
 International Journal of 

Molecular Sciences

Review

Microorganisms and Their Metabolic Capabilities in
the Context of the Biogeochemical Nitrogen Cycle at
Extreme Environments

Rosa María Martínez-Espinosa 1,2

1 Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of
Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain; rosa.martinez@ua.es;
Tel.: +34-965903400 (ext. 1258)

2 Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99,
E-03080 Alicante, Spain

Received: 21 May 2020; Accepted: 12 June 2020; Published: 13 June 2020
����������
�������

Abstract: Extreme microorganisms (extremophile) are organisms that inhabit environments
characterized by inhospitable parameters for most live beings (extreme temperatures and pH
values, high or low ionic strength, pressure, or scarcity of nutrients). To grow optimally under these
conditions, extremophiles have evolved molecular adaptations affecting their physiology, metabolism,
cell signaling, etc. Due to their peculiarities in terms of physiology and metabolism, they have become
good models for (i) understanding the limits of life on Earth, (ii) exploring the possible existence
of extraterrestrial life (Astrobiology), or (iii) to look for potential applications in biotechnology.
Recent research has revealed that extremophilic microbes play key roles in all biogeochemical cycles
on Earth. Nitrogen cycle (N-cycle) is one of the most important biogeochemical cycles in nature;
thanks to it, nitrogen is converted into multiple chemical forms, which circulate among atmospheric,
terrestrial and aquatic ecosystems. This review summarizes recent knowledge on the role of extreme
microorganisms in the N-cycle in extremophilic ecosystems, with special emphasis on members of the
Archaea domain. Potential implications of these microbes in global warming and nitrogen balance,
as well as their biotechnological applications are also discussed.

Keywords: ammonium oxidation; archaea; biogeochemistry; denitrification; nitrogen assimilation;
nitrogen cycle

1. Introduction

Extreme microorganisms, also called “extremophiles” (from Latin extremus meaning “extreme”
and Greek philiā (ϕιλία) meaning “love”) are organisms that thrive in physically or geochemically
extreme conditions that are usually detrimental to most life on Earth [1,2]. Thus, these microorganisms
inhabit environments characterized by significantly extreme temperatures and/or pH values, high or
low ionic strength, high pressure, or scarce nutrients availability. To grow under optimal conditions in
these extreme ecosystems, they have evolved molecular adaptations affecting physiology, metabolism,
cell signaling, etc. [3–7]. It was considered that the extremophile organisms were sparse, and their
presence limited to extreme ecosystems. However, studies conducted over the past two decades have
shown that they are more varied and abundant than initially thought [8,9]. Extremophilic organisms
are widespread within the three domains of life, but most of them are prokaryotic organisms belonging
to the archaea domain [10]. The extremophilic organisms can be classified following different criteria,
but the most useful classification establishes groups based on the environmental conditions in which
they grow optimally (see Section 2). Due to the extreme patterns characterizing their metabolism and
physiology, extremophiles have become good models of study in the following fields of knowledge:
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(i) Understanding the limits of life on Earth. The study of extremophiles improves understanding
of the physicochemical parameters defining life on Earth and may provide insight into how life on
Earth originated [11–14]. The postulations supporting that primitive Earth had extreme environmental
conditions and that life arose in hot environments have led to the theory that extremophiles could be
vestiges of primordial life forms, and thus are models of ancient life [15–18]. Thus, the improvement in
the knowledge about primitive life conditions and extremophiles could span the study of their biology
and of the global biogeochemical cycling of elements, particularly on N-cycle, which is the aim in this
review (Section 3) [19,20]. The number of studies about extremophiles in connection with N-cycle is
still scarce, but some of them have analyzed global distribution and diversity of extremophiles related
to nitrogen availability as well as biochemical characterization of some reactions of N-cycle driven by
extremophiles [19,21,22].

(ii) Exploring the possible existence of extraterrestrial life (Astrobiology). Extremophiles, especially
those thriving under multiple extremes, are good model organisms to carry out research in multiple
disciplines, spanning areas such as the study of adaptations to harsh conditions, to the biogeochemical
cycling of elements. Thus, extremophile research has implications for origin of life studies and
the search for life on other planetary and celestial bodies [23–28]. Extremophiles inhabiting cold
environments are of interest in this field, as most of the bodies in the solar system are frozen. On the
other hand, some extremophilic microbes show unusual biochemical properties, which are also of
interest to Astrobiology since extraterrestrial environments may favor life-forms that use or are built
from elements not typically found in life on Earth [18,29–31]. Thus, insights on the knowledge of
biogeochemical cycles (C, N, S, and O, among others) in extreme environments could be used as a
model to explore the cycling of elements in Astrobiology or to look for astrobiological signatures
worldwide [32–34].

(iii) Potential applications in biotechnology. The molecular adaptations of extremophiles to their
environments make them a powerful natural source of molecules and even metabolic pathways to
explore. This is an important field for research and industrial production of marketed biomolecules as
carotenoids (pigments), antibiotics, biodegradable plastics, such as polyhydroxyalkanoates (PHA),
or enzymes. Extreme enzymes, for instance, are useful in industrial procedures due to their ability to
remain active under the severe conditions typically employed in these processes [35–38]. In the case
of biotechnological applications associated with N-cycle, it is worth mentioning the potential uses of
denitrifying extremophilic microbes for bioremediation approaches or as a source of enzymes for the
design of electrons to measure nitrate/nitrite, as it is discussed in detail in Section 4 [39,40].

In summary, microorganisms are essential for the reactions of biogeochemical cycles, and
extremophilic microbes are not an exception [41–43]. Among the crucial cycles for life on Earth,
nitrogen and carbon cycles are currently facing an unprecedented set of comprehensive anthropogenic
changes, mainly due to fossil combustion, agricultural practices, and industry [44,45]. The nitrogen
cycle (N-cycle) is one of the most important biogeochemical cycles in nature, because thanks to it,
nitrogen is converted into multiple chemical forms, which circulate among the atmosphere, and
terrestrial and aquatic ecosystems. Nitrogen is part of the main building blocks of life (including
DNA, RNA, and proteins) and it is stored in all of the Earth’s geological reservoirs, including the
crust, the mantle, and the core [46]. Besides, N2 is the dominant gas in the Earth’s atmosphere
and it is indispensable for sustaining human activities through its role in the production of food,
animal feed, and synthetic chemicals. This has encouraged significant anthropogenic mobilization of
reactive nitrogen and its emissions into the environment resulting in severe disruption of the nitrogen
cycle [47,48].

The contribution of microorganisms at a global scale in the interchange between nitrogen forms
is relevant and considering that extreme habitats are mostly occupied by extremophilic microbes,
it is possible to assume that they could play relevant roles catalyzing reactions of the N-cycle in
several extreme ecosystems, such as salty environments, soda lakes, mine sites, hot springs, volcano,
etc. [19,49–51]. The global area occupied by extreme ecosystems is not precisely estimated, but it
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is known to be a significant extension (glaciers, volcanoes, desert, arid, and semiarid regions, etc.).
In addition, various anthropogenic activities are changing the environment alarmingly, contributing
to pollution, and increasing the occupation of these extreme ecosystems. Consequently, the role of
extreme microbes may be even more significant in the near future as these extreme ecosystems increase
in extension and prevalence. Therefore, it is necessary to draw the attention of the scientific community
to focus efforts on the development of more research, at both basic and applied levels, which will
allow a better understanding of microbial populations in extreme ecosystems and their role in the
development of biogeochemical cycles. This review summarizes recent knowledge on the role of
extreme microorganisms in the biogeochemical N-cycle, with special emphasis on members of the
archaea domain (which constitute the major populations in most of these environments). Finally, some
of the main applications of N-cycle reactions carried out by extremophilic archaea are discussed.

2. Classification of Extreme Microorganisms

Extremophiles can be divided into two broad categories: extremophilic organisms, which require
one or more extreme conditions to grow, and extremotolerant organisms, which can tolerate extreme
values of one or more physicochemical parameters though growing optimally at “normal” conditions [1].
In contrast, the term “mesophile” refers to microbes growing best in moderate temperature (typically
between 20 and 45 ◦C (68 and 113 ◦F)) and usually at pHs between 6 and 8 [52].

Extremophilic microorganisms are mainly classified according to the conditions in which they
grow. Table 1 displays the main groups established following this criterion. Some extremophiles are
adapted simultaneously to multiple stresses, and they are called “Polyextremophiles”. This is the case
of haloalkalophiles (the combination of halophilic and alkalophilic profiles: salt concentration between
2 and 4 M and pH values of 9 or above) or thermoacidophiles (the combination of thermophilic and
acidophilic profiles: temperatures of 70–80 ◦C and pHs between 2 and 3) [53–56].

Table 1. General classification of extremophilic microorganisms (adapted from Coker 2019) [24].

Term Factor Limits

Acidophile pH ≥3

Alkaliphile pH ≥9

Halophile High salt concentration 1–4 M

Hyperthermophile and
Thermophile High temperatures

Hyperthermophile: above 80 ◦C
(176 ◦F)

Thermophile: between 45–122 ◦C
(113–252 ◦F)

Piezophile
(also called Barophile) High pressures ~1100 bar

Psycrophile
(also called Cryophile) Low temperatures ≤−15 ◦C (5 ◦F)

Radiophile
(also called Radioresistant) UV radiation, cosmic rays, X-rays 1500 to 6000 Gy

Xerophile Desiccating conditions ≤50% relative humidity

Apart from these groups of extremophilic microbes, some microbes growing under mesophilic
conditions, pH values around neutrality (6.5–8) and moderate ionic strength, show unusual metabolic
capacities able to tolerate or even metabolize significant concentrations of heavy metals or other
compounds with toxic effects for most of the organisms. This is the case of microbes tolerating
or metabolizing arsenic [57–59], cadmium [60,61], zinc [62,63], or mercury [64,65], among other
toxic elements. However, these microorganisms cannot be considered extremophiles based on
classical definitions.
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Although extremophiles include members of all three domains of life, i.e., bacteria, archaea, and
eukarya, most of them belong to archaea. Thus, some archaea are among the most hyperthermophilic,
acidophilic, alkaliphilic, and halophilic microorganisms known up to now. Some good examples of
these hyper extreme phenotypes are the following: the archaeon Methanopyrus kandleri strain 116 grows
at high temperatures above 98 ◦C and up to 122 ◦C (252 ◦F, the highest recorded temperature) [66],
while the genus Picrophilus (e.g., Picrophilus torridus) includes the most acidophilic organisms currently
known, with the ability to grow at a pH of 0.06 [67]. On the other hand, good examples of extremely
halophilic microbes are found within the families Halobacteriaceae and Haloferacaceae [68]. Within
the bacteria domain, it is worth mentioning not only cyanobacteria but also genus, such as Thermus
(from which several enzymes with potential uses in biotechnology have been isolated) or Salinibacter,
which have representatives inhabiting extremely hot or salty environments, respectively [69–71].
Among eukaryotes, several genera of fungi (alone or in symbiosis) have been isolated from extreme
environments, such as mining regions, alkaline ecosystems, hot or cold deserts, the deep ocean, and in
hypersaline regions, such as the Dead Sea [72–75]. Nevertheless, in terms of high resistance to extreme
conditions, one of the most impressive eukaryotic polyextremophiles is the tardigrade, a microscopic
invertebrate able to go into a hibernation mode, thus surviving at temperatures from −272 ◦C to 151 ◦C,
vacuum conditions (imposing extreme dehydration), pressure of 6000 atm, as well as exposure to
X-rays and gamma-rays [76,77].

3. Extreme Microorganisms in the Context of Biogeochemical Nitrogen Cycle

3.1. General Overview of the Role of Microorganisms in N-Cycle

The N-cycle is one of the most important biogeochemical cycles of the Earth, with large natural
flows of nitrogen from the atmosphere into terrestrial and marine ecosystems through several biological
processes [78,79]. It involves pathways such as nitrogen fixation, nitrification, nitrate/ammonium
assimilation, dissimilatory nitrate reduction to ammonia (DNRA), anaerobic ammonia oxidation
(ANAMMOX), complete ammonia oxidation (COMAMMOX), and denitrification (Figure 1). In brief,
NO3

− and NH4
+ can be used as nitrogen sources for growth under aerobic conditions (assimilatory

nitrate reduction/ammonium assimilation). NO3
− can also be the final electron acceptor for respiration

under anoxia (denitrification) or an electron acceptor in a redox process aiming at the removal of excess
of reductant power through dissimilatory nitrate reduction.

Dissimilatory NO3
− reduction, NO3

− respiration, or denitrification are often used equivalently in
the literature, and the intermediate products are NO2

−, NO, and N2O [78,79]. However, the dissimilatory
pathway refers to non-assimilatory reactions that are not directly coupled to the generation of proton
motive force. Dissimilatory nitrate reduction to ammonium (DNRA) is also possible under anaerobic
or microaerobic conditions. On the other hand, NO2

− could be reduced to NH4
+, which is then

excreted, thanks to the process called NO3
−/NO2

− ammonification. Some organisms can oxidize
either NH4

+ or NO2
− by using a pathway called nitrification, while other organisms, such as some

planctomycetes, oxidize NH4
+ and utilize NO2

− as a respiratory electron acceptor in a pathway
named ANAMMOX [80–82]. Recently, the discovery of new members of the Nitrospira genus, able to
catalyze both nitrification steps (ammonia oxidation and nitrite oxidation), has allowed the proposal of
‘COMAMMOX’ organisms, also called “complete ammonia oxidizers” [83–85].

Finally, (di)nitrogen fixation allows several microorganisms to reduce N2 to NH4
+ to supply

nitrogen to plants. Plants are not able to fix their own nitrogen, but a few of them (mainly legumes) fix
nitrogen via symbiotic anaerobic microorganisms (mainly rhizobia). Thus, nitrogen fixation, along
with photosynthesis is the basis of all life on Earth [86–88]. Free-living diazotrophic microorganisms
also play an important role in carrying out nitrogen fixation in ecosystems such as oceans [89] (which
cannot be considered extremophilic environments) and extreme environments such as glacier fore field
environments [90], desert-like ecosystems [91], or hot springs [92]. Thanks to these microbes, nitrogen
fixation is revealed as a crucial pathway for building labile nitrogen stocks and facilitating higher plant
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colonization in oligotrophic glacier fore field soils [90,93] or hot springs [92,94–96]. Chemolithotrophic
nitrogen fixation at high temperatures (up to 92 ◦C) has attracted scientists researching the early
evolution of life and the nitrogen cycle, and deep-sea hyperthermophilic methanogens and their
nitrogen fixation processes have been extensively examined [96–98].

Most of the mentioned pathways are thriven by prokaryotes, although nitrogen fixation also
involves plants and their associated rhizobia and nitrate/ammonium assimilation can be observed in
both prokaryotes and eukaryotes.
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3.2. Metabolic Pathways of N-Cycle Carried out by Extremophiles

Regarding extremophilic microbes, recent research has revealed that not only bacteria but also
archaea may contribute to several pathways of the N-cycle in extreme environments. The results
already reported are scarce compared to non-extreme ecosystems. However, the current evidences
from molecular ecology, genomics, metagenomics, biochemical, and physiological studies mainly
offer details about their potential role in the following N-cycle pathways: (i) aerobic or (ii) anaerobic
ammonium oxidation, (iii) anaerobic denitrification, and (iv) nitrate/ammonium assimilation. The
main findings related to these pathways are summarized following:

(i) Aerobic ammonium oxidation is the process of converting ammonium to nitrate and thus links
the regeneration of organic nitrogen to fixed nitrogen loss by denitrification. Ammonium oxidation
is critical to global nitrogen cycling and is often thought to be driven only by ammonia-oxidizing
bacteria phylogenetically included in the group of Proteobacteria (ammonia-oxidizing bacteria, AOB),
that are autotrophic and obligatory aerobic [100,101]. At the beginning of this century, the finding
of new ammonia-oxidizing organisms belonging to the archaeal domain challenges this perception.
Recent studies have stated that ammonia-oxidizing archaea (AOA) can be both abundant and diverse
in aquatic and terrestrial ecosystems studies, and at least some AOA have a high substrate affinity for
ammonia being able to grow under extremely oligotrophic conditions [102,103]. However, the global
characterization of this pathway in extremophilic environments is still scarce, and most of the results
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reported come from studies done with members of Crenarchaea and Thaumarchaea (archaea domain).
Some of these works have been conducted in natural environments, such as soils or the deep-subsurface
of hydrothermal aquifers, in which thermophilic archaea belonging to Thaumarchaeota sustain this
process [104]. Regarding halophilic environments, aerobic ammonium oxidation has been reported
from oceanic ecosystems, such as coastal marine wetlands, anoxic oceanic depth zones, or coral
reefs [105–107]. Consequently, two major microbial groups are now believed to be involved in
ammonia oxidation: chemolithotrophic ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing
archaea (AOA) [103,108].

(ii) Anaerobic ammonium oxidation (ANAMMOX) is the process of oxidizing ammonium through
the reduction of nitrite. This pathway was first described in a denitrifying pilot plant reactor [109],
and the enzymes involved in this process have been described in detail for several Anammox
bacteria [80,110]. Wastewater has been a good source for the isolation of new species showing
ANAMMOX capacity. However, microbes carrying out ANAMMOX processes have also been isolated
from natural environments, and many of them are mesophilic bacteria. Extremophilic microbes able
to carry out the ANAMMOX process have been recently described, too, not only in pilot plants,
brines, or sludges but also in natural ecosystems, such as some freshwater extreme environments,
hot springs, and deep-sea hydrothermal vents [111–113]. ANAMMOX within the domain archaea
has been recognized as a critically important process in the environment, and particularly in the
ocean, but from an accurate point of view based on definitions, oceans cannot be considered extreme
environments [114]. Thus, the degree of characterization of this pathway in extremophiles is relatively
low compared to the knowledge on ANAMMOX in mesophilic bacteria and, consequently, more
research is needed on this topic in the future.

(iii) Anaerobic denitrification is an anaerobic respiratory pathway in which nitrate is reduced
to dinitrogen. Some denitrifiers are complete, i.e., nitrate is fully reduced to dinitrogen thanks to
four key enzymes: respiratory nitrate reductase (Nar), respiratory nitrite reductase (Nir), nitric oxide
reductase (Nor), and nitrous oxide reductase (Nos). However, the process is often incomplete (partial
denitrification), leading to the release of the gaseous intermediates NO and N2O, which affect the
environment [39,115]. Denitrification has been extensively described so far, but regarding extremophilic
microorganisms, most of the studies have been reported from both thermophilic bacteria and archaea
and halophilic archaea. In the case of thermophilic bacteria, denitrification has been studied in detail
in a few species of the genera Thermus [116–118]. Related to extreme archaea, denitrification has been
described in several species of halophilic archaea [39,119–121] as well as in the thermophilic archaeon
Pyrobaculum aerophilum [122–124]. A few examples of anaerobic denitrification have also been reported
from moderately halophilic bacteria [125–127]. The enzymes catalyzing anaerobic denitrification in
extremophilic archaea and bacteria have been characterized from a biochemical point of view (mainly
respiratory nitrate and nitrite reductases) and share some structural features [39,128,129]. However,
more effort must be made in the future to elucidate the mechanisms regulating denitrification in other
extremophiles, such as halophiles (bacteria or archaea).

(iv) Finally, nitrate and ammonium assimilation have been very well characterized in symbiotic
microbes, mesophilic bacteria, algae, plants, and fungi. However, the knowledge about these processes
in extreme environments is still scarce and mainly limited to a few members of the Haloferacaceae family
(halophilic archaea) or a few thermophiles (bacteria). In the case of haloarchaea, nitrate assimilation
involves two enzymes: assimilatory nitrate reductases (Nas) and assimilatory nitrite reductases
(Nir). [130–133]. The ammonium produced from nitrate/nitrite reduction or ammonium directly taken
up from the environment can be assimilated through the glutamine synthetase/glutamate synthase
cycle (GS/GOGAT) (when the intracellular concentration of ammonium is relatively low) [134,135] or
thanks to glutamate dehydrogenase (GDH) (if the cytoplasmic ammonium concentration is significantly
high) [136]. Thus, nitrate/ammonium assimilation in halophilic archaea is similar to the processes
described from cyanobacteria and bacteria. Regarding thermophiles, most of the studies reported
at the time of writing this review are focused on ammonium assimilation. This process has been
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partially characterized from a biochemical point of view in thermophilic bacteria, such as Thermus
thermophilus, in which GDH activity was reported two decades ago [137,138] or Bacillus caldolyticus,
from which two GSs have been isolated and characterized [139]. GSs enzymatic activity, or ammonium
assimilation capacity in general, has also been predicted on the base of genomic analysis from
the thermophilic bacterium, Thermotoga maritima [140], or from the acidic and chemolithoautrophic
bacterium Leptospirillum ferriphilum ML-04 [141].

4. Potential Applications of N-Cycle Pathways Driven by Extremophiles in Biotechnology and in
Studies on Climate Change and Environmental Global Warming

4.1. Wastewater Treatments and Bioremediation

Wastewater treatments (WWT), such as the breakdown of sewage influent, are generally performed
by microorganisms and biological nitrogen removal (BNR) is a critical process in the treatment. Recently,
there have been new microbial communities discovered capable of performing BNR with novel
metabolic pathways [142]. Besides, extremophilic microbes dealing with different nitrogen compounds
at high concentrations have also been characterized [143]. Usually, these microbes have advantages
over canonical ammonium oxidizers, nitrifiers, or denitrifiers, such as higher substrate affinities,
better physicochemical tolerances, and/or less greenhouse gas emission. It is important to highlight
that nitrification and aerobic ammonium oxidation driven by extremophilic microbes belonging to
archaea have been recently described, and they could be promising metabolic pathways for wastewater
or sludge treatments in combination with denitrification (both bacteria or archaea) [98,144–148].
Regarding denitrification, it has been demonstrated that some haloarchaeal species, such as Haloferax
mediterranei, are able to metabolize high nitrate and nitrite concentrations under aerobic, microaerobic,
and anaerobic conditions (some of the species efficiently remove up to 2 M NO3

− and up to 60 mM
NO2

−, which are the highest concentrations currently described). Consequently, these species have
been proposed as good model organisms to design new strategies for the removal of nitrogen in
wastewater treatments or the treatments of brines [39,115,143]. Thus, biological approaches based on
complete denitrifiers take advantage of specific groups of microorganisms involved in nitrogen cycling
to remove reactive nitrogen from reactor systems by converting nitrate, nitrite, or ammonia to nitrogen
gas [146]. Recent studies have shown that thanks to the denitrification route, and particularly thanks
to the enzyme respiratory nitrate reductase, certain extreme denitrifying microorganisms (archaea and
bacteria) can reduce perchlorate to chlorate, and chlorate to chlorite [149]. Thus, not only nitrate/nitrite
but also perchlorate and chlorate can be removed from wastewater and brines by the reaction catalyzed
by the respiratory nitrate reductase (this is the first enzyme involved in denitrification, and it is able
to recognize nitrate, perchlorate, and chlorate as substrates) [150]. Over the last decade, perchlorate
(ClO4

−) and chlorate (ClO3
−) have been detected in water supplies, groundwaters, agricultural crops,

and even in soils as a result of human activities [151]. On the one hand, perchlorate is used in the
manufacture of propellants, explosives, and pyrotechnic devices [152]. The main concerns about
perchlorate toxicity are its interference with iodide uptake by the thyroid gland, and the related
potential carcinogenic effects [153]. On the other hand, chlorate is present in several herbicides and
defoliants, and it is released when chlorine dioxide (ClO2

−) is used as a bleaching agent in the paper
and pulp industry [154]. Thus, denitrification carried out by these microbes could sustain the removal
of other toxic compounds, such as (per)chlorates, apart from nitrogenous compounds to treat urban or
industrial wastewaters [150,155].

Finally, bioremediation-based processes use microorganisms for the degradation or removal of
contaminants (bioaugmentation, biodegradation, bioleaching, etc.). Pollution of soils, sediments,
and groundwater is a matter of concern at the global level; thus, pollutant removal has become
a priority worldwide. Currently, bioremediation has emerged as an effective solution for these
problems, and, indeed, the use of extremophilic microorganisms in bioremediation has been tested
successfully [40]. Most bioremediation research has focused on processes performed by members
of the domain bacteria; however, archaea are well suited for bioremediation in extreme conditions,
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such as halophilic or acidophilic environments. In other conditions, archaea collaboratively work
alongside bacteria during biodegradation [156]. Although most of the bioremediation processes
involving extremophilic microorganisms include halophilic hydrocarbon degradation, acidophilic
hydrocarbon degradation, hydrocarbon degradation, or dehalogenation, it is possible to assume their
potential use in the removal of nitrogenous compounds from soils thanks to denitrification and/or
aerobic ammonium oxidation [39,40].

4.2. Environmental Studies

Climate change, environmental global warming, and anthropogenic nitrogen deposition are three
of the main current concerns worldwide [44,157]. Evaluating their cumulative effects provides a more
holistic view of ecosystem vulnerability to human activities, which would better inform policy decisions
aimed to protect the ecosystems. Changes of global climate modify key processes in terrestrial and
freshwater ecosystems related to nitrogen cycling and availability as well as the response of ecosystems
to nitrogen addition in terms of carbon cycling, acidification, and biodiversity [157]. Therefore, the
knowledge of N-cycle and microbial activities must improve for better understanding the magnitude
of climate effects on ecosystem response to N.

A deep revision done at the time of writing this work shows that although N-cycle has been
extensively studied worldwide, including extremophilic environments (mainly thermophilic (hot
springs) or halophilic types (oceanic ecosystems, salted ponds or marshes)), it has not been explored
yet in extreme environments, such as volcano surroundings, drylands, psychrophilic or barophilic
environments. Recent results from metagenomics, proteomics, massive analysis of environmental
genomes, etc., suggest that the role of extremophilic microbes in nitrogen cycle is more relevant
than thought so far [44,158]. Among extremophilic ammonia oxidizers, members of archaea show
the most extreme phenotypes. The widespread occurrence and diversity of ammonia-oxidizing
archaea suggest their contribution to the nitrogen cycle is of global significance and higher than
initially thought [147,159]. Their distribution appeared limited to low- and moderate-temperature
environments until the recent finding of a diagnostic membrane lipid, crenarchaeol, in terrestrial hot
springs. These findings greatly extend the upper-temperature limit of nitrification and document that
the capacity for ammonia oxidation is broadly distributed among the Crenarchaeota [147,160].

In halophilic ecosystems, such as salt marshes or salted ponds, the low oxygen solubility and high
ionic strength promotes the development of denitrification in those geographical regions in which nitrate
or nitrite are present in soil or water (from natural sources or as part of the pesticides and fertilizers
used for agricultural purposes) [39,44,105,161]. In those environments, partial denitrification results in
the emission of NO and N2O gases to the atmosphere, thus contributing to global warming [39,51,105].
Studies on nitrogenous gas emissions by haloarchaea at a laboratory scale have demonstrated that
these emissions are not negligible [115]. Therefore, it would be interesting to quantify the magnitude
of NO and N2O emissions from arid soils and brines in which these halophilic denitrifying microbes
constitute predominant microbial populations [115].

One of the best-analyzed phenomena regarding connections between N-cycle, global warming,
and other environmental changes is the effect of the increased use of nitrogenous fertilizers in agriculture
worldwide. The abusive use of fertilizers and pesticides has significantly altered the global N-cycle
because of the release of nitrogenous gases due to the metabolic activities of soil microbes. As mentioned,
the emission of nitrous oxide (N2O) contributes to the global greenhouse gas accumulation and the
stratospheric ozone depletion [47,162,163]. These connections have been explored in detail mainly in
forest ecosystems [164], pasture soils [165,166], and standard agricultural soils or agricultural soils
suffering dramatical pH changes [164–170]. As a method to reduce the emission of nitrogenous
gasses, complete denitrification appears as a potential strategy to reduce N2O emissions by enhancing
the activity of N2O reductase (NOS) in the denitrifying microbial community [171]. Consequently,
denitrifying microbial communities could act as sources or sinks for nitrogenous gases [172]. However,
studies on this topic from extreme environments are yet to come.
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4.3. N-Cycle Enzymes

Microbial communities constituting the main populations in extreme environments have become
a focus of scientific interest owing to the unique properties of the biocatalysts they produce
(extremozymes). Extremozymes can cope with industrial process conditions (high temperatures, high
salt concentrations, low water availability, etc.) due to their extreme stability under the mentioned
parameters. For this reason, extremozymes are in demand for large-scale production in several chemical
industries, biotransformation, and in the field of bioremediation [173]. In that context, extremophilic
bacteria, fungi, and archaea are a valuable source of novel enzymes for biotechnology. Thus,
thermophilic proteins, piezophilic proteins, acidophilic proteins, and halophilic proteins have been
studied during the last few years. Among them, amylases, proteases, lipases, pullulanases, cellulases,
chitinases, xylanases, pectinases, isomerases, esterases, and dehydrogenases have great potential
application for biotechnology, such as in agricultural, chemical, biomedical, and biotechnological
processes [173–176].

In the context of this review, enzymes and accessory proteins (such as electron transfer proteins)
involved in denitrification have yielded the best applications. Those enzymes have been used to
prepare enzymatic cocktails and biosensors. Due to the importance of nitrates and nitrites (NOx

−) as
contaminants in soils and waters, two main lines of biosensors have been investigated: (i) biosensors
based on the use of whole cells (the biosensor detects products of cellular nitrogen metabolism), and
(ii) systems based on the immobilization of denitrification enzymes on a matrix. In the first type of
biosensors, the cells are placed in a reaction chamber in which the reduction of NO3

− to N2O occurs.
The reaction is usually measured by a specific nitrous oxide microelectrode [177–179]. In the second
generation of biosensors, modified cell biosensors were constructed by fusing a reporter gene to a
promoter element that is induced by the presence of a target compound (nitrate or nitrite). Thus,
a whole-cell fluorescence biosensor based on recombinant Escherichia coli allowed the determination of
nitrate without the interference of phosphate, chloride, or nitrite [180]. In the second type of biosensors,
the enzymes (mainly nitrate and nitrite reductases isolated from mesophilic denitrifying bacteria, such
as Paracoccus, Alcaligenes, or Desulfovibrio species) are immobilized on different materials to monitor
the concentration of NOx

−. The immobilization of the enzymes improves the stability and half-life
of the enzymes, making the system robust and sensible. Other aspects, such as quick response, high
selectivity, and sensitivity, low cost, and portable dimensions, are also inherent to electrochemical
biosensors based on redox enzymes involved in N-cycle [181–183]. Apart from the enzymes catalyzing
the four main reactions of denitrification, other accessory proteins involved in denitrification, such as
cytochrome c, have also been tested as part of a biosensor to monitor nitrate, hydrogen peroxide or
superoxide [184].

One of the major problems that these biosensors have is that the whole cells or the isolate
enzymes should work under specific conditions that preserve high stability and enzymatic activity.
These conditions usually are room temperature (or temperatures between 15–30 ◦C), neutral pH
values, low ionic strength, etc. Consequently, those biosensors are not useful to quantify nitrate
and nitrite in the field when working with environmental samples, such as brines, acid or basic
wastewaters, salted soils, etc. In that context, extremophilic denitrifiers are good candidates to
make innovative biosensors. At the time of writing this work, there are only a few studies focused
on the use of a psychotropic bacteria-based NOx

− biosensor to analyze marine sediments. This
biosensor can be used at low temperatures (<2.5 ◦C) and high salinity (around 35%) [185]. On the
other hand, several studies about N-cycle in haloarchaea suggest that some denitrifying species and
their isolated enzymes are highly efficient, catalyzing the reduction of NOx

− under both aerobic and
anaerobic conditions [39,51,115,128,143]. Consequently, new biosensors could be developed using
whole haloarchaeal cells or even respiratory halophilic nitrate and nitrite reductases.
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5. Conclusions

Biochemical cycles, as well as microbial diversity in extreme environments, are still poorly
described. Considering that N-cycle pathways are mainly driven by microorganisms, more efforts
must be made to understand their physiology and metabolism as well as their ecological relevance to
modulate N:P:K balances and the interconversion of nitrogenous compounds in extreme ecosystems.
Besides, although it is widely assumed that these microorganisms could be of high interest in terms of
biotechnological applications due to N-cycle pathways, only a few studies at laboratory scale have been
carried out. Taking all the previous aspects into account, several questions arise: (i) How significant is
the contribution of extremophilic microbes in the global biogeochemical N-cycle, in climate change,
and greenhouse gas emissions? (ii) Are extremophilic microbes involved in N-cycle good candidates
for biotechnological applications at large scale (wastewater/sludge treatments, etc.)?

The design and development of research to address these questions is quite a challenge for the
next decade. It is relevant to emphasize that natural events, as well as anthropogenic activities, are
contributing to global warming and climate change. Consequently, physicochemical parameters directly
connected to N-cycle have been significantly affected, especially during the last two decades. Besides,
the size and prevalence of arid and semiarid regions, among other types of extreme environments,
are increasing [44,115]. In this context, understanding biogeochemical cycles in extreme environments
is of great soundness and one of the aims to overcome soon. Policies on global warming and climate
change must be revised and implemented to address the main consensus on natural resources or
emissions of greenhouse gases. Particularly, policies to avoid environmental degradation and to
mitigate N2O emissions from natural or artificial biological nitrogen removal systems must be designed
and implemented [186,187].
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