what happens in vivo. However, the new-generation

sequencing techniques offer ways to evaluate this parameter,

provided multiple strains or isolates are obtained sequentially.

Quite surprisingly, M. tuberculosis seems to have similar mutation

rates during latency periods compared to active disease [35]. The

increased rate of mutation during phases of slower replication

could be linked to reduced metabolism and DNA repair. Mutation

rates estimated in multiresistant Staphylococcus aureus are in the

range of 1025.5/site/year [36], 1026/site/year for housekeeping

genes of Helicobacter pylori [37] and those of Yersinia pestis in the

range of 2.3 1028 to 2.9 1029/site/year [19]. BEAST outputs

indicated that for MmmSC and our set of genes, the most

probable rate is 5 1027/site/year.

Conclusion
The CBPP agent was estimated by BEAST to have emerged

around 1700 AD. This is a very recent evolutionary event and

historical data indicate that it took place most probably in Europe.

During colonization, CBPP was exported from Europe to all other

continents, with the exception of South America, and today it

remains enzootic in many African countries, where eradication has

not been feasible. This emergence may have resulted from

adaptation of the MmmSC ancestor, presumably a small ruminant

pathogen showing a wide tropism like Mmc to a new host, cattle,

and to a specific organ, the lung. This hypothesis was sustained by

MmmSC and Mmc whole genome comparisons showing large

DNA fragment duplications, presence of numerous insertion

sequence copies, and extensive gene decay within the MmmSC

genome as compared to Mmc [24]. These events are classically

associated with a recent adaptation to a new host. The fate of

MmmSC evolution now clearly depends on the effectiveness of

CBPP control strategies. The European lineage described in this

study may already be extinct if European stamping-out policies

were successful. If some MmmSC strains persist unnoticed, as they

did previously, new CBPP outbreaks may occur in the future. By

contrast, CBPP is now expanding in Africa due to insufficient

control, and MmmSC strains are likely to evolve in that continent

for some time until effective measures are implemented.

Evolutionary History of CBPP
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Materials and Methods

Sampling of strains
A total of 20 MmmSC strains were used (Table S2), including 8

European and 9 African strains representing the distribution of

CBPP in these continents (Figure 1). Two European strains were

selected from each of the countries that declared CBPP between

1967 and 1993. African strains from each of the regions where

CBPP is enzootic and representing different MLSA sequence types

[15] were selected to maximize the genetic diversity. Two strains

from Australasia and type strain PG1T were also included. Field

strains isolated at CIRAD were cloned thrice to ensure purity and

subcultured less than 5 times before total DNA extraction and

genomic sequencing.

Selection of gene targets
Six MmmSC strains were initially used to select a phylogenet-

ically informative set of genes. The genome of three strains of

African origin (Gemu Gofa, 8740, and KH3J) and three strains of

European origin (PO1967, B345/93, and C425/93) were

sequenced in collaboration with Genoscope (Centre National de

Séquençage, Evry, France), using both 454 mate-pair (Roche) and

Solexa (Illumina) technologies. Sequence assembly was performed

using Newbler (2.3). The resulting scaffolds were then annotated

into a customized version of the CAAT-Box annotation platform

[38], using the published sequence of PG1T (NC_005364) as

reference and following the annotation process previously

described [24]. To do so, the sequence of strain PG1T, which

had been annotated in 2004, was re-annotated beforehand using

CAAT-Box and incorporated into the gene selection process.

From the core genome of these seven MmmSC strains, 62 genes

were selected that had a predicted function and showed some

Figure 3. Bayesian inference of Mycoplasma mycoides subsp. mycoides ‘‘Small Colony’’ evolutionary history. The maximum credibility
tree resulted from BEAST analysis with the concatenated sequence of 62 core genes and using a strict molecular clock and a GTR+I substitution
model. Branches are scaled by time according to the scales displayed at the bottom and top of the figure. Strain names are colored according to the
sampling location (see Figure 1). Country codes are indicated in brackets (for abbreviations refer to Figure 2). The dates at the nodes refer to the most
recent common ancestor (MRCA) estimated by BEAST for all strains deriving from these nodes. The 95% Highest Posterior Densities (HPD) values are
displayed in brackets. The node leading to the Australasian and South African strains was used as a control of estimation accuracy. The model dates
their MRCA around 1850. This agrees with the dates of CBPP introduction in Australia (1858) and Southern Africa (1853), indicated in blue boxes.
According to this model, the MRCA for all the tested strains emerged around 1700 and the MRCA for all the Sub-Saharan strains around 1810.
doi:10.1371/journal.pone.0046821.g003
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degree of polymorphism in their amino acid sequence (Table S1).

Pseudogenes and duplicated genes were excluded, as were genes

coding for membrane proteins or restriction enzymes, and those

prone to horizontal transfer [23]. Nucleotide sequences of the

selected genes were then concatenated following the reading

frame, resulting in an 83,601 bp sequence. In the case of

consecutive genes with overlapping coding sequences, the

upstream gene was truncated at the C-terminus end.

Data set collection
The genomes of twelve additional MmmSC strains were

sequenced in single reads on an Illumina HiSeq 2000 (GATC,

Constanz, Germany). Reads from the 62 selected genes were then

extracted from raw data by mapping on a reference sequence

using Seqman NGen (2.0) software (DNASTAR, Madison, WI).

This reference consisted of the concatenated, annotated sequence

of strain PG1T including flanking regions for each of the selected

genes (122722 bp) to allow the correct mapping of illumina

sequences on the whole gene length. On average, a read depth of

5006 was obtained for each genome. This procedure allowed

visual verification of the sequencing depth and of incongruities on

all coding sequences by using Seqman (Lasergene 8) software

(DNASTAR). Non-coding flanking regions were trimmed accord-

ing to gene annotations of the consensus sequence (Seqbuilder,

Lasergene V8.1.2). Additionally, selected genes were extracted

from the published genome sequences of strains PG1T

(NC_005364) and Gladysdale (CP002107) and concatenated as

described previously. Finally, GM12, a strain of the subspecies

Mmc, the closest relative of MmmSC, was chosen as outgroup and

corresponding sequence data were retrieved from Genebank

(CP001668).

Phylogenetic analyses
The concatenated sequences of 62 genes were aligned using

ClustalW as implemented in Seaview V4.3.2 [39], resulting in a

supermatrix (Figure S3). Three tree-building methods were used to

reconstruct the phylogeny of MmmSC from this supermatrix:

maximum likelihood (ML), maximum parsimony (MP), and

statistical parsimony. ML analyses were performed with PhyML

V3.0 [40] available on the web (http://www.atgc-montpellier.fr/

phyml/). The general time-reversible model including estimation

of invariant sites (GTR+I) was applied, since it was identified as

the best-fit substitution model by Modeltest V3.7 [41]. Node

support was assessed with the bootstrap technique using 100

replicates. An unrooted parsimony tree was inferred using

Dnapars from Phylip package V3.69 (http://evolution.genetics.

washington.edu/phylip.html) [42] based on alignment of SNPs

only (Figure S4). One thousand bootstrap replicates were created

by Seqboot (Phylip) and analyzed by Dnapars for multiple dataset.

The consensus tree was built by Consense (Phylip). A statistical

parsimony network was estimated using TCS V1.21 [43] based on

the alignment of polymorphic sites only with a fixed connection

limit set at 20.

Divergence time estimates by Bayesian evolutionary
analysis

BEAST V1.6.1 (http://beast.bio.ed.ac.uk) [44] was used to

estimate the divergence time of the various clades. Sequences from

strains that had been subcultured an unknown number of times in

vitro (type strain PG1T and vaccine strains T1/44/K and KH3J)

were removed from the alignment, since they may have evolved

with a different molecular clock as compared to field strains.

Owing to the low mutation rate in MmmSC strains, we assumed

that small number of in-vitro passages needed for isolation and

identification of field strains would not bias in-vivo molecular clock

and time divergence estimates. Samples were dated according to

their year of isolation when it was known. Strain Gladysdale was

dated around 1956 according to historical data showing that the

state of Victoria had been freed from CBPP at an earlier stage

than the Northern Australian states [45]. The substitution model

used was similar to that of the PhyML analysis, GTR+I, using a

strict molecular clock. The mean clock rate was set at 5 1027, as

determined by initial runs of BEAST,.and variation around this

mean followed a normal distribution. An exponential-growth

model was used as a prior for tree building. The MCMC chain

was set at 70 million generations with auto-optimization and

sampled every 1000 generations. The input file showing all

parameters for divergence time estimation was generated using

BEAUTi (BEAST) (Figure S5). After appropriate burn-in cutoff

(N = 7000), the effective sampling size was estimated by the

graphical application Tracer (BEAST package) (Effective Sample

Size.200). A single target tree was produced by TreeAnnotator

(BEAST package) and analyzed by Figtree V1.3.1 (http://tree.bio.

ed.ac.uk/) to produce a chronogram. Mean Node Heights were

recorded, as were 95% Highest Posterior Densities (HPD).

Supporting Information

Figure S1 Phylogenetic tree of Mycoplasma mycoides
subsp. mycoides ‘‘Small Colony’’ (MmmSC) sequences
using parsimony analysis. The most parsimonious tree was

obtained using Dnapars (Phylip package) from the alignment of

the 139 nucleotides corresponding to the MmmSC polymorphic

sites of 62 concatenated core genes. Strain names are colored

according to the sampling location (see Figure 1). Country codes

are indicated in brackets. The branch corresponding to the

reference strain, PG1T, was shortened. Bootstrap values over 75%

are indicated. The probable ancestral nodes, located within the

circled region ‘‘A’’, were inferred from their position at the center

of gravity of the tree. All strains of European origin were found

within a single lineage. Furthermore, the most recent European

strains are on branches at a multifurcation, at the tip of the

lineage, with a single ancestor, circled ‘‘B’’. This is evidence of the

clonal expansion of this ancestor giving rise to the recent isolates.

By contrast, strains from Sub-Saharan Africa are at the extremity

of bifurcating branches, an indication of the greater variability in

that continent. The South African or Australasian strains are on

short branches originating from the probable ancestral nodes.

Abbreviations: AU = Australia; CM = Cameroon; ES = Spain;

ER = Eritrea; ET = Ethiopia; FR = France; GN = Guinea; IN = -

India; IT = Italy; ML = Mali; PT = Portugal; RW = Rwanda;

SD = Sudan; TZ = Tanzania; ZM = Zambia.

(TIF)

Figure S2 Haplotype network of Mycoplasma mycoides
subsp. mycoides ‘‘Small Colony’’ (MmmSC) sequences
obtained using statistical parsimony. The cladogram was

obtained with TCS from the alignment of the 139 nucleotides

corresponding to the MmmSC polymorphic sites of 62 concate-

nated core genes. Strains KH3J and PG1T were not connected to

this network because the connecting distance was limited to 20

steps. Each segment corresponds to one mutational step. The color

of the strain names refers to their geographical origin (see Figure 1).

Country codes are indicated in brackets. The probable root of the

network, circled ‘‘A’’, was predicted by the number of connections

and the position within the network. The two possible roots here

have 4 connections. They are hypothetical haplotypes, while most

of the strain haplotypes are tip haplotypes. These ancestral
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haplotypes may not have persisted until today because of the

CBPP control strategies based on stamping-out methods, espe-

cially in Europe. One haplotype, circled ‘‘B’’, is connected to all

recent isolates of European origin and can be considered as the

ancestor of these strains. Abbreviations: AU = Australia;

CM = Cameroon; ES = Spain; ER = Eritrea; ET = Ethiopia;

FR = France; GN = Guinea; IN = India; IT = Italy; ML = Mali;

PT = Portugal; RW = Rwanda; SD = Sudan; TZ = Tanzania;

ZM = Zambia.

(TIF)

Figure S3 Alignment of 62 concatenated core genes of 20
MmmSC strains and an Mmc outgroup. Input file for

phylogenetic analysis using PhyML.

(PHY)

Figure S4 Alignment of polymorphic sites of 62 concat-
enated core genes from 20 MmmSC strains. Multifasta file

containing only polymorphic bases, used for analysis with the

PHYLIP package.

(FAS)

Figure S5 Input file for BEAST analysis. Xml file

generated by the BEAUTi software. This file contains all sequence

data as well as informations needed by the BEAST software to

perform a Bayesian evolutionary analysis such as site model, clock

models, priors, operators and MCMC chain length.

(XML)

Table S1 List of MmmSC concatenated genes.

(TIF)

Table S2 List of Mycoplasma mycoides subsp. my-
coides ‘‘Small Colony’’ strains studied.

(TIF)
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