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ABSTRACT

CRISPR arrays and CRISPR-associated (Cas) pro-
teins comprise a widespread adaptive immune sys-
tem in bacteria and archaea. These systems func-
tion as a defense against exogenous parasitic mo-
bile genetic elements that include bacteriophages,
plasmids and foreign nucleic acids. With the con-
tinuous spread of antibiotic resistance, knowledge
of pathogen susceptibility to bacteriophage ther-
apy is becoming more critical. Additionally, gene-
editing applications would benefit from the discovery
of new cas genes with favorable properties. While
next-generation sequencing has produced stagger-
ing quantities of data, transitioning from raw se-
quencing reads to the identification of CRISPR/Cas
systems has remained challenging. This is espe-
cially true for metagenomic data, which has the high-
est potential for identifying novel cas genes. We re-
port a comprehensive computational pipeline, Cas-
Collect, for the targeted assembly and annotation
of cas genes and CRISPR arrays––even isolated
arrays––from raw sequencing reads. Benchmarking
our targeted assembly pipeline demonstrates signifi-
cantly improved timing by almost two orders of mag-
nitude compared with conventional assembly and an-
notation, while retaining the ability to detect CRISPR
arrays and cas genes. CasCollect is a highly versa-
tile pipeline and can be used for targeted assembly of
any specialty gene set, reconfigurable for user pro-
vided Hidden Markov Models and/or reference nu-
cleotide sequences.

INTRODUCTION

Clustered regularly interspaced short palindromic repeats
(CRISPR) arrays and the CRISPR associated (Cas) pro-
teins constitute adaptive immune systems that bacteria and
archaea use to defend against invading plasmids, bacterio-
phage viruses and other foreign DNAs or RNAs (1,2). The
effector of a CRISPR/Cas immune system is a ribonucleo-
protein (RNP) complex, composed of one or more catalytic
Cas proteins and a CRISPR RNA that targets foreign nu-
cleic acids for endonucleolytic cleavage. CRISPR/Cas sys-
tems are present in many bacteria and archaea and have
been classified into two classes, six types and 22 subtypes
based on the composition of cas genes within each system
(3).

The first CRISPR/Cas effector developed for biotechnol-
ogy, remaining the focus for gene-editing applications, was
the simple Class 2 type II CRISPR/Cas system. This system
requires the CRISPR RNA, the trans-activating RNA, and
the nucleolytic Cas9 protein for targeted DNA cleavage (4).
The CRISPR and trans-activating RNA were further sim-
plified into an engineered single guide RNA. However, this
Cas9 system was developed from human pathogens and has
been reported to invoke an immune response (5). Although
Cas9 remains the most popular system for biotechnology
applications, there is ongoing work to develop Class 2 type
V CRISPR/Cas systems––that include Cas12 (Cpf1)––as
well as searches for other new systems. Additionally, Class
2 type VI CRISPR/Cas systems that target RNA, Cas13
(C2c2), are of interest for transcriptional modification in-
place-of gene-editing applications. The need for discover-
ing CRISPR arrays and Cas proteins is furthered by multi-
drug-resistant infections and the potential of bacteriophage
therapeutics (6). Tools that improve the efficacy and speed
of CRISPR/Cas discovery will be useful for evaluating
whether a bacterial pathogen is susceptible to bacterio-
phage therapy.

The discovery of novel CRISPR/Cas systems from non-
pathogenic organisms is essential for identifying systems for
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therapeutic gene-editing, while rapid detection of these sys-
tems from pathogenic organisms is critical for applying the
most appropriate and effective phage therapy. There have
been progressive improvements in the identification and an-
notation of CRISPR/Cas system components from individ-
ual genomes and from previously assembled metagenomes
(7–12) with an array of tools available (13–16). More recent
identification of cas genes have employed Hidden Markov
Models (HMM) and Position Specific Scoring Matrices
(PSSM) that enable deep homology searches for novel mem-
bers of known cas gene families (8–10). HMMs and PSSMs
have been applied toward annotating well-defined and as-
sembled bacterial and archaeal genomes. The rate of dis-
covering CRISPR/Cas system components could be im-
proved significantly by avoiding the complete assembly of
the raw sequencing read datasets, instead identifying reads
that match cas genes and/or CRISPR arrays and using
these ‘seed’ reads to prime the targeted assembly of only
the regions of the genome corresponding to CRISPR/Cas
systems.

Herein we report a software pipeline, CasCollect,
for the targeted assembly and annotation of cas genes
and CRISPR arrays from raw sequencing datasets. We
demonstrate the utility of CasCollect with unassembled
high-throughput sequencing reads from bacterial iso-
late genomes, simulated metagenome and available actual
metagenome datasets. Evaluating CasCollect with a sim-
ulated metagenomic dataset, we successfully identified all
known cas genes, accurately assembling and annotating the
cas operons. Our CasCollect pipeline reduced the timing
for cas genes identification and annotation from unassem-
bled metagenomic sequencing data by almost two orders
of magnitude compared with the complete assembly. As
a case study of CasCollect for determining phage ther-
apy potential, we successfully identified the CRISPR ar-
rays and cas operons from publicly available patient data
for 66 antibiotic resistant Pseudomonas aeruginosa clinical
isolates––nearly all had only unassembled sequencing read
data available. CasCollect is a versatile software tool for
the identification and annotation of CRISPR arrays and
cas operons from unassembled high-throughput sequencing
datasets. The pipeline software is flexible, capable of the tar-
geted assembly of other specialty gene sets when supplied
with relevant HMM collections and/or reference DNA se-
quences.

MATERIALS AND METHODS

Data sources

The genomic and metagenomic datasets used in this study
were downloaded from the NCBI downloaded from the
Sequence Read Archive (SRA) at (http://www.ncbi.nlm.
nih.gov/sra). Isolate genome datasets were Escherichia coli
KLY isolate (SRR1424625), P. aeruginosa VA-134 iso-
late (SRR2939129) and Streptococcus pyogenes M39 iso-
late (SRR5280756). For simulating a metagenomic dataset,
these three isolates were combined with mouse sequenc-
ing data (SRR1752459) to increase sample complexity. For
the metagenomic study, we used the following datasets
for ground water, deep water biosphere (SRR10598175);
Lake Redon in Central Pyrenees, Spain (ERR472738);

Artic permafrost (SRR11195315); and peatland wetlands
(SRR5823773). Unassembled read datasets of phage ther-
apy candidates were for 66 antibiotic resistant P. aeruginosa
isolates that are distributed by the CDC & FDA Antibiotic
Resistance Isolate Bank. All sequencing data were from Il-
lumina sequencing platforms and downloaded as SRA files
with Fastq files extracted by executing the SRA toolkit com-
mand fastq-dump with paired-end files split (17).

CasCollect development and targeted gene assembly

CasCollect was developed in Python and Perl languages
with the pipeline publicly available for download under
the terms of the GNU General Public License version 3
at https://github.com/sandialabs/CasCollect. Installation
requirements and documentation are provided in the down-
load. A check script for dependencies will download and ex-
tract missing software. All tests reported for this work were
performed on a system setup with 100 Intel Xeon CPUs at
2.40GHz and 2 Tb RAM. CasCollect was designed for a
POSIX-compliant operating system that include Unix and
Linux distributions. CasCollect dependencies are BBTools
38.84 (https://jgi.doe.gov/data-and-tools/bbtools/), Se-
qtk (https://github.com/lh3/seqtk), FragGeneScanPlus
(FGS+, https://github.com/hallamlab/FragGeneScanPlus),
HMMER v3.3 (http://hmmer.org/), VSEARCH
(https://github.com/torognes/vsearch), SPAdes 3.14.1 (http:
//cab.spbu.ru/software/spades/) and CRISPRCasFinder
(https://crisprcas.i2bc.paris-saclay.fr/). CRISPRCasFinder
was parallelized through a Perl script for the number of
CPUs defined by the user input and skips contigs below a
size cutoff to generate a GFF3 output file. The CasCollect
pipeline includes read filtering, seed generation, subset read
expansion, assembly, and annotation for cas genes and
CRISPR arrays.

CasCollect parameters

The CasCollect pipeline has several parameters that can be
altered for user specific workflows, described in detail with
the -h command. The short DNA sequencing read reads in-
put can accommodate single- or paired-end sequencing data
with -single [file.fastq] or -fwd [file.fastq] and -rev [file.fastq],
respectively (Figure 1A). The filtering option is set to false
by default and the sequencing reads will be run for the seed
generation and downstream workflow (Figure 1B). Setting
the flag –trim will perform adapter trimming and read merg-
ing for paired-end data. The flag –clean performs the trim
function with the addition of removing sequencing reads
that match a user-defined set of undesired nucleic acid se-
quence(s) set with -ref [file.fasta]. For seed generation, pro-
tein mode searching for cas genes by default using a set of
120 HMM profiles (13) included with the program (Figure
1C). The Cas protein profile HMMs can be substituted with
-hmm [file.hmm] and protein mode disabled with the flag –
noprot. DNA and user-defined modes are disabled by de-
fault and can be activated by the flags –nucl and –seed; the
search sequences are set with -query [file.fasta] and -define
[file.fasta], respectively. The number of rounds of seed ex-
pansion is defaulted to 5 and can be changed with -cycle
[number], while the match is set for 95% and can be changed
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Figure 1. Workflow for the CasCollect pipeline. CasCollect processes an initial high-throughput sequencing read dataset (A) by read filtering (B), seed
generation (C), read subset expansion (D), assembly (E) and annotation (F). (A) The sequencing read dataset requires quality scores for assess the confidence
for each base call for the subsequent filtering step. (B) Read filtering can be ignored, for trimming of adapter sequences and low-quality regions, or cleaning
that performs trimming and removes reads matching a reference of undesired sequence(s) that can be supplied by the user. For paired-end reads, both
trimming and cleaning will merge reads with over lapping regions. (C) Seed reads can be generated by Protein mode, DNA mode and/or a user-defined
read subset (dark gray boxes). Protein mode translates the reads for searching with either the built-in protein profile HMMs or a user-defined set. DNA
mode searches for matches to user-defined reference sequence(s). User-defined mode allows for any subset of reads or sequences be used for seed expansion.
The seed generation modes can be invoked independently or concurrently within a single run of the program. (D) The number of cycles of read subset
expansion can be varied to generate larger or smaller expanded read sets. The (E) targeted assembly using this subset of reads and (F) annotation of the
assembled contigs are optional for identifying cas genes and CRISPR arrays.
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with -match [number] (Figure 1D). Read sequence assembly
and annotation are default and can be disabled by the flags
–noassembly (Figure 1E) and –noannotate (Figure 1F), re-
spectively. The flag –meta runs metaSPAdes in-place-of the
SPAdes assembly.

Unassembled genomic DNA comparative analysis

For the E. coli KLY, P. aeruginosa VA-134 and S. pyogenes
M39 bacteria isolates, CasCollect was run with the default
parameters for a protein homology read search with the
Cas HMM profiles and following parameters: –trim -cycle
2 -cpu 100 -mem 2000. The pooled simulated and metage-
nomic dataset was run with the following parameters: –
trim –meta -cpu 100 -mem 2000. Datasets from the CDC &
FDA Antibiotic Resistance Isolate Bank panel of P. aerugi-
nosa isolates were run with similar parameters as the bacte-
ria isolates: –trim -cycle 2 -cpu 100 -mem 2000 appended
with –nucl -query Pseudomonas aeruginosa DK2.fas for
DNA mode to search for isolated CRISPR arrays. The com-
plete assembly used the CasCollect filtered and trimmed
run through SPAdes with the same number of CPUs and
amount of RAM as CasCollect. For the metagenomic and
simulated metagenomic datasets, metaSPAdes was run in-
place-of the SPAdes assembly (18).

Progressive read collection analysis

The metagenomic dataset was run with the CasCollect
pipeline with zero to five cycles of read subset expan-
sion. Each of these read sets and the whole sequencing
dataset were mapped onto the largest cas operon for each
metagenome with bowtie2 with default parameters (19).
The read coverage was extracted with SAMtools (20) using
the depth command and -a parameter to output coverage
for the full-length contig.

RESULTS AND DISCUSSION

To overcome the requirement of assembling the entire set of
short DNA sequencing reads prior to searching for gene(s)
of interest, we developed CasCollect. CasCollect identifies
short DNA sequencing reads that match HMM profiles for
cas protein genes and collects these reads for targeted as-
sembly. To identify CRISPR arrays isolated from cas genes,
CasCollect can collect reads that match to CRISPR repeats.
However, this approach may not necessarily identify all
reads from a genomic CRISPR/Cas locus and the possibil-
ity of discontinuous coverage of reads would prevent com-
plete assembly of the locus. To infill the potentially miss-
ing regions between profile matching reads, the seed reads
are expanded to include neighboring adjacent reads. This
seed expansion is performed with stringent sequence sim-
ilarity matches to reduce non-specific read matching. This
expanded CRISPR/Cas read set typically constitutes a very
small fraction of the total sequencing reads and bypasses
the computational overhead associated with whole genome
reconstruction by assembling only the targeted region(s) of
interest. CasCollect can perform targeted assembly of spe-
cialty gene sets other than cas and CRISPR genes by spec-
ifying other HMM collections and/or reference DNA se-
quence files.

CasCollect pipeline

CasCollect was written as a python wrapper for various
selectable modules that encompass additional programs
pipelined together for use on UNIX and Linux architec-
ture operating systems (Figure 1). The CasCollect pipeline
was created from five distinct and optional steps: (i) read
filtering, (ii) seed generation, (iii) read subset expansion,
(iv) assembly and (v) annotation. This pipeline relies on
several third-party programs that include: HMMER (21),
VSEARCH (22), SPAdes (23) and CRISPRCasFinder (13)
for the targeted assembly of gene(s) of interest from either
single or paired end data.

The option of sequencing read filtering is performed ei-
ther as a ‘trimming’ or ‘cleaning’ step by executing the
two BBTools programs (https://jgi.doe.gov/data-and-tools/
bbtools/) bbduk and bbmerge. The trimming and cleaning
options are implemented by bbduk on the short DNA se-
quencing reads (Figure 1A). Trimming removes adapters
from reads, while the cleaning option removes adapters and
includes the removal of defined ‘contaminating’ sequences
that match a user-defined Fasta file of sequences (Figure
1B). The most common use for the cleaning option is to re-
move off-target sequencing of undesired additional biologi-
cal materials, such as human DNA in microbiome samples.
For paired-end data, bbmerge is then used to identify and
merge overlapping sequencing reads (24). This step is ig-
nored for single-end sequencing data or when neither ‘trim-
ming’ or ‘cleaning’ steps are performed.

The initial seed collection comprises three main modes:
‘Protein mode’, ‘DNA mode’ and ‘User-defined mode’ (Fig-
ure 1C). For seed collection, the sequencing reads are con-
verted to Fasta format with quality scores stripped using Se-
qtk (https://github.com/lh3/seqtk). Protein mode employs
FragGeneScanPlus (25) to translate the most likely of the
six open reading frames for each read for homology search-
ing by HMMER (21) with a default set of 120 Cas protein
family profile HMMs (13) as query. DNA mode implements
VSEARCH (22) for identity matching to a user-defined set
of CRISPR array repeats for the identification of CRISPR
arrays that may be found isolated from the cas genes. We
have included 105 CRISPR repeat sequences (13) as indi-
vidual Fasta files with CasCollect to aid in CRISPR ar-
ray detection. The user-defined mode uses a specified set
of reads as the seed set (Figure 1C). The protein, DNA,
and user-defined modes can be invoked independently or
concurrently within a single run of the program pipeline to
search for cas genes, isolated CRISPR arrays, or other se-
quences. Thus, any combination of these three seed gener-
ation modes can be applied in a single run of CasCollect.
CasCollect is flexible and capable of assembling other spe-
cialty protein or DNA gene sets by using any set of pro-
tein profile HMMs (-hmm), reference DNA sequences (–
nucl and -query), or read seed sets provided the user (–seed
and -define).

Read subset expansion, in both directions from each
seed read, is performed by reiterative implementations of
VSEARCH usearch global search function (Figure 1D).
The default identity match has been set to a moderately high
value of 95%, however, this can be adjusted with the -match
command. The initial read subset expansion is performed
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with the seed reads from the DNA, protein, and/or user-
defined mode(s) as the query against the entire sequenc-
ing read set as the database. The matching reads are sepa-
rated from the remaining reads from the dataset and then
used as the query for the subsequent VSEARCH search
with the unmatched reads then used as the database for
this next query. This process eliminates redundant searches
by removing reads from the database set that have been
matched in the previous cycle instead of the entire sequenc-
ing read set. The default number of these read subset expan-
sion cycles is set at five and can be adjusted with the -cycle
command. After the final cycle of read subset expansion,
all matching reads are pooled and the sequencing quality
scores are added back, generating Fastq files for assembly
and contig building with quality scores.

The assembly function employs the SPAdes assembler
(23) using the subset of reads from the seed and expansion
steps (Figure 1E). For metagenomes, metaSPAdes is used
in-place-of SPAdes. This targeted assembly is specific to the
queries from the protein, DNA, and user-defined modes,
by default cas genes and CRISPR arrays; yet any sequence
can be targeted for assembly with the corresponding pro-
tein profile HMMs, reference DNA sequences, or read seed
sets. By merely using a small subset of reads for targeted
assembly, we avoid the time intensive process of attempt-
ing to assemble the complete genome using all the sequenc-
ing reads. This targeted assembly reduces computational re-
sources and time, bypassing difficult assembly regions out-
side the regions of interest.

The final step in the pipeline is the identification and
annotation of cas genes and CRISPR arrays from the as-
sembled contig sequences (Figure 1F). The targeted assem-
bly contigs are searched with the CRISPRCasFinder pro-
gram (13). The annotation of a smaller targeted assem-
bly further reduces computational resources and time, by-
passing searching most of the genome. Identification and
annotation are parallelized with a Perl script, which addi-
tionally collates results into a GFF3 file for describing the
CRISPR/Cas systems, genes, and arrays present in the in
the assembled contig sequences.

Bacterial isolates

We initially benchmarked the timing and quality of our Cas-
Collect pipeline with sequencing read datasets correspond-
ing to well-annotated bacterial isolate genome assemblies.
The complete and annotated genomes allowed for defini-
tive checks to validate targeted assembly qualities and auto-
mated annotation. The CasCollect pipeline was compared
against conventional full genome assembly using SPAdes
for the entire sequencing read set, herein referred to as ‘com-
plete assembly’ (Supplemental Figure S1). For this compar-
ison, we tested publicly available short paired-end genomic
DNA sequencing reads from isolates of E. coli strain KLY,
P. aeruginosa strain VA-134 and S. pyogenes strain M39 that
had read lengths of 90, 100 and 226 bp, respectively. For
our comparative analysis, we ran the CasCollect pipeline
and a complete assembly pipeline as the baseline. The com-
plete assembly pipeline is highly similar to CasCollect with
identical read filtering and annotation steps (Supplemental
Figure S1A). The difference between the pipelines was the

omission of the seed generation and expansion steps that
influence the reads used for the assembly by SPAdes. The
complete assembly pipeline used all the filtered reads for
the SPAdes assembly step, while CasCollect generated in-
stead of a much smaller read subset. This pipeline compari-
son maintained identical conditions for the sequencing read
filtering and the annotation of the assembled sequences be-
tween CasCollect and the complete assembly. Both CasCol-
lect and complete assembly pipelines were able to identify
all known previously identified cas genes within each of the
three bacterial isolate genomes.

The timing for the E. coli strain KLY, P. aeruginosa
strain VA-134 and S. pyogenes strain M39 bacterial isolates
demonstrated relatively similar timings for the CasCollect
and complete assembly pipelines, with timings of 23.3/17.4,
51.2/33.3 and 21.6/31.5 min (Supplemental Figure S1B).
The most time intensive step for CasCollect was the seed
generation and expansion, while the assembly and annota-
tion were relatively fast (Supplemental Figure S1C). In con-
trast, the assembly step for the complete assembly pipeline
was the overwhelming contributor for the program runtime.
For the E. coli strain KLY dataset, the complete assembly
required more time for annotation, which was likely due to
the number of contigs generated––146 contigs for the com-
plete assembly compared with 19 from CasCollect (Supple-
mental Figure S1D). In addition to more contigs, the length
of the contigs was far greater with 28 exceeding 50 Kb (Sup-
plemental Figure S1E). For P. aeruginosa strain VA-134 the
number of assembled contigs and the overall timings were
similar for CasCollect and the complete assembly pipelines
at 111 and 162, respectively (Supplemental Figure S1D). In-
terestingly, CasCollect generated more contigs for S. pyo-
genes strain M39 than the complete assembly at 89 and
44, respectively. This is explained by the complete assembly
generating fewer, yet larger contigs (Supplemental Figure
S1E).

An alternative software pipeline for CasCollect was built
using PRICE (26) to replace the read subset expansion and
assembly (Supplemental Figure S1A). The PRICE pipeline
is highly similar to CasCollect with identical read filtering,
seed generation and annotation steps. The difference be-
tween the pipelines was the read subset expansion and as-
sembly. The PRICE pipeline used the seed generation reads
for iterative extension to build the contigs (Supplemental
Figure S1A). The pipeline comparison maintained identi-
cal conditions for the sequencing read filtering and the an-
notation of the assembled sequences between CasCollect
and PRICE. Both CasCollect and PRICE pipelines were
able to identify all known previously identified cas genes
within each of the three bacterial isolate genomes. The tim-
ings for the PRICE pipeline for P. aeruginosa strain VA-
134 and S. pyogenes strain M39 datasets were highly sim-
ilar to CasCollect at 51.2/50.1 and 21.6/22.6 min, respec-
tively (Supplemental Figure S1B). For the E. coli strain
KLY, the PRICE pipeline had difficulties with generating
the contig spanning the cas operon. While the P. aeruginosa
strain VA-134 and S. pyogenes strain M39 datasets were suc-
cessful with contig generation with five cycles, the E. coli
strain KLY dataset required 100 cycles. This is reflected in
the massive timing increase at over 2 h and 123.5 min. The
more than 5-fold time increase was likely due to the read
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length, with the E. coli strain KLY dataset having the short-
est DNA sequencing reads. Using short sequencing reads as
seed contigs for PRICE is far from the intended function of
PRICE.

Simulated metagenome

To estimate the CasCollect pipeline performance with a
metagenomic DNA sequencing dataset, we benchmarked
the three pipelines with a simulated metagenomic dataset
(Supplemental Figure S2). For the simulated metagenomic
data, we pooled together the E. coli KLY, P. aeruginosa VA-
134 and S. pyogenes M39 bacterial isolate genome sequenc-
ing reads. Mouse sequencing reads were spiked in to in-
crease the read complexity. This created a curated metage-
nomic dataset, with known CRISPR/Cas systems for evalu-
ating the quality of the metagenomic assembly for cas gene
operons within a complex of several genomes. The simu-
lated metagenome read dataset did not affect the quality of
the assembly or annotation for CRISPR/Cas systems for
either CasCollect or the complete assembly pipelines. How-
ever, the PRICE pipeline was unable to assemble contigs
spanning the complete cas operon for E. coli KLY or S. pyo-
genes M39. Increasing the cycle number to 200 built a contig
to span the complete cas operon for E. coli KLY. Yet even
increasing the cycle number to 500, PRICE was unable to
build a contig to span the S. pyogenes M39 cas operon. In-
creasing the cycle number to 500 dramatically increased the
timing for the PRICE pipeline to almost 90 h (Supplemen-
tal Figure S2A and B).

CasCollect reduced the run time modestly by 36% rela-
tive to the complete assembly (Supplemental Figure S2B).
The CasCollect runtime was 1.6 h compared with the com-
plete runtime of 2.5 h. Compared with PRICE that failed
to assemble all cas operons, CasCollect and the complete
assembly pipelines were almost 57- and 37-fold faster and
completed building all cas operons. As was previously seen
with the isolate genomes, the vast majority of the run time
for CasCollect was used on the seed generation and expan-
sion steps. With fewer reads, CasCollect required less time
for contig assembly compared with the complete assem-
bly pipeline and this was reflected as a smaller percentage
of the overall run time (Supplemental Figure S2C). Anno-
tation was faster with CasCollect with merely 723 contigs
compared with the 10 467 contigs for the complete assem-
bly (Supplemental Figure S2D). PRICE generated merely
56 contigs. Analysis of the contig size populations found
CasCollect generated no contigs larger than 50 Kb (Sup-
plemental Figure S2E). In sharp contrast, the complete as-
sembly pipeline generated 69 contigs larger than 50 Kb. For
PRICE, 26 of the 56 contigs were larger than 50 Kb. Our
simulated metagenomic data analysis demonstrated that
CasCollect targeted assembly is more efficient for the as-
sembly of genes of interest and avoided excessive assembly
by an order of magnitude for our simulated metagenome.

Metagenome

The analysis of the simulated data indicated that our Cas-
Collect pipeline accurately assembled and annotated cas
gene operons, while improving speed compared with the

complete assembly pipeline. We next investigated how Cas-
Collect would perform with actual, instead of simulated,
metagenomic datasets. For this, we analyzed four metage-
nomic dataset from a variety of sources (Figure 2). We per-
formed a similar comparative analysis as previously with
CasCollect and complete assembly pipeline as the baseline
(Figure 2A). The complete assembly pipeline used the entire
filtered read dataset as input for assembly, while CasCollect
used a subset of these reads. Otherwise the two pipelines
were identical for the initial read processing and down-
stream annotation. Our CasCollect pipeline had a dramatic
improvement for the overall run time compared with the
complete assembly pipeline (Figure 2B). On average for the
tested metagenomes, CasCollect required merely 3% of the
time required for the complete assembly; almost two or-
ders of magnitude improvement at 1.7 ± 0.3 h and 50.6 ±
3.0 h, respectively. CasCollect reduced the over two days
of runtime for the complete assembly to <2 h. This mas-
sive improvement for the timings of the actual metagenomic
data was likely due to the greater complexity of numer-
ous genomes, while our simulated metagenomic data com-
prised four genomes. As previously observed for the isolate
genomes and pooled simulated metagenomic datasets, the
vast majority of the timing for CasCollect was for the seed
generation and expansion at an average of 73.7 ± 3.4% the
total run time (Figure 2C). For the compete assembly, the
average time for the read assembly alone was 5.5 ± 0.3 h;
3-fold the total time for the entire CasCollect pipeline. The
longer timing for the complete assembly pipeline was exac-
erbated by the timing for the annotation that was on average
45.1 ± 2.9 h and comprised 88.7 ± 0.9% of the total run
time for the complete pipeline. We also attempted to per-
form analysis of these four metagenomes with our PRICE
pipeline (Supplemental Figure S3). Running the PRICE
pipeline for 50 cycles had an average runtime of 5.5 ± 0.6 h.
This was more 3-fold the timing for CasCollect, yet, failed
to generate any contigs that spanned the entire cas operon
for any of the four metagenomes. Thus, PRICE does not ap-
pear to function well for our targeted assembly, likely due
to the short DNA sequencing read lengths used as seeds for
building the contigs.

To investigate the cause of the large run time discrepancy
for the two pipelines, we characterized the contig number
and length distributions (Figure 2D and E). CasCollect gen-
erated on average two orders of magnitude fewer contigs
than the complete assembly at 2.1 ± 0.5K and 269.9 ± 4.7K,
respectively (Figure 2D). Analysis of the contig size distri-
bution revealed that none of the CasCollect runs for the
metagenomes generated a contig larger than 50 Kb and only
one contig larger than 10 Kb (Figure 2E). The contigs for
the complete assembly were far greater in size with an aver-
age of 33 contigs greater than 50 Kb. The >100-fold addi-
tional contigs and longer lengths for the complete assembly
are likely the cause for the far greater annotation analysis
run time. Our Perl script for automating the annotation had
set a size cutoff of 500 bp, which reduced the total number of
contigs analyzed for the complete assembly to an average of
161K contigs. CasCollect generated an average of 1.1K con-
tigs greater than 500 bp, still >100-fold additional contigs
for the complete assembly pipeline to analyze. This demon-
strates that the almost two orders of magnitude improved
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Figure 2. Comparative analysis of the CasCollect and complete assembly pipelines for metagenomic datasets. (A) Schematic of the four steps for the Cas-
Collect and complete assembly pipelines: files (blue) for trimming and stripping qualities; seed (orange) for the seed generation, expansion and reassigning
qualities; assembly (gray) for contig building; and annotate (yellow) for detecting cas genes and CRISPR arrays to generate a GFF3 output file. (B) Timings
for each pipeline for each metagenome and steps. (C) Percentage breakdown for time required for each step. (D) Number of contigs generated by each
pipeline with (E) the length distribution for CasCollect and complete assembly. Colors for each step in (A) are used for the charts in (B) and (C).

timing for the CasCollect was due to the targeted assembly
reducing the time for the assembly and the reduced number
of contigs for analysis.

Read coverage across the cas genes and the intervening
sequences is critical for the assembly of cas gene operons.
Low sequencing read coverage and gapped regions lack-
ing sequencing read coverage due to the incomplete collec-
tion of reads from the metagenomic datasets would result in
the premature termination of contig building, resulting in
fragmented cas genes and operons. To determine the com-
pleteness of the read collection for CasCollect, we analyzed
read coverage for each cycle of read subset expansion for
the largest cas operon from each of the four metagenomes
(Figure 3). The reads were extracted for the seeds and each
cycle of seed subset expansion. These reads as well as the
total reads were then mapped onto the cas operons. For
the ground water cas operon, the initial seed generation did
well for continuous coverage with a few short regions lack-
ing any reads (Figure 3A). The average coverage was 33.2%
of the total mappable reads. After a single cycle of sub-
set read expansion, this increased to 96.1% and read cov-
erage had no gaps across the cas operon. After the second
cycle, the average read coverage was 99.5% and remained
unchanged for the following three cycles. In contrast, the
initial seed generation for the lake cas operon had a gap in
read coverage of 1.7 Kb between cas2-cas3 and csy1 (Figure
3B). The average coverage was higher at 74.4% of the total
mappable reads. Two cycles of subset read expansion were
necessary to infill the gap between cas2-cas3 and csy1 with
contiguous read coverage, increasing the average read cov-
erage to 92.4%. With each cycle the average read coverage

increased, plateauing at 99.0% with the fifth cycle. The per-
mafrost and wetlands cas operons were similar to the lake
metagenome with an initial seed generation average read
coverage of 75.7 and 88.7%, respectively (Figure 3C and D).
After a single cycle of subset read expansion, the average
read coverage was 100.0% of the mappable reads for each
cas operon. While two cycles of subset read expansion had
>90% of the mappable reads and infilled a gap of almost
2 Kb between cas genes, we set the default parameter for
CasCollect to five cycles of subset read expansion to com-
pensate for larger gaps that might exist between cas genes
in an operon. These additional cycles still permit CasCol-
lect to have massively improved timings compared with the
complete assembly.

Identifying isolated CRISPR arrays

Complete identification of the CRISPR spacers of a tar-
get organism is critical for the renewing field of phage
therapy. Elucidating CRISPR spacers is necessary for im-
proving the success rate of phage therapy by avoiding
the use of phages that the bacterial have immunity by
prior CRISPR/Cas system acquisition of complimentary
sequences. Many CRISPR arrays are located sufficiently
near cas genes that these would be revealed by the above
method based on Cas protein profiles. However, CRISPR
arrays unlinked to cas genes are often seen and these ar-
rays would be missed by assembly targeted exclusively to
cas genes.

To identify these isolated CRISPR arrays, our software
includes a DNA mode, primed by CRISPR repeat se-
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Figure 3. Analysis for the completeness of read collection by CasCollect. Read coverage analysis per each reiterative cycle of read subset expansion for the
largest cas operons found in each metagenome dataset (A–D). (Top) A schematic for the cas genes within each operon drawn to scale above the overlay of
all mappable reads and reads collected at each cycle of subset read expansion. All reads (red) denotes all mappable reads from each metagenome sequencing
dataset. Seeds (blue) is the initial seed set expanded by cycles of read subset expansion (Cycle #, blue). (Right) is the number of reads from each step in
CasCollect and for Seeds and Cycle # the percent of all mappable reads.

quences for the species of interest. CasCollect includes 105
CRISPR repeat sequences (13) as individual Fasta files
for CRISPR array detection (Supplemental Table S1). We
demonstrate the utility of the DNA mode with a set of ge-
nomic sequence data from 66 antibiotic resistant P. aerugi-
nosa isolates available from CDC & FDA Antibiotic Resis-
tance Isolate Bank panels (Table 1 and Supplemental Ta-
ble S2). The data set is especially applicable for being only
available in an unassembled raw read format. We used the P.
aeruginosa CRISPR repeat as input to the CasCollect DNA
mode for analyzing each of the CDC isolate datasets to
identify seed reads matching P. aeruginosa CRISPR arrays.
Approximately half the of the strains, 31 of 65, have a cas
operon with three or more cas genes (Table 1). The vast ma-
jority of these cas operons have an associated CRISPR ar-
ray, with merely two exceptions. For comparison, the com-
plete assembly pipeline was applied to the same dataset. The
two pipelines disagreed for strain AR110 (Table 1, aster-
isk) for a single CRISPR array with CasCollect yielding 26
spacers and the complete assembly yielding 29 (Supplemen-
tal Figure S4A). Interestingly, the three additional CRISPR
arrays in the complete assembly appear to be artifacts, per-
fect copies of one spacer/repeat unit (Supplemental Figure
S4B). This was further supported by the lower sequencing
coverage specifically for the duplicate CRISPR array region
(Supplemental Figure S4C).

For cas operon detection there was a single difference be-
tween CasCollect and the complete assembly pipeline. Cas-
Collect identified in strain AR356 a cas operon compris-
ing csf2, cas6 and cas1 (Table 1, double asterisk). This ap-
pears to be due to the complete assembly prematurely trun-

cating the end of the contig. Overall, there was very high
agreement between CasCollect and the complete assembly
for the detection of cas operons and CRISPR arrays from
unassembled sequencing data of antibiotic resistant patient
data. CasCollect improves the performance for detecting
cas genes and CRISPR arrays and simplifies this process
with a single pipeline for inputting raw sequencing data and
outputting CRISPR arrays and cas genes.

CONCLUSION

We have developed a software pipeline, CasCollect, for
the targeted assembly of CRISPR arrays and cas operons.
In comparison to the complete assembly, our targeted as-
sembly significantly decreases the time necessary for the
identification and annotation of CRISPR/Cas genes from
unassembled high-throughput sequencing data by almost
two order of magnitude. CasCollect was designed as a flexi-
ble platform for read seed collection and read subset expan-
sion prior to assembly; our pipeline includes a set of 120 Cas
protein HMMs, yet, can also function with a user-defined
set(s) of HMMs for any protein(s) set; also included are 105
CRISPR repeats as reference DNA sequence(s); and a user-
defined mode allows for any generated read seed set(s) be
used for targeted assembly and CRISPR/Cas annotation.
The protein, DNA, or user-defined modes can function as
singular searches or can be combined in any combination
within a single run. This pipeline was designed for allow-
ing rapid analysis of the multitude of unassembled high-
throughput sequencing data that is publicly available and
ever increasing. We used a CDC & FDA Antibiotic Resis-
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Table 1. Identification of P. aeruginosa cas operons and CRISPR arrays with CasCollect

CRISPR arrays CRISPR spacers Cas genes

Strain SRA Reads Type Total Isolated Total Isolated # Operon

AR054 SRR3112316 18 70 045 TypeIF 4 0 60 0 6 Cas1, Cas3-Cas2, Csy1, Csy2, Csy3, Cas6
TypeIE 8 Cas2, Cas1, Cas6, Cas5, Cas7, Cse2, Cse1, Cas3

AR064 SRR3290649 12 27 158 TypeIC 1 0 38 0 7 Cas2, Cas1, Cas4, Cas7c, Cas8c, Cas5c, Cas3
AR095 SRR3242025 9 02 598 TypeIE 2 0 48 0 8 Cas3, Cse1, Cse2, Cas7, Cas5, Cas6, Cas1, Cas2
AR103 SRR3112341 24 75 405 TypeIF 4 0 61 0 6 Cas1, Cas3-Cas2, Csy1, Csy2, Csy3, Cas6

TypeIE 8 Cas2, Cas1, Cas6, Cas5, Cas7, Cse2, Cse1, Cas3
AR108 SRR3112343 20 06 256 TypeIF 3 1 67 14 6 Cas1, Cas3-Cas2, Csy1, Csy2, Csy3, Cas6
AR110 SRR3112345 17 22 889 TypeIF 3 1 64* 15 6 Cas1, Cas3-Cas2, Csy1, Csy2, Csy3, Cas6
AR111 SRR3112346 28 66 888 TypeIF 3 1 66 15 6 Cas1, Cas3-Cas2, Csy1, Csy2, Csy3, Cas6

TypeU 4 Csf4, Csf1, Csf2, Csf3
AR229 SRR4417530 4 87 104 TypeIF 3 1 37 8 6 Cas1, Cas3-Cas2, Csy1, Csy2, Csy3, Cas6
AR230 SRR4417531 4 74 301 TypeIF 3 1 64 14 6 Cas1, Cas3-Cas2, Csy1, Csy2, Csy3, Cas6
AR235 SRR4417560 6 80 848 TypeIF 2 0 29 0 6 Cas1, Cas3-Cas2, Csy1, Csy2, Csy3, Cas6
AR238 SRR4417563 9 84 680 TypeIE 2 0 18 0 8 Cas2, Cas1, Cas6, Cas5, Cas7, Cse2, Cse1, Cas3
AR241 SRR5122324 16 63 553 TypeU 0 n/a 0 n/a 4 Csf3, Csf2, Csf1, Csf4
AR242 SRR5122326 8 59 269 TypeIF 3 1 65 15 6 Cas1, Cas3-Cas2, Csy1, Csy2, Csy3, Cas6
AR243 SRR5122330 7 20 605 TypeIF 3 1 65 15 6 Cas1, Cas3-Cas2, Csy1, Csy2, Csy3, Cas6
AR245 SRR5122327 11 67 898 TypeU 0 n/a 0 n/a 4 Csf4, Csf1, Csf2, Csf3
AR246 SRR5122329 16 34 253 TypeIF 3 1 36 7 6 Cas1, Cas3-Cas2, Csy1, Csy2, Csy3, Cas6
AR248 SRR5122328 7 98 142 TypeIF 3 1 65 15 6 Cas1, Cas3-Cas2, Csy1, Csy2, Csy3, Cas6
AR249 SRR5122332 22 75 841 TypeIF 3 1 61 16 6 Cas1, Cas3-Cas2, Csy1, Csy2, Csy3, Cas6
AR250 SRR5122323 19 80 810 TypeIF 3 1 36 7 6 Cas1, Cas3-Cas2, Csy1, Csy2, Csy3, Cas6
AR254 SRR4417537 10 00 255 TypeIF 3 1 64 15 6 Cas1, Cas3-Cas2, Csy1, Csy2, Csy3, Cas6
AR255 SRR4417538 8 35 729 TypeIF 3 1 64 15 6 Cas1, Cas3-Cas2, Csy1, Csy2, Csy3, Cas6
AR256 SRR4417539 9 79 368 TypeIF 3 1 40 12 6 Cas1, Cas3-Cas2, Csy1, Csy2, Csy3, Cas6
AR261 SRR4417545 9 14 206 TypeIF 2 0 31 0 6 Cas1, Cas3-Cas2, Csy1, Csy2, Csy3, Cas6
AR262 SRR4417546 10 25 205 TypeIF 4 0 66 0 6 Cas1, Cas3-Cas2, Csy1, Csy2, Csy3, Cas6

TypeIE 7 Cas2, Cas6, Cas5, Cas7, Cse2, Cse1, Cas3
AR267 SRR4417551 8 30 201 TypeIF 3 1 40 12 6 Cas1, Cas3-Cas2, Csy1, Csy2, Csy3, Cas6
AR268 SRR4417552 9 25 471 TypeIF 4 0 65 0 6 Cas1, Cas3-Cas2, Csy1, Csy2, Csy3, Cas6

TypeIE 7 Cas2, Cas6, Cas5, Cas7, Cse2, Cse1, Cas3
AR351 SRR6799223 44 31 783 TypeIF 2 0 21 0 6 Cas1, Cas3-Cas2, Csy1, Csy2, Csy3, Cas6
AR355 SRR6799377 42 89 796 TypeIF 3 1 40 5 6 Cas1, Cas3-Cas2, Csy1, Csy2, Csy3, Cas6
AR356 SRR6799380 53 82 136 TypeIF 3 2 26 14 3 Csf2, Cas6, Cas1**
AR358 SRR6799384 32 11 585 TypeIE 3 0 31 0 8 Cas2, Cas1, Cas6, Cas5, Cas7, Cse2, Cse1, Cas3

TypeIE 6 Cas2, Cas1, Cas6, Cas5, Cas7, Cse2
AR360 SRR6799389 33 30 069 TypeIF 3 1 45 10 6 Cas1, Cas3-Cas2, Csy1, Csy2, Csy3, Cas6

tance Isolate Bank panel of P. aeruginosa isolates as a case
study for the utility of detecting CRISPR/Cas genes from
unassembled sequencing data. While intended for the iden-
tification and annotation of CRISPR arrays and cas oper-
ons, CasCollect can be applied for the targeted assembly of
any protein or DNA query.
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