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Motivation. Anomaly EEG detection is a long-standing problem in analysis of EEG signals. -e basic premise of this problem is
consideration of the similarity between two nonstationary EEG recordings. A well-established scheme is based on sequence
matching, typically including three steps: feature extraction, similarity measure, and decision-making. Current approaches mainly
focus on EEG feature extraction and decision-making, and few of them involve the similarity measure/quantification. Generally,
to design an appropriate similarity metric, that is compatible with the considered problem/data, is also an important issue in the
design of such detection systems. It is however impossible to directly apply those existing metrics to anomaly EEG detection
without any consideration of domain specificity. Methodology. -e main objective of this work is to investigate the impacts of
different similarity metrics on anomaly EEG detection. A few metrics that are potentially available for the EEG analysis have been
collected from other areas by a careful review of related works. -e so-called power spectrum is extracted as features of EEG
signals, and a null hypothesis testing is employed to make the final decision. Two indicators have been used to evaluate the
detection performance. One is to reflect the level of measured similarity between two compared EEG signals, and the other is to
quantify the detection accuracy. Results. Experiments were conducted on two data sets, respectively. -e results demonstrate the
positive impacts of different similarity metrics on anomaly EEG detection. -e Hellinger distance (HD) and Bhattacharyya
distance (BD) metrics show excellent performances: an accuracy of 0.9167 for our data set and an accuracy of 0.9667 for the Bern-
Barcelona EEG data set. Both of HD and BDmetrics are constructed based on the Bhattacharyya coefficient, implying the priority
of the Bhattacharyya coefficient when dealing with the highly noisy EEG signals. In future work, we will exploit an integrated
metric that combines HD and BD for the similarity measure of EEG signals.

1. Introduction

In recent years, we have witnessed significant improvements
of using electroencephalogram (EEG) measurement for data
acquisition in a wide range of clinical applications. It has also
led to the development of data mining methods that discover
potential patterns in the data, aiming at characterization of
dynamic EEG behaviours. Representative examples include
early detection of epileptic seizure [1–3], sleep process
monitoring [4–7], and many other neurological disordering
related health assessment and surgery problems [8–10].

Time series is an important class of EEG data. One of its
mining tasks is to detect potential anomaly event(s)/pat-
tern(s) at an early stage in a long-term EEG monitoring
process, which is highly required by change detection
[11–13], seizure prediction [14, 15], etc. Hence, the notion of
“anomaly EEG detection” is defined in the following sections.

-e basic premise of anomaly EEG detection is con-
sideration of the similarity between two nonstationary EEG
recordings. A well-established scheme is based on sequence
matching. Figure 1 illustrates the computation process of
this scheme. -e continuously monitored EEG signal is first
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divided into nonoverlapping (or overlapping) segments;
then, the ongoing segment under inspection is compared
with those ones that are usual under normal states. It is
worth noting that these normal EEG segments can be col-
lected with a prior collection phase or directly taken from the
past within the signal itself. -e resulting comparison re-
sults, i.e., the similarity scores, allow for a change detection
by testing a null hypothesis, H0: θ � θ0 against HA: θ≠ θ0
on the parameters θ of an assumed distribution. -e
Gaussian distribution is the most typical assumption, and
some other quantifiers, e.g., a direct threshold, can be also
applicable to achieve this end. To summarize, three tech-
niques are crucial to the success of anomaly detection,
described as follows:

(i) Feature Extraction. To extract explanatory param-
eters from the raw EEG data in order to reduce data
redundancy

(ii) Similarity Measure. To employ a specific metric to
measure/quantify the similarity between two data
recordings, i.e., individual EEG segments

(iii) Decision-Making. To make a decision by testing a
null hypothesis based on the resulting similarity
scores

Along this line of research, many efforts have been made
to enhance the feature extraction as seen in [16–18], and
some of them also involve the decision-making [4, 19, 20].
Nonetheless, we should be aware that it is also an important
aspect to design an appropriate similarity metric, that is
compatible with the considered data, when designing such
an anomaly detection system [21]. Here, one can note that
although the design of similarity metric has been an im-
portant problem in the context of statistics and data mining
[22–24], the metric used for EEG signal processing still
needs to be clarified due to the domain specificity. However,
to the best of our knowledge, few of existing studies asso-
ciated with the EEG signal processing takes into account this
issue in the design of anomaly EEG detection systems.

-e main objective of this work is to investigate the
impacts of different similarity metrics on anomaly EEG
detection based on a sequential matching scheme, which
uses similarity measure coupled with a null hypothesis
testing. -us, we collect a variety of most popular and state-
of-the-art metrics from other areas that would be potentially
available for our problem and modify/extend them if nec-
essary to incorporate with the anomaly EEG detection.
Impacts of different metrics on anomaly detection results are
evaluated based on two data sets. -e experimental results
reveal the different impacts of investigated metrics. Espe-
cially, the HD and BD are demonstrated outperforming
performances than other competitors including PCCD,
SKLD, KD, BD, and the typically used ED. -is study
therefore provides a preliminary basis for the EEG signal
processing.

-e organization of the rest of this paper is given as
follows. Section 2 formulates the considered problem.
Section 3 introduces several typical metrics that are po-
tentially available for EEG signal analysis. Section 4 describes
the testing data and the experimental implementation.
Section 5 shows the results with some discussion. Section 6
finally concludes this paper and shows the future work.

2. Problem Formulation

In this section, we first assume that the collected EEG re-
cordings have been already represented by employed fea-
tures (the feature extraction will be given in the following
Section 4.2.1). We then review the method of anomaly EEG
detection in the following [25].

-e anomaly detection is concerned with recognising
new inputs that differ in some way from those that are usual
under normal states [26]. Based on this, for a given query
EEG recording x, it is a common practice to compare it with
a set of normal templates yj , j � 1, . . . , M, where yj is a
EEG recording template and M is the total number.-is size
of the templates is a trade-off between sensitiveness to EEG

Segment 1 Segment 2 Segment n

Similarity score

Hypothesis
testing

Output

The ongoing segment

The template set of normal EEG recording

Sequence matching

n = n + 1

Change

No change

Figure 1: -e basic premise of anomaly EEG detection.
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status change and robustness to noise. If the size of the
template is larger, it will be more robust to noise but less
sensitive to change because the change often occurs in-
stantaneously, and vice versa. In this paper, the size of the
templates was set as 20 seconds empirically according to our
clinical experience. -e (anti-)similarity can be then
quantified as the maximum similarity between the query
recording and the templates using a similarity metric s. We
denote it as S(x)⟵maxjs

P, Qj , where the P and Qj are
the features extracted from x and yj. -e x is inspected as an
anomaly event if the resulting similarity score S(x) exceeds a
predefined threshold λ, i.e., S(x)< λ; otherwise, it is
inspected as normal. Here, it is worth to mention that the
detection can achieve a scalable and flexible detection result
with using a different value of λ. However, since the focus of
this paper is on the investigation of similarity metric, we do
not make additional discussion on this issue. -e interested
reader can refer to [27, 28] for more discussions on this issue.

-e similarity metric s is essential to report an accurate
and reliable detection result, and its construction normally
relies on a specific distance metric. A greater value of dis-
tance indicates a smaller level of similarity. More impor-
tantly, for the two given EEG recordings P and Qj, the
employed distance metric needs to satisfy several funda-
mental properties:

(i) Nonnegativity, i.e., s P, Qj ≥ 0
(ii) Identity, i.e., s P, Qj  � 0 if and only if P � Qj

(iii) Symmetry, i.e., s P, Qj  � s Qj,
P 

(iv) Triangle inequality, i.e., s P, Qj ≤ s P, R  +

s R, Qj , where R is a third EEG recording that is
not equivalent to both P and Qj

Here, one can note that, the distance metric for similarity
quantification is not necessary to meet all of these properties
especially the triangle inequality, under which such kinds of
distance are called as non-metric distances [29].

Based on the above definition, the similarity metric can
also be confirmed as S ∈ [0, 1] with value of 1 if two
compared EEG recordings are identical and 0 if nonidentical
at all. In the following, we identify some typical metrics with
potentials to solving our problem by careful reviewing of the
relevant literature. In particular, during the identification,
two following issues were considered:

(i) -e metric should satisfy three properties of scal-
ability, sensitivity, and coverage, according to [30]

(ii) Among various metrics, we only pay attention to the
ones which only calculate the similarity between two
sequences with equal lengths

3. Common Metrics

-is section introduces a variety of metrics from other areas
that would be potentially available for our problem and
modify/extend them if necessary to incorporate with the
considered anomaly EEG detection problem.

Let us assume that we have two sequences,
P � p(k) , k � 1, 2, . . . , K, and Q � q(k) , k � 1, 2,

. . . , K, where p(k) and q(k) are the observed values of P and
Q at time k, respectively. A variety of typical metrics, that are
potentially available for EEG analysing, are introduced to
measure the similarity between P and Q.

3.1. Euclidean Distance (ED). ED is the most common
metric that refers to the real distance between two points in
space [31]. -e ED between P and Q can be calculated by

d
(ED)

�

���������������



n

k�1
(p(k) − q(k))2




. (1)

Taking into account the characteristics of similarity
metric described in Section 2, we use the reciprocal of d(ED)

to represent the similarity as

s
(ED)

�
1

d(ED)
. (2)

3.2. Pearson Correlation Coefficient Distance (PCCD).
PCCD, proposed by Pearson, is a statistic used to reflect the
degree of linear correlation between two series, with values
between − 1 and 1. A larger value of this metric implies a
stronger correlation of the two compared series [32]. -e
PCCD between P and Q can be calculated by

d
(PCCD)

�


K
k�1(p(k) − p)(q(k) − q)

��������������


K
k�1(p(k) − p)2

 ��������������


K
k�1(q(k) − q)2

 . (3)

So, the similarity defined by PCCD is then calculated by

s
(PCCD)

� d
(PCCD)



. (4)

3.3. Symmetric Kullback–Leibler Divergence (SKLD).
SKLD can be used to measure the difference between two
probability distributions, widely used in information re-
trieval and data science [33, 34]. -e SKLD between P and Q

can be calculated by

D(P‖Q) � 
K

k�1
p(k)log

p(k)

q(k)
  ,

D(Q‖P) � 
K

k�1
q(k)log

q(k)

p(k)
  ,

(5)

but it is not a distance metric because of its asymmetry. In
order to solve the problem, symmetric Kullback–Leibler
divergence is very popular in various statistical distance
metrics [35] and is calculated by

d
(SKLD)

�
D(P‖Q) + D(Q‖P)

2
. (6)

-en, the similarity can be gotten as

s
(SKLD)

�
1

d(SKLD)
. (7)
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3.4. Hellinger Distance (HD). HD was first proposed by
Hellinger in [36]. It is used in probability and statistics to
measure the similarity between two probability distribu-
tions, which belongs to f-divergence [36].-eHD between P

and Q can be calculated by

d
(HD)

�
1
�
2

√ ‖
��
P

√
−

��
Q


‖2. (8)

-us, the similarity based on HD can be calculated as

s
(HD)

�
1

d(HD)
. (9)

3.5. Kolmogorov Distance (KD). KD was introduced by
Kolmogorov [37]. -is statistical distance plays an impor-
tant role in probability theory and hypothesis testing [38],
and it is widely used to measure the difference between two
probability distributions [39]. -erefore, the KD between P

and Q can be calculated by

d
(KD)

� ‖P − Q‖∞. (10)

-us, the similarity based on KD can be calculated as

s
(KD)

�
1

d(KD)
. (11)

3.6.BhattacharyyaDistance (BD). In the statistics, BDwhich
was proposed by Bhattacharyya in [40], also known as the
Hellinger distance, measures the similarity of two discrete or
continuous probability distributions. It is closely related to
the Bhattacharyya coefficient, which measures the overlap
between two statistical samples or populations [23]. -e
Bhattacharyya coefficient can be used to determine the
separability of the class classification used in the measure-
ment of two samples that are considered relatively close. -e
BD between P and Q is defined as

s
(BD)

� − ln(BC(P, Q)), (12)

where BC(X, Y) is the Bhattacharyya coefficient.

BC(P, Q) � 
K

k�1
(

��������

p(k)q(k)



). (13)

In the above schemes of distance metric, the similarity by
some of them does not satisfy the condition s ∈ [0, 1], as
summarized in Table 1. To cope with this problem, the
similarity needs to be normalized for some of them, and the
normalization will be given in Section 4.2.

4. Materials and Methods

-is section introduces the testing data and the imple-
mentation of our experiments.

4.1. Testing Data. -e testing data in this section are from
two data sets:

(i) -e first data set is established based on our system
setup. -e process of data collection is depicted in
Figure 2. Electrodes are placed in accordance with
the International 10–20 Electrode Placement
Method to collect EEG signals. -e original multi-
channel EEG signals are obtained using the data
collector. -e sampling rate of data collection used
here is 512Hz. -e channel C4 was chosen for our
testing. -ree neurological experts are invited to
check the original data and label the ground-truth
according to their domain experiences, i.e., which
part is normal and which part is abnormal. Here, it
must be pointed out that the normal status repre-
sents that the EEG signal is in a stable status, and the
abnormal status includes an unstable status of the
EEG signal that might be caused by seizures or other
abnormal physical activities. -e data are divided
into several samples using a 10,000 points non-
overlapping window. Examples of tested data sam-
ples are shown in Figure 3(a).

(ii) -e second data set is taken from the public Bern-
Barcelona EEG data set. -ey randomly select 3,750
pairs of simultaneously recorded signals from the
pool of all signals measured at focal and nonfocal
EEG channels, respectively, and divide the record-
ings into time windows of 20 seconds. -e original
data are recorded with a sampling rate of 1,024Hz.
-en, these EEG signals were downsampled to
512Hz prior to further analysis so that each piece of
EEG data contains 10,240 samples in length [41].
Examples of data in this data set are shown in
Figure 3(b).

Additionally, for each data set, we first select 30 pieces of
most table normal data segments to form a template set, and
the stability and normality here are judged according to
domain experts, and the residuals are as the test data.
Moreover, the test data are further equally divided into two
groups: one for optimizing threshold and one for final
testing. Both groups contain 30 pieces of data segments, of
which 15 pieces are normal data segments, and the other
pieces are abnormal. -e detection performance was eval-
uated with cross-validation of these two groups. We repeat
the whole process of the evaluation twenty times, such that
the final results can be obtained and analysed.

4.2. Experimental Implementation. Consistent with the
mechanism of anomaly EEG detection introduced previ-
ously in this paper, we perform three steps, i.e., feature

Table 1: -e range of the distance metrics.

ED PCCD SKLD HD KD BD
Range of
distance
value

[0, +∞] [− 1, 1] [0, +∞] [0, +∞] [0, +∞] —

Range of
similarity
score

[0, +∞] [0, 1] [0, +∞] [0, +∞] [0, +∞] [0, 1]
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Template set

Group 1

Data acquisition

Electrode Physical map Data collector

Raw multichannel EEG data

Data preprocessing
Raw EEG data for the C4 channel

Normal
template data
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testing data 

Abnormal
testing data
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0z 0101
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Figure 2: Collection of testing data based on our setup.
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Figure 3: Examples of testing data: (a) collected data with our setup, and (b) data taken from Bern-Barcelona EEG database. From left to
right: examples of normal data and examples of abnormal data.
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extraction, similarity measure, and decision-making, to
carry out our experiment. Let us first denote each ith piece of
template data as yi(n), n � 1, 2, . . . , N, and denote each ith
piece of testing data as xi(n), n � 1, 2, . . . , N. Main meth-
odologies used in the experiments are then introduced in the
following.

4.2.1. Feature Extraction. We extract the so-called power
spectrum [21] from the raw EEG data as the feature. Let
us assume that the observed value of a piece of the EEG
signal at the nth point has been denoted as x(n),
n � 1, 2, . . . , N. -e EEG signal was observed in discrete
situation, where the transform is discrete in both time
and frequency domains [42]. We may review the discrete
Fourier transform (DFT) calculation, which is formu-
lated as

X(k) � 
N− 1

n�0
x(n)e

− j(2π/N)kn
, k � 1, 2, . . . , N, (14)

where X(k) is the output of the transform and k indicates
the frequency index.

Recall that the main frequency components of EEG are
δ-wave (< 4Hz), θ-wave (4–8Hz), α-wave (8–14Hz),
β-wave (14–30Hz), and c-wave (> 30Hz) [43]. -at is, if a
neurological disorder happens, the amplitudes of these
frequencies change accordingly. -us, they are called
characteristic frequencies; i.e., different disorders have dif-
ferent characteristic frequencies. Actually, many successful
attempts have been reported using these frequencies to
diagnose the neurological disorders [44, 45]. We hence use a
subband of [0.1, 70]Hz covering these frequencies empiri-
cally for EEG inspection.

After a subband passing filtering (the resulting EEG data
are denoted as x’(n) after filtering), the power spectrum
P(k) can be estimated using the Welch method, a typical
power spectrum estimation method, by

P(k) �
1

MUL


L

i�1


M− 1

n�0
x

i
n′(n)d2(n)e

− j(2π/N)kn





2

,

k � 1, 2, . . . , K,

(15)

where U � (1/M)
M− 1
n�0 d2

2(n) and d2(n) is the window
function. -e resulting power spectrum P(k) allows for
the quantitative inspection of EEG data. An example is
shown in Figure 4. It can be found that the anomaly EEG
signals have the disordering amplitude variations and are
polluted with a high ratio of noise. As a result, it would be
very difficult to judge whether the EEG signal is abnormal
through time-domain analysis. In contrast, the difference
between normal and abnormal EEG signals in the fre-
quency domain is more clear, thus allowing for quanti-
tative inspection, i.e., similarity measure, for EEG data
inspection.

Based on the above calculation of power spectrum, the
testing data xi(n) and the compared template yj(n) can be
represented as their corresponding power spectrums Pi and
Qj, respectively.

4.2.2. Similarity Measure. s Pi,
Qj  is the similarity between

Pi and Qj, which is calculated through the metrics described
in Section 3. -e similarity S(xi) of xi to a normal status is
thought of as the minimum s among all templates, i.e.,
S(xi)⟵minjs

Pi,
Qj .

Furthermore, in order to satisfy the requirement de-
scribed in Section 2, S(xi)  should be normalized as [0, 1]

by

S′ xi(  �
S xi(  − min S xi(  

max S xi(   − min S xi(  
, i � 1, 2, . . . , 60.

(16)

We still use S(xi)  to represent the similarity for
simplicity in the following.

4.2.3. Decision-Making. In order to inspect whether xi(n) is
normal or not, a threshold λ should be predefined. -e
decision is subsequently made by testing the following
hypothesis:

H0: S xi( > λ,

HA: S xi( ≤ λ.
(17)

If the similarity between of testing data xi(n) is greater
than the threshold λ, the data are inspected as a normal
data; otherwise, it is considered as abnormal. We first carry
out a prior estimation to confirm the optimal value of λ
with a number of EEG testing data and then use it to detect
all other testing EEG signals in the experiment. -e results
shown in the following section are obtained by the optimal
value of λ.

5. Results and Discussion

5.1. Experiment I: Investigation onData Set I. As described in
Section 4.1, the evaluation was repeated 20 times to obtain
the final result. In the following, detailed results for one of
evaluations are provided.

Figure 5 provides the detection results for all investigated
metrics using the data of our database. In the left of each
subfigure, we show the computed similarities of each
training data including normal training data and abnormal
training data. -e similarities are gathered and then
arranged in ascending order (normal testing data) or
descending order (abnormal testing data). As such, two
curves corresponding to normal testing data and abnormal
testing data can be obtained, and they intersect at point O.
-e abscissa of point O (AOPO) can provide an overall
evaluation for normal and abnormal testing data. A smaller
AOPO means a greater difference between the normal re-
cordings and the abnormal recordings, indicating that the
similarity indicator is better; otherwise, the similarities
between the two classes of recordings are not much low,
meaning that the similarity indicator is not good enough.
From these results, it can be clearly seen that HD and BD
achieve the best result and the KD and SKLD have achieved
not-so-good results, while the ED and PCCD have the worst
results.
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Figure 4: An example of feature extraction: (a) original signal; (b) DFT signal; (c) power spectrum.
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Figure 5: Continued.
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-e other indicator of accuracy is also used to quantify
the detection performance, which is defined as

accuracy �
TP

TP + FN
, (18)

where TP is true positive indicating the number of data that
are inspected correctly and FN is false negative indicating the
number of data that are inspected incorrectly. -e right of
each subfigure in Figure 5 shows the results of all metrics in
term of accuracy. -e hypothesis testing described in Section
4.2.3 is used to classify the group 1 of testing data using all
investigated metrics with different threshold λ values.
-erefore, the higher the accuracy, the better themetric. And
it can be seen that, for each metric, as λ increases, accuracy
increases first and then decreases. -e values of λ corre-
sponding to the highest accuracy are used to calculate the
accuracy of the group 2 data set. Two examples are given in

Figures 6 and 7, in which we show the similarity scores of all
investigated metrics (using their optimal λ) for a normal
testing recording and an abnormal testing recording. It can
be found that PCCD and KD output wrong results for the
abnormal testing data, while the others output the right
results. It can be seen that the HD achieves the best per-
formance outperforming other metrics.

We summarize the results of investigated metrics by
combining their results in two terms of AOPO and accuracy
in Table 2. It can be seen that (1) HD and BD are the best
metrics in terms of AOPO and (2) HDworks best in terms of
accuracy.

-e above experimental process was implemented 20
times. In order to analyse all the experimental results, we
calculated the average of the AOPO and accuracy values
obtained from all experiments based on a global mean
measure and show the results in Table 3. It is noticed that the
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Figure 5: Results of six metrics using the training data of our database. From left to right: the similarity between each piece of data in the
training data set and the template set and the accuracy of the metric for the normal training data, abnormal training data, and all training
data. Detection result by using (a) ED, (b) PCCD, (c) SKLD, (d) HD, (e) KD, and (f) BD.
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metrics of HD achieve the best performance in terms of
AOPO, i.e., 3.65; in terms of accuracy, the HD outperforms
others. Based on these results, the investigatedmetrics can be
ranked as HD>BD>KD> SKLD>ED�PCCD.

5.2. Experiment II: Investigation on Bern-Barcelona Data Set.
-e result of one repetitive evaluation on the Bern-Barcelona
data set is also shown. Figure 8 gives the detection results for
all investigated metrics using the training data of the public
Bern-Barcelona EEG database. In the left of each subfigure,
we show the computed similarities of each testing data. And
the similarities are also arranged in ascending order (normal
testing data) or descending order (abnormal testing data).
-erefore, the AOPOs in this experiment can be gotten.
From these results, it can be clearly seen that HD, KD, and
BD achieve the best result, the ED and PCCD have achieved
not-so-good results, while the SKLD has the worst results.
-e right of each subfigure in Figure 8 shows the results of all
metrics in term of accuracy. It is clear that, for eachmetric, as
λ increases, accuracy increases first and then decreases too.
-e values of λ corresponding to the highest accuracy which
is marked as λ0 are also used to calculate the accuracy of the
group 2. Two examples are given in Figures 9 and 10, in
which we show the similarity scores of all investigated
metrics (using their λ0) for a normal testing recording and an
abnormal testing recording. It can be found that all the
metrics output the right result for the normal testing data.
But for the abnormal testing data, only ED and HD output
the correct result. In terms of accuracy, BD, HD, and HD are
also better than the others.

-e results of investigated metrics are also summarized
in Table 4. It can be clearly seen that, in this experiment, HD,
KD, and BD have achieved the best results in terms of
AOPO; in terms of accuracy, BD works best.

-e above experimental procedure was also imple-
mented 20 times. -e averages of the AOPO and accuracy
values obtained from all experiments are shown in Table 5.
-erefore, for the Bern-Barcelona EEG database, the metrics
of BD achieves the best performance in terms of AOPO, i.e.,
1.55; in terms of accuracy, the BD outperforms others. Based
on these results, the investigated metrics can be ranked as
BD>HD>KD> PCCD>ED> SKLD.

5.3. Experiment III: Investigation on Effect of Feature
Extraction. In order to investigate the effect of feature

extraction on detection performance, five representative
features including mean, root mean square (RMS), empirical
mode decomposition (EMD), discrete wavelet transform
(DWT), and artifact subspace reconstruction (ASR) that are
used in EEG signal analysis, are investigated in this section.
-eir operations are provided in Table 6. -e processes of
similarity measure and decision-making stated in Section 4.2
are also implemented to classify the testing data. -e results
of AOPO and accuracy of our database are shown in Tables 7
and 8, respectively. -e results of the Bern-Barcelona EEG
database are shown in Tables 9 and 10, respectively.

From the results shown in Table 7, we can see that, for
our database, in terms of AOPO, the metrics of HD and BD
perform better than others when using different features.
Table 8 shows the results in term of accuracy. We see that the
metrics of HD and BD performs better than others when
using DFT, mean, RMS, and ASR; in comparison, PCCD
also shows exciting results when using the features of EMD
and DWT. Tables 9 and 10 show the detection results for the
Bern-Barcelona EEG database. It can be clearly seen that the
metrics of HD and BD perform better than other alternatives
in both terms of AOPO and accuracy.

To summarize all these results, it can be also noted that,
ED, as the most commonly used indicator, performs the
worst in terms of AOPO and accuracy for both testing data
sets. PCCD, SKLD, and KD have achieved not-so-good re-
sults. Among all investigated metrics, the metrics of HD and
BD are more suitable for EEG signal analysis.

5.4. Result Summary and Discussion. Combining the results
from two tested data sets, it is clear that HD and BD achieve a
better performance than the other compared metrics. Recall
that both BD and HD are obtained by certain transfor-
mations of the Bhattacharyya coefficient BC(P, Q), i.e.,

s
(HD)

� 1 − BC(P, Q),

s
(BD)

� − ln(BC(P, Q)).
(19)

In this regard, HD and BD are thought of as an ap-
proximately equivalent measurement of two statistical
samples. -e difference between them is the sensitivity to
noise, as discussed in [49]. However, it is very difficult to
determine which of them is more appropriate for analysing
the highly noisy EEG signals. As a potential solution of
taking advantages of them, one can combine them using

Table 2: -e compared results of the six metrics in two ways using the testing data of our database for one experiment.

ED PCCD SKLD HD KD BD
AOPO 6.5 6.5 4.5 3.5 4.5 3.5
Accuracy 0.8167 0.7500 0.8500 0.9167 0.8667 0.9000

Table 3: -e mean results using our database for all experiments.

ED PCCD SKLD HD KD BD
AOPO 6.75 6.35 4.85 3.65 4.75 3.70
Accuracy 0.8033 0.7583 0.8350 0.9133 0.8600 0.8933
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Figure 8: Continued.
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Figure 8: -e detail results of six metrics using the training data of the Bern-Barcelona EEG database. From left to right: the similarity
between each piece of data in the training data set and the template set; the accuracy of the metric for the normal training data, abnormal
training data, and all training data. Detection result by using (a) ED, (b) PCCD, (c) SKLD, (d) HD, (e) KD, and (f) BD.
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Figure 9: An example of similarity scores for a normal testing data of the Bern-Barcelona EEG database. -e similarities S between the
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machine learning-based optimization methods, such as
inputs selection and inputs weighting [50–52], to form an
integrated metric to measure the considered EEG re-
cordings. -is also comprises the direction of our future
work.
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Figure 10: An example of similarity scores for an abnormal testing data of the Bern-Barcelona EEG database. -e similarities S between the
testing data and the template set are labelled by red circles. From top to bottom: (a) the original data; (b) the similarities obtained by ED,
PCCD, SKLD, HD, KD, and BD.

Table 4:-e compared results of the six metrics in two ways using the testing data of the Bern-Barcelona EEG database for one experiment.

ED PCCD SKLD HD KD BD
AOPO 3.5 3.5 4.5 1.5 1.5 1.5
Accuracy 0.9167 0.8833 0.8500 0.9500 0.9333 0.9667

Table 5: -e mean results using the Bern-Barcelona EEG database for all experiments.

ED PCCD SKLD HD KD BD
AOPO 3.75 3.60 4.35 1.65 1.80 1.55
Accuracy 0.8833 0.8883 0.8583 0.9567 0.9250 0.9633

Table 6: Five compared feature extraction methods and the cor-
responding operations.

Name Operation
Mean XMean � (1/N)

N
n�1x(n)

RMS
XRMS �

��������������

(1/N)
N
n�1x

2(n)



EMD

Empirical mode decomposition (EMD) is a method of
signal decomposition based on the time-scale

characteristics of the data itself, the detailed process of
which can refer to [46].

DWT Discrete wavelet transform (DWT) is a discrete wavelet
transformmethod. Its detailed process can refer to [47].

ASR

Artifact subspace reconstruction (ASR) is relatively
new technique, and it is based on new approach of

signal reconstruction with the reference signal
fragment. -e detailed process of ASR can refer to [48].

Table 7:-e AOPO results of the seven feature extraction methods
using our database.

ED PCCD SKLD HD KD BD
DFT 6.5 6.5 4.5 3.5 4.5 3.5
Mean 14.5 13.5 10.5 7.5 10.5 8.5
RMS 10.5 8.5 7.5 4.5 6.5 5.5
EMD 9.5 7.5 7.5 5.5 7.5 4.5
DWT 9.5 6.5 8.5 4.5 6.5 6.5
ASR 7.5 5.5 4.5 3.5 5.5 3.5
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6. Conclusions

Anomaly EEG detection is a long-standing problem in
analysis of EEG signals. -e basic premise of this problem is
consideration of the similarity between two nonstationary
EEG recordings, where a well-established scheme is based on
sequence matching. Typically, this scheme includes three
steps: feature extraction, similarity measure, and decision-
making. Current approaches mainly focus on EEG feature
extraction and decision-making, and few of them involve the
similarity measure/quantification. Generally, to design an
appropriate similarity metric, that is compatible with the
considered problem/data, is also an important issue in the
design of such detection systems. It is however impossible to
directly apply those existing metrics to anomaly EEG de-
tection without any consideration of domain specificity. -e
main objective of this work is to investigate the impacts of
different similarity metrics on anomaly EEG detection. A
few metrics that is potentially available for the EEG analysis
have been collected from other areas by a careful review of
related works, including Euclidean distance (ED), Hellinger
distance (HD), Bhattacharyya distance (BD), Kolmogorov
distance (KD), Pearson correlation coefficient distance
(PCCD), and Symmetric Kullback–Leibler divergence
(SKLD). Experiments were conducted on two data sets to

investigate them. Based on the results shown in Section 5, the
following are found:

(1) Experimental results demonstrate the positive im-
pacts of different similarity metrics on anomaly EEG
detection. Especially, the commonly used ED did not
achieve satisfactory results when compared with
other metrics. One main reason is that this metric
does not consider the possibly different weight of
each element in two compared EEG samples.

(2) Among all investigated metrics, the HD and BD
metrics, that are constructed based on the Bhatta-
charyya coefficient, show excellent performances.-ey
achieved excellent performances for two inspected
data sets: an AOPO value of 3.5 and an accuracy of
0.9167 for our data set and an AOPO value of 1.5 and
an accuracy of 0.9667 for the Bern-Barcelona EEG data
set. -ese findings reflect the priority of the Bhatta-
charyya coefficient when dealing with the highly noisy
EEG signals. -is study provides a preliminary basis
for analysing the EEG data.

In order to take advantages of the Bhattacharyya coeffi-
cient, we will exploit an integrated metric combining HD and
BD for similarity measure of EEG signals in the future work.

Abbreviations

AOPO: -e abscissa of point O
BD: Bhattacharyya distance
DFT: Discrete Fourier transform
ED: Euclidean distance
EEG: Electroencephalogram
HD: Hellinger distance
KD: Kolmogorov distance
PCCD: Pearson correlation coefficient distance
SKLD: Symmetric Kullback–Leibler divergence

Notations
d: -e distance calculated through the metrics
P, Q: Two given probability functions
p(k): -e kth point of series P

q(k): -e kth point of series Q
P: -e power spectrum of x
Q: -e power spectrum of y
R: An EEG recording that is not equivalent to both P

and Qj

s Pi,
Qi : -e similarity between Pi and Qi

S(xi): -e similarity between xi and the template set
yi 

x(n): -e nth point of a given EEG recording
x′(n): -e nth point of resulting EEG data after filtering
xi: -e ith of EEG recording of the testing data set
X(k): -e k point of the frequency spectrum of x(n)

yj: -e jth EEG recording of the template set
λ: -e threshold used for hypothesis testing.

Data Availability

-e data used to support the findings of this study are
available from the corresponding author upon request.

Table 8: -e accuracy results of the seven feature extraction
methods using our database.

ED PCCD SKLD HD KD BD
DFT 0.8167 0.7500 0.8500 0.9167 0.8667 0.9000
Mean 0.5333 0.6333 0.6833 0.7833 0.7333 0.7500
RMS 0.6833 0.8833 0.7667 0.9000 0.8333 0.8833
EMD 0.7333 0.9500 0.8667 0.9000 0.8167 0.9167
DWT 0.7167 0.9833 0.7667 0.8833 0.8167 0.8500
ASR 0.8333 0.8833 0.8500 0.9000 0.8667 0.9167

Table 9:-e AOPO results of the seven feature extraction methods
using the Bern-Barcelona EEG database.

ED PCCD SKLD HD KD BD
DFT 3.5 3.5 4.5 1.5 1.5 1.5
Mean 13.5 9.5 8.5 7.5 8.5 5.5
RMS 7.5 6.5 6.5 4.5 5.5 2.5
EMD 10.5 6.5 4.5 3.5 5.5 3.5
DWT 9.5 5.5 7.5 4.5 6.5 3.5
ASR 7.5 3.5 4.5 1.5 6.5 2.5

Table 10: -e accuracy results of the seven feature extraction
methods using the Bern-Barcelona EEG database.

ED PCCD SKLD HD KD BD
DFT 0.9167 0.8833 0.8500 0.9500 0.9333 0.9667
Mean 0.5833 0.6333 0.7667 0.7833 0.7333 0.8333
RMS 0.7333 0.8833 0.8167 0.9167 0.8500 0.9333
EMD 0.6167 0.7833 0.8833 0.9167 0.8167 0.8833
DWT 0.7500 0.8333 0.8167 0.8833 0.8667 0.9000
ASR 0.7333 0.8667 0.8500 0.9333 0.7833 0.9167
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