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Abstract: Carbon dioxide (CO2) is the most important anthropogenic greenhouse gas and its
concentration in atmosphere has been increasing rapidly due to the increase of anthropogenic
CO2 emissions. Quantifying anthropogenic CO2 emissions is essential to evaluate the measures
for mitigating climate change. Satellite-based measurements of greenhouse gases greatly advance
the way of monitoring atmospheric CO2 concentration. In this study, we propose an approach
for estimating anthropogenic CO2 emissions by an artificial neural network using column-average
dry air mole fraction of CO2 (XCO2) derived from observations of Greenhouse gases Observing
SATellite (GOSAT) in China. First, we use annual XCO2 anomalies (dXCO2) derived from XCO2 and
anthropogenic emission data during 2010–2014 as the training dataset to build a General Regression
Neural Network (GRNN) model. Second, applying the built model to annual dXCO2 in 2015,
we estimate the corresponding emission and verify them using ODIAC emission. As a results,
the estimated emissions significantly demonstrate positive correlation with that of ODIAC CO2

emissions especially in the areas with high anthropogenic CO2 emissions. Our results indicate that
XCO2 data from satellite observations can be applied in estimating anthropogenic CO2 emissions
at regional scale by the machine learning. This developed method can estimate carbon emission
inventory in a data-driven way. In particular, it is expected that the estimation accuracy can be
further improved when combined with other data sources, related CO2 uptake and emissions,
from satellite observations.

Keywords: anthropogenic CO2 emissions; GOSAT; atmospheric CO2 concentration

1. Introduction

Atmospheric carbon dioxide (CO2) is the most significant anthropogenic greenhouse gas (GHG)
and its concentration in atmosphere has been increasing from 280 ppm since the preindustrial era
to a level higher than 400 ppm at present at a global scale [1]. The enhancement of atmospheric
CO2 has been known as one of the factors inducing global warming and playing an important role
in climate change. Anthropogenic CO2 emissions, 70% of which come from fossil fuel combustion
and industrial activities [2], are the main driver of the atmospheric CO2 concentration increase.
If atmospheric CO2 concentration continues to increase at the current rate, 1.5 ◦C of global warming
will be reached between 2030 and 2052, which will cause more climate extremes [3]. Atmospheric CO2

concentration, moreover, will be continually increasing as the rapid development of industrialization
requires enormous energy around the world. In order to slow down the increase of atmospheric CO2
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concentration, many countries are making efforts for CO2 emissions reduction. For that we need an
efficient and reliable way to monitor CO2 emissions in order to evaluate the effectiveness of CO2

emissions reduction policy.
Over the past 20 years, satellite-based measurements of greenhouse gases have been facilitating

the way monitoring atmospheric constituents with the great advancement of satellite observing
technology in the development of highly accurate sensors. It is also becoming the major data source to
detect the change of atmospheric CO2 concentration at regional and global scales [4–7]. Compared with
ground-based observation, CO2 concentration retrieved by satellite has global coverage and consistent
observation characteristics, which can better reveal the spatio-temporal variation of atmospheric
CO2 concentration. Currently, the GHG observing satellites in orbit include the Greenhouse gases
Observing SATellite (GOSAT) from Japan, Orbiting Carbon Observatory 2 (OCO-2) from the USA and
TanSat from China, which can provide us the column-averaged dry air mole fraction of CO2 (XCO2)
dataset since 2009 [8–10].

Many previous studies indicated that XCO2 retrieved from satellite observations can detect
changes of CO2 concentration induced by anthropogenic emissions [11–13]. The anthropogenic
emission is expected to induce an increase of about 4 ppm of XCO2 around power plants [11].
With multi-year XCO2 dataset available from GOSAT and OCO-2, anthropogenic CO2 emissions
have been quantified by excluding the background concentration. It was reported that megacities
such as Los Angeles and Beijing, and high density urban regions such as eastern USA and the
Beijing-Tianjin-Hebei area in northern China have about 2 ppm enhancements [14–16]. These studies
mainly obtained regional CO2 enhancements in contrast to the background using empirical conversion
factors. It has been shown that the XCO2 has a positive correlation with the anthropogenic CO2

emissions through correlating OCO-2 observations with emission inventories [17]. The correlation
implies that satellite-based observations are capable to quantitatively assess the anthropogenic CO2

emissions through detection of XCO2 enhancements. Estimation of anthropogenic emissions from
satellite-based observation can support the investigation of carbon emissions as a data-driven method,
which is different to the conventional method in calculating emission inventory. Satellite observations
can detect the CO2 changes in specific regions such as strong sources of anthropogenic emissions, e.g.,
megacities and high density urban area, so as to monitor CO2 emissions effectively. These studies,
however, mostly focus on investigating enhancement of CO2 induced by anthropogenic emissions
through regional contrast. It is still a challenge in using XCO2 data to quantitatively estimate the
magnitude of anthropogenic CO2 emissions. This data-driven approach, as an additional way of
quantifying anthropogenic CO2 emissions, can help policymakers to obtain more information for
evaluating the effects for CO2 emissions reduction at both regional and global scales.

In this paper, we propose a method of using satellite-based observation to assess the anthropogenic
CO2 emissions aiming to assist the national routine investigation of carbon emissions. We focus on
mainland China as the studying area since it is a major national emitter of CO2 [18]. We extracted
XCO2 anomalies (dXCO2) using XCO2 dataset obtained from GOSAT observations. The anomalies are
found to be significantly correlated with anthropogenic CO2 emissions from the CO2 emitting sources
such as power plant emission. We further introduce artificial neural network algorithm (ANN) to
construct an estimation model for anthropogenic CO2 emissions based on the changes of atmospheric
CO2 concentration derived from satellite observations.

2. Data and Methodology

2.1. XCO2 Retrievals and Mapping XCO2 Dataset

XCO2 retrieval data products from January 2010 to December 2015 are collected from GOSAT
Atmospheric CO2 Observations from Space (ACOS v7.3). This dataset was produced by the Orbiting
Carbon Observatory (OCO) team of the US National Aeronautics and Space Administration (NASA)
using a full physics algorithm to retrieve XCO2 from GOSAT’s Spectrometer (TANSO-FTS) calibrated
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spectra measurements (Level 1B) [19]. In order to ensure high reliability of the data, only those data
over land with high gain are used after screening and correction of systematic bias as described in the
ACOS Level 2 Standard Product and Lite Data Product Data User’s Guide, v7.3 [20]. ACOS XCO2

retrievals have a standard deviation of error of 1.48 ppm when comparing with ground-based measures
of Total Carbon Column Observing Network (TCCON) [21]. Figure 1 shows the total counts of XCO2

data points during 6 years from January 2010 to December 2015, and their temporal variation in the
study area. An annual increase of XCO2 and the seasonal variation can be clearly seen.
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Figure 1. Number of available retrievals and temporal changes of collected XCO2 data: (a) the number
of XCO2 data points within 1◦ × 1◦ grid for 6 years from 2010 to 2015; (b) the temporal variation of
XCO2 and the monthly averages.

However, XCO2 data are irregularly distributed and have many gaps in space and time as
shown in Figure 1a because of the limitation of GOSAT observation mode, cloudy and data screening.
To investigate the space-time changes of XCO2, we generate a mapping XCO2 dataset in which those
gaps are filled using the kriging interpolation method based on the spatio-temporal geo-statistics
model [22–24]. The mapping XCO2 dataset is generated mainly in Chinese mainland area from
18◦ N to 57◦ N and from 65◦ E to 148◦ E with 0.5◦ × 0.5◦ grid cells and 3-day interval in time from
1 January 2010 to 31 December 2015. In order to match with collected ODIAC emission dataset in
1◦ × 1◦, we resampled the spatial resolution of data we used in this paper to 1◦ × 1◦. This mapping
dataset is hereafter referred to as Mapping-XCO2.

2.2. Anthropogenic Emission Data

We collected two datasets of the bottom-up anthropogenic CO2 emissions. One is the Open-source
Data Inventory for Anthropogenic Carbon dioxide (ODIAC) for same years as the used XCO2 dataset
in this study. The other is the CARbon Monitoring for Action (CARMA) power plant database in 2009.
The specifications of these data are described in Table 1.
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Table 1. Basic specifications of ODIAC and CARMA bottom-up CO2 emission datasets.

ODIAC CARMA

Grid, timely unit/period 1◦ × 1◦, Month/2010–2015 Points/2009

Unit Ton Ton

Statistical sectors

Point sources non-point sources

-Cement production

Gas flaring

International aviation and marine bunker

Used data sources
Fuel statistic data published as united

nation energy statistics database
BP statistical review of world energy 2017

The environmental protection agency and
department of energy

International atomic energy agency

Producer Center for global environment research,
national institute for environment studies Center for Global Development

Oda, T et al. [25] Wheeler, D et al. [26]

The ODIAC emissions data product is a global 1◦ × 1◦ gridded monthly fossil fuel CO2 emission
inventory, developed based on country level fossil fuel CO2 emission estimates, fuel consumption
statistics, satellite-observed nightlight data, and point source information (geographical locations
and emission intensities) from the CARbon Monitoring for Action (CARMA) power plant database
(ODIAC2015a, available at http://db.cger.nies.go.jp/dataset/ODIAC/). The global nightlight data
were used as a geo-referenced, spatial proxy to determine the spatial extent of anthropogenic emissions
from line and diffused (area) sources (e.g., road traffic, residential or commercial fuel consumption) [25].
The ODIAC gridded emissions fields defined on a global rectangular (latitude ×longitude) coordinate
are remapped to meet the grids resolutions for each simulation domain.

Additionally, the CO2 emissions from power plant, which is one of the dominant CO2 emitting
sources, are collected in the study area from the database of Carbon Monitoring for Action (CARMA,
available at http://carma.org/plant). At the same time, we unify the units of the two sets of emission
data to ton, and take the logarithm of two emission data base on 10 (refer to as lgE) to facilitate
the calculation.

2.3. Methodology

The method for estimating anthropogenic CO2 emission include three major steps as shown in
Figure 2.

Firstly, we enhance the signals of CO2 from anthropogenic emission in XCO2 which is described
in Section 2.3.1. Secondly, we apply the training datasets of XCO2 and ODIAC in 2010–2014 to GRNN
to get the estimating model of anthropogenic emission which is described in Section 2.3.2 in detail.
Thirdly, anthropogenic emissions are estimated by GRNN model using XCO2 in 2015, and validated
by comparing with ODIAC data in 2015.

2.3.1. Variable of XCO2 Used for Estimation of Anthropogenic Emission

The magnitude of XCO2 include CO2 emitted by anthropogenic activities, the fluxes of terrestrial
biosphere, fluxes transported by atmospheric wind fields [27,28] and CO2 of regional background.
We introduce therefrom an interannual variability by removing the regional background signal and
calculating their annual mean to enhance the signals of CO2 from anthropogenic emission as following
equation proposed by Hakkarainen et al. [17]:

dXCO2(grid, t) = XCO2(grid, t)− MXCO2(t) (1)

where dXCO2 (grid,t) indicates the deviation from regional background for each grid at a specific time
unit t where t is the 3-day unit of used mapping-XCO2 data; XCO2 (grid,t) is XCO2 for each grid at
time t from mapping-XCO2 data; MXCO2(t) is median of XCO2 for all girds in the study region at time

http://db.cger.nies.go.jp/dataset/ODIAC/
http://carma.org/plant
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t calculated from mapping-XCO2 data with 0.5◦ × 0.5◦ grid cell. Lastly we apply the annual mean of
dXCO2 (grid,t) for the year from 2010 to 2015 in the estimation of anthropogenic emission. This annual
mean of dXCO2 (grid,t) could detrend the seasonal variation at locale and simultaneously reduces the
effect of the atmospheric transport [17].

We computed the monthly averaged dXCO2 and annual averaged dXCO2 for each grid to generate
monthly averaged dXCO2 dataset and annual averaged dXCO2 dataset from the year 2010 to 2015
with 1◦ × 1◦ grids using the mapping XCO2 dataset from 2010 to 2015. The annual dXCO2 dataset and
ODIAC data will be used in the following analysis.
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Figure 2. Flowchart of estimating anthropogenic emission using XCO2 data obtained by GOSAT
observations. It consists of three major steps, firstly enhancing the signals of CO2 from anthropogenic
emission in XCO2; secondly establishing GRNN model using the training datasets; the last estimating
the anthropogenic emissions and validating the result.

2.3.2. Estimation of Anthropogenic CO2 Emission by Neural Network Development

Because XCO2 variations are forced by anthropogenic emissions, exchange between the
atmosphere and the ocean and the terrestrial biosphere [27,28], there are both non-linear and linear
mapping between XCO2 and emissions. Here we adopt a General Regression Neural Network (GRNN)
algorithm [29] to represent non-linear mapping between the independent variables (dXCO2 in this
study) and dependent variable (CO2 emissions in this study). GRNN directly draws the function
estimate approximating any arbitrary function between the input and output vectors of variables.
The GRNN converges to the optimal regression result when the training samples increases in number,
meanwhile, the error of estimation is closed to 0. There are four layers in the GRNN model we used,
an input layer, a hidden layer, a summation layer, and a decision layer (Figure 3; [30,31]). In the
input layer, each neuron corresponds to an independent variable which is defined as a mathematical
function, the independent variable values will be standardized. Then the standardized independent
variable values were transferred to the neurons in the hidden layer. In this layer, each neurons stores
the values of the independent variables and the dependent variable, and a scalar function will be
calculated. There are two neurons in the summation layer, the denominator summation unit sums
the weight values coming from the hidden neurons, and the numerator summation unit sums the
weight values multiplied by the actual target dependent variable value for each hidden neuron. At last,
dividing the value accumulated in the numerator summation unit by the value in the denominator
summation unit in the decision layer, we uses the division result as the predicted target dependent
variable value [32].
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Cigizolu and Alp [30].

According to the calculation steps of developing a neural network, we need to standardize all the
independent and dependent training variables, so that in the input layer all training data will have the
same order of magnitudes.

d(x0 − xi) =
p

∑
j=1

[ x0j − xij

σ

]2
(2)

where p denotes the dimension of variable vector xi, σ is the spread parameter, whose optimal value
is determined by minimizing the root mean square error (RMSE) between the training data and the
predicted values of the dependent variable.

The weight of the denominator neuron is set to 1.0. The GRNN training algorithm uses only one
adjustable parameter σ for a given training set. Here we use “the holdout method” [29] to optimize the
σ value, and detailed introduction can refer to the article [29]. The predicted target dependent variable,
the ODIAC CO2 emissions, is defined by the following Equation (3):

ŷ(x0) =
∑n

i=1 yie−d(x0,xi)

∑n
i=1 e−d(x0,xi)

(3)

where the values calculated with the scalar function in a hidden neuron i are weighted with the
corresponding values of the training samples yi, and then passed to the numerator neuron. n is the
number of training samples.

3. Results and Discussion

3.1. Estimated Anthropogenic Emissions by GRNN

We use the annual dXCO2 dataset and ODIAC CO2 emissions data from the year 2010 to 2014
as the training dataset, which have the total of 5415 samples available, to build a GRNN model for
estimating anthropogenic emission. By applying “the holdout method” described in Section 2.3,
we obtain the optimized spread parameter σ as 0.1. Then we apply GRNN model to the annual dXCO2

data in 2015 to predict target dependent variable, anthropogenic emission with the same unit as the
ODIAC CO2 emissions.

The CO2 emissions estimated using the annual dXCO2 and the actual ODIAC CO2 emission in
2015 are shown in Figure 4. Comparing Figure 4a with Figure 4b, we can see that the spatially changing
pattern of estimated emission by satellite-based observation is exactly similar as that of the actual
magnitude of ODIAC. Moreover, the estimated emission presents a more smoothing spatial details
than the actual emission, which is mainly because the Kriging procedure smooths the CO2 signals
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from point sources of strong anthropogenic emission, and 10 km spatial resolution of each GOSAT
footprint observations also smooths the signals. The magnitude of estimated emission is generally less
than that of ODIAC. Figure 5 presents the differences between them and the corresponding histogram.
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Figure 5. (a) The difference between the estimated CO2 emission using mapping-XCO2 in 2015 and
ODIAC emission in 2015; (b) Histogram comparison of the estimated and the ODIAC CO2 emission (in
unit of Ton/year) in 2015; (c) Land use of China in 2010.

It can be seen from Figure 5a that the difference between the estimated CO2 emission and
ODIAC emission mainly change from −5 Mt to 5 Mt, which accounts for 91% of the total grids.
The magnitude of difference from −1 Mt to 1 Mt accounts for 71% of the total grids. The low magnitude
of ODIAC emissions in the range of 1–104 t/year shown in Figure 4b are generally underestimated
by satellite-based observations (shown in yellow in Figure 5a). These are mostly located in semi-arid
grasslands, forests in the northern areas as shown in land use map of Figure 5c.

This underestimation implies that the emission estimated by dXCO2 has high uncertainty in the
areas of low anthropogenic emission that is likely due to the CO2 uptake of biosphere which is still
remaining in dXCO2. The estimated emission, moreover, is much lower than ODIAC emission over
the areas around big cities, such as Beijing, Shanghai, Guangzhou. This underestimation indicates
that the smoothing effects of the estimated emission, which is likely because the spatial resolution of
GOSAT observations (10 km) is not sufficient to detect the emission of point sources. On the other
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hand, the estimated emissions are generally larger than ODIAC emission in the south-eastern region of
China where there are many anthropogenic emitting sources which can be seen in Figure 8. The general
overestimation in this region is likely because the large emitting sources around raise the concentration
of CO2 over those non-emitting areas nearby them through the atmospheric transport.

Lastly, comparing the satellite-based estimation of CO2 emissions with ODIAC emission for all
grids as shown in Figure 6, we find they show a significant correlation (R2) of 0.65 with p value less
than 0.01.
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3.2. Discussion of Correlation between Retrieved XCO2 and Anthropogenic Emissons

It has been indicated that the cluster of XCO2 changes derived from GOSAT observations shows a
correlating coefficient of 0.5 with anthropogenic emission. This correlation is more significant than a
single grid of XCO2 as the atmospheric CO2 measurement is an instantaneous snapshot of the realistic
atmosphere [33]. Its clustering analysis is derived from original XCO2 data.

We segment the ODIAC emissions which are binned according to every 0.3 t/yr of lgE (Figure 7a)
using mean emission calculated from annual emission during 2010–2015, and then make correlation
analysis between the mean of emission and mean of dXCO2 within binned regions. It is found that the
segmental mean of dXCO2 demonstrate a significant and positive correlation with ODIAC emissions in
which the determined coefficient (R2) for all data is up to 0.82 (Figure 7b) and the dXCO2 demonstrate
strong positive linear correlation with emission starting from 104 t/yr where R2 is up to 0.95 (red
line in Figure 7b). The dXCO2 is almost unchanged in the region with emission lower than 104 t/yr.
These results imply that satellite observations of atmospheric CO2 could be used to estimate regional
anthropogenic emissions for those regions with larger magnitude of anthropogenic CO2 emissions.
Additionally, we overlay the CARMA power plants dataset on the mean dXCO2 from the annual
dXCO2 during 2010 to 2015 (Figure 8a). It can be seen that the high dXCO2 are corresponding to
high-density power plants, especially in northeast China. We accumulate the magnitude of emissions
of power plants within one grid of mapping XCO2 dataset, then we segment emissions of power plants
which are binned according to every 0.3 t of lgE, and take correlation analysis between the mean of
power plants emission and the mean of dXCO2 within binned regions (Figure 8a). dXCO2 demonstrate
strong positive linear correlation with power plants emission starting from 106 t (blue dots). The grids
they represent are distributed consistently with high dXCO2 area. The result demonstrates a R2 of 0.59
which is less than regional statistics. Power plants emission lower than 105.5 t demonstrate weak linear
correlation with dXCO2 because the influence of CO2 uptake of biosphere.
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Figure 7. (a) Segment of ODIAC emissions, where the data are binned by every 0.3 t/yr of lgE using
mean emission calculated from annual emission during 2010–2015; (b) correlation between mean
ODIAC CO2 emissions and mean dXCO2 calculated from annual dXCO2 during 2010–2015 for each
segment, where red line is the regression line between dXCO2 and ODIAC CO2 emissions with emission
lager than 104 t/yr.
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From Figure 8a, it can be found that the dXCO2 in western area, the desert area of Xinjiang, shows
high values even if there are much less anthropogenic emission over this area as shown in Figure 4b.
This is likely resulted in the uncertainty of ACOS XCO2 retrievals in desert which has been indicated
by Bie et al. [34].

4. Conclusions

In this paper, to support the verification of bottom-up inventory of anthropogenic emission,
an anthropogenic CO2 emission estimation method using a machine learning technique is applied to
the gap-filled ACOS XCO2 dataset over the mainland of China derived from GOSAT observations.
The annual emission signatures, indicated by dXCO2, is enhanced by removing the background
XCO2 from the 2010 to 2015 XCO2 data. We then apply the annual averaged dXCO2 from 2010 to
2014 to build an estimating model of anthropogenic emission using an artificial network approach.
The model is verified by estimating results in 2015 and comparing with the ODIAC emissions. Lastly,
we quantify the correlation between the annual dXCO2 and the magnitude of anthropogenic emission.
Our result indicate that the anthropogenic emission can be estimated at regional scale by the changing
magnitude of XCO2 especially for those regions with larger emissions. However, it has relatively
higher uncertainty to grasp the CO2 signals of the low or without anthropogenic emission areas and



Sensors 2019, 19, 1118 10 of 12

point emitting sources. The CO2 uptake of biosphere and fluxes of wind field affect the estimation
when using the annual dXCO2. The observation mode of GOSAT satellite in space and time and fast
mixing of atmospheric CO2 also affect the detection of point emitting sources.

Our study demonstrates that the XCO2 derived from satellite observation can effectively provide
a way to reveal the spatial patterns of underlying anthropogenic emissions. It is expected that the
estimation of anthropogenic emission could be greatly improved by using more and more XCO2 data
from multi-satellite such as OCO-2, OCO-3, GOSAT-2, and TanSat in future. Moreover, we can combine
the ancillary data related with CO2 uptake and emission which can be obtained by satellite remote
sensing observations at the same time, such as gross primary production (GPP), industrial heat source
from VIIRS (Visible infrared Imaging Radiometer) Night fire product for point sources, Night light from
Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS), to constrain
the estimating model developed in this study. This data-driven approach based on satellite-based
observations can offer the possibility of rapid updates for anthropogenic CO2 emissions, and provide
a new way of investigating anthropogenic emissions to support the implement of regional reduction
of carbon emissions.
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