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An era of single-cell genomics consortia
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Abstract
The human body consists of 37 trillion single cells represented by over 50 organs that are stitched together to make us
who we are, yet we still have very little understanding about the basic units of our body: what cell types and states
make up our organs both compositionally and spatially. Previous efforts to profile a wide range of human cell types
have been attempted by the FANTOM and GTEx consortia. Now, with the advancement in genomic technologies,
profiling the human body at single-cell resolution is possible and will generate an unprecedented wealth of data that
will accelerate basic and clinical research with tangible applications to future medicine. To date, several major organs
have been profiled, but the challenges lie in ways to integrate single-cell genomics data in a meaningful way. In recent
years, several consortia have begun to introduce harmonization and equity in data collection and analysis. Herein, we
introduce existing and nascent single-cell genomics consortia, and present benefits to necessitate single-cell genomic
consortia in a regional environment to achieve the universal human cell reference dataset.

Introduction
RIKEN has spearheaded international consortium

efforts to establish an atlas of human promoters and
enhancers through the FANTOM project. Gene expres-
sion profiling of 400+ human cell types using CAGE
revealed gene-regulatory modules that define cell types
and states1,2. This comprehensive landscape resource has
revealed pervasive transcription of coding and noncoding
RNA in the human genome, and precise understanding of
how and where genes are activated3. However, the FAN-
TOM data were derived from bulk samples, ignoring the
cellular heterogeneity that exists in both tissues and the
cell culture system. Creating an atlas that maps promoters
and enhancers across millions of single cells in the human
body will not only reveal regulatory regions of our gen-
ome, but also gene-regulatory programs that control cell
fates and pathology of genetic diseases.
Similarly, the genotype-tissue expression (GTEx) pro-

ject has generated a large genomic dataset, including over
10,000 bulk RNA-seq samples representing 54 different
tissues (30 organs) acquired from 948 individuals with

genotype information4–10. This rich dataset allows for
linking genetic variants at gene expression levels through
expression quantitative trait loci analysis (eQTL). Despite
its efforts to collect a variety of tissues from a relatively
large cohort of individuals, the expression profiles are
based on bulk, lacking cellular heterogeneity. To cir-
cumvent this, the GTEx project has recently released a
unique strategy to infer cellular heterogeneity based on
gene signatures from different cell types known to be
present in a given tissue. The method relies on the Tabula
Muris dataset11 to deconvolute the cellular composition
over 6,000 additional GTEx samples corresponding to 28
tissues, and reveals tissue-specific eQTLs colocalizing
with GWAS variants that were not detected in bulk, but
only discovered through deconvolution strategy12. GTEx
has built an extensive and mature infrastructure to obtain
fresh tissues from relatively large cohorts. It is a matter of
time before the consortium combines new technologies
such as single-cell RNA-seq with archival and new tissues
for single-cell eQTL RNA-seq analysis13.
Thanks to recent technological advances, we can now

profile large numbers of dissociated cells, and study the
RNA transcripts, proteins, and chromatin profiles of
10–100 k individual cells at a reasonable cost (consensus
approach). Moreover, we can characterize DNA sequen-
ces for reconstruction of cell lineages14, and combine
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these to relate different gene features to cellular identities.
We can also profile multiple classes of RNA, including
noncoding RNAs, enhancer RNAs15, and multiplex tran-
scripts and proteins in situ to map cells and their mole-
cules to their positions in histological sections (spatial
approach)16–19. Applying both consensus and spatial
strategies across tissues and populations, together with
advanced database infrastructure and computational
tools, should allow us to define “what is normal” in cells,
and provide a universal reference map of the human body.
In recent years, numerous reports demonstrating the

power of single-cell genomics are prevailing, where topics
include cellular ontology20,21 and functional conservation
across species22; cell fate and lineage determinants23,24;
dynamic changes in cell states such as the cell cycle25 and

transient responses26; molecular mechanisms that control
intra- and intercellular regulatory networks27,28; funda-
mental research in disease studies and pathology29–32. In
parallel, tens and hundreds of thousands of single-cell
genomics data across various human tissues are leading to
the discovery of new cell types and states, fundamentally
changing the picture of human anatomy in multiple ways
(summary of large-scale single-cell genomics data across
human tissue in Table 1). Integrating our knowledge that
we gained through single-cell genomics shows tremendous
potential for translational discoveries and applications, and
impacting diagnostic and clinical practices.
Cells in our body can now be explained by several

features, including their shape, location in a tissue, gene
expression, and function in a high-throughput manner.

Table 1 Single-cell profiling of major human organs and tissues.

Systems Organs/tissues Notes References

Hematopoietic and immune system Blood Discovery of new types of blood cells 95

Hematopoietic differentiation 96

Immune cell atlas (review) 97

Nervous system Brain Transcriptional and epigenetic states 98

Human and mouse cortex 51

Alzheimer’s disease 31,32

Autism 99

Urinary system Kidney Single-nucleus RNA-seq pipeline 100

Lupus nephritis 101

Spatiotemporal immune topology 102

Respiratory system Lung Lung cell atlas (review) 103

Asthma 104

Pulmonary fibrosis 105

Trachea Discovery of pulmonary “ionocytes” 106

Hepatopancreatic–biliary Liver Liver cell atlas 107

Pancreas Pancreas cell atlas 108

Gastrointestinal system Colon Ulcerative colitis 109

Small intestine Crohn’s disease 110

Cardiovascular system Heart Stress-related lincRNA 111

Developmental biology Fetal kidney Progenitor cell dynamics and lineage 112

Fetal liver Fetal liver hematopoiesis 113

Fetal heart Autoimmune-associated congenital heart block 114

Maternal–fetal interface Trophoblast–decidual interactions 27

Pediatric Pediatric cell atlas (review) 115

Reproductive system Breast Breast epithelial cells 116

Testis Testis cell atlas 117

Sensory system Eye Retina cell atlas 118,119
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However, we have not comprehensively determined how
these features are associated with each other, and what
constitutes “normal” with respect to the health status of
an individual. As a result, our knowledge of the cellular
makeup and relations of the human body and disease is
still limited. Therefore, we need a comprehensive
reference database through an integrative, systematic
effort, and many teams of scientists working together to
produce data that are not only consistent, high quality,
and interoperable, but also driven by biology and
medicine.
In the last few years, several single-cell genomics con-

sortia have been created to address the issue of systematic
data integration and harmonization. Consortia such as the
Human Cell Atlas aims to bring together domain experts
to consolidate single-cell data in a central portal. In par-
allel, several tissue-centric consortia, such as the BRAIN
initiatives, aim to dive deeper into the complex nature of
individual organ systems. Here, we summarize the ever-
growing single-cell genomics consortia and describe their
missions. We further showcase benefits from generating
single-cell data in a regional and coherent manner
through the formation of single-cell consortia.

Single-cell genomics consortia
In light of the enormous complexity of the human body

and the rapidly evolving technology landscape, in October
2016, more than 150 international scientists met in Lon-
don to launch the planning process for an ambitious new
initiative: the Human Cell Atlas (HCA), an international
collaboration to create comprehensive reference maps of
all human cells33–36. The HCA consortium aims to build
this ambitious yet essential resource in phases, starting with
cells in tissues and eventually organs and systems, with the
aim of constructing an increasingly detailed, valuable, and
comprehensive atlas with guiding principles for the com-
munity that includes open data sharing high-quality data,
equity, ethical considerations, flexibility, international, and
technology and computational innovations37.
At the time of writing, hundreds of thousand single-cell

data across major organ tissues, including colon, liver,
immune, and developmental tissues, already populated
the database38. The recent meeting in Barcelona, Spain,
laid out the roadmap toward building the first draft of the
atlas, where the draft will clearly define not only cell types
but also cell states, identify the molecular program in both
dissociated and spatial contexts, and project the trajectory
and relation to time. The first draft of the HCA aims to
profile the molecular and spatial characteristics of cells
from major tissues and systems from healthy donors, with
geographic, age, and ethnic diversity in mind.
The unique nature of the HCA is forming a large global

coalition of scientists that builds upon grassroot com-
munities to work toward a common goal. The support of

seed funds from philanthropic foundations and govern-
ment bodies jumpstarted the project, connecting scien-
tists all around the globe. However, with membership
reaching over 1600 and over 100 research institutes
represented, arriving at a single solution to create the atlas
can be logistically challenging to coordinate. At the same
time, the relatively flexible, community-based nature of
HCA attracts motivated scientists to freely explore the
field and collaboratively construct platforms that will set
new standards for building an international reference for
human cells.
Concurrently, several government and philanthropic-

led programs are in full swing that are incentivized
through defined funding structures. In 2003, a Swedish-
based program called the Human Protein Atlas aimed to
map all human proteins in cells, tissues, and organs using
integration of various omics technologies, including
antibody-based imaging and RNA-seq. Their current
Tissue Atlas includes 44 normal human tissue types with
15,313 genes represented in the protein data with avail-
able antibodies39. Concurrent programs include The Cell
Atlas, which represents 64 cell lines with subcellular
details40, The Pathology Atlas representing 17 different
cancer types41, The Brain Atlas of the human, pig, and
mouse, The Blood Atlas including the secretome, and The
Metabolic Atlas with over 120 curated molecular path-
ways. Their latest efforts to consolidate data with FAN-
TOM5 and GTEx RNA gene expression data aim to reach
a multi-omics integrated portal system42,43. In the Eur-
opean Union (EU), the LifeTime initiative was recently
introduced to fundamentally impact basic science across
multiple fields, including developmental biology, regen-
eration, and stem cell biology through single-cell genomic
technologies44. With strong emphasis on disease and
collaboration with industry partners, the initiative aims to
synthesize novel solutions based on single-cell genomics
technologies to improve human health and reduce the
economic burdens of the aging population.
In the United States, the National Institutes of Health

(NIH) have recently reported to support the Human
Biomolecular Atlas Program (HuBMAP)45 for 7 years.
The consortium aims to develop a widely accessible fra-
mework for mapping the human body at single-cell
resolution, with a strong focus on spatial molecular
mapping. Unlike GTEx, HuBMAP focuses on generating
single-cell data using samples from a more limited num-
ber of individuals while investing in a robust common
coordinated framework to make data more integratable
and communicable across various consortia.

Tissue-centric consortia
A broad profiling of the human body across many tis-

sues will certainly be necessary to understand the holistic
anatomy of our body. At the same time, the intricacies of
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individual organ systems and their associated diseases are
unending. Several disease- or tissue-centric consortia are
starting to adapt single-cell genomics to dive deeper into
resolving the map of each organ system. In December
2016, the US Congress authorized $1.8 billion in funding
for the Cancer Moonshot over 7 years, covering a wide
range of areas, including patient engagement, drug resis-
tance, prevention, and early detection of hereditary can-
cer46. One of the flagship projects includes the human
tumor cell atlas, a collaborative project to build three-
dimensional atlases of cellular, morphological, and
molecular features of human cancer over time. The con-
sortium is organized with a central data coordination
center working with the human tumor atlas focusing on
advanced cancers, and the pre-cancer atlas (PCA) focus-
ing on conditions that are likely to become cancer.
Comparative datasets from healthy counterparts, such as
the human cell atlas, may become essential to interpret
the risks and severity of diseases such as cancer.
As one of the BRAIN initiative’s priority areas, the

consortium aims to characterize all cell types in the ner-
vous system at single-cell resolution47, and to develop
tools to record, mark, and manipulate neurons in the
living brain. Comparing human and nonhuman primates,
the group previously revealed global, regional, and cell-
type-specific species expression differences in rare
subpallial-derived interneurons expressing dopamine
biosynthesis genes in humans48. More recently, the group
performed single-cell RNA-seq on 40,000 cells to create a
high-resolution single-cell gene expression atlas of the
developing human cortex49, permitting inference of gene-
regulatory networks involved in neurogenesis, evolution,
and neuropsychiatric diseases. Similarly, the Allen Brain
Atlas, led by the Allen Brain Institute, for many years, has
driven large-scale mapping projects in the brain50. Seek-
ing to combine genomics with neuroanatomy by creating
gene expression maps for the mouse and human brain,
they recently used single-cell SMART-seq analysis to
profile 50,000+ cells across the human and mouse cortex.
In their recent work, they identified a highly diverse set of
excitatory and inhibitory neurons that are mostly sparse,
and showed high conservation in cellular programs. At
the same time, the authors reported stark differences in
cellular proportions, laminar distributions, gene expres-
sion, and morphology between humans and mice51.
LungMAP: The Molecular Atlas of Lung Development

Program52,53 is a NIH-funded consortium focusing on the
human lung that serves as a research resource and public
education tool. The consortium of four research centers, a
data-coordinating center, and a human tissue repository
integrates imaging, transcriptomics, and proteomics in a
comprehensive data resource called BREATH. The group
recently published comprehensive anatomic ontologies
for lung development, comparing alveolar formation and

maturation within mouse and human lung54. Cellular
ontology is an important step toward standardizing and
expanding the current terminology of fetal and adult lungs
as a resource for broader single-cell genomics consortia.
Other tissue-centric consortia include the Kidney Pre-

cision Medicine Program (KPMP) that aims to create a
kidney tissue atlas55, the Immunological Genome Project
(ImmGen), where they recently published a matched
epigenome and transcriptome analysis in 86 primary cell
types spanning the mouse immune system, establishing an
atlas of 512,595 active cis-regulatory elements56,57, and
the GenitoUrinary Development Molecular Anatomy
Project (GUDMAP), where they focus on spatial imaging
and gene expression profiling of the kidney, lower urinary
tract and nociceptors (pain receptors), and the associated
cell types in pain processing of the urinary and pelvic
regions in mice and more recently in human samples58,59.
The list of single-cell genomics consortia is growing and is
summarized in Table 2.

Building a single-cell genomics consortium
Despite international efforts to integrate single-cell

genomics data, such as the HCA, establishing a con-
sortium in a local environment will benefit science in
multiple ways: (1) research and clinical networks within
the respective nations spark a new level of scientific col-
laboration that builds toward clinical and translational
research; (2) physical proximity suggests easier access to
samples that often leads to manageable coordination
toward standardization, tissue procurement, and mini-
mizing batch effects; (3) data from local cohorts generate
appropriate genetic and environmental backgrounds with
key emphases on diseases that are prevalent in the region;
(4) empowers local scientists toward genomics technology
and computational innovations; and (5) directly addresses
local regulations and policies around ethics and data
sharing. Here, we exemplify, non-exhaustively, our efforts
in Japan toward building a regional single-cell genomics
consortium.

Systematic workflows
The single-cell genomics consortium by nature unites

scientists and clinicians from different disciplines to spur
cross-disciplinary creativity while providing the necessary
structure to guide the effort. To better standardize and
coordinate efforts from sample collection and data pro-
duction to analysis, we need to establish a systematic
workflow to coordinate with clinicians and researchers
across Japan, involving sample-processing standard
operating protocols (SOPs), quality control (QC) metrics,
central databases, analytical pipelines, and ethics and data
policies (Fig. 1).
The single-cell genomics consortium in Japan aims to

generate single-cell datasets, mostly with standardized
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5′-RNA-seq technology, derived from both healthy and
disease samples that will incubate within the consortium,
while data generated from healthy samples will be shared
with the global HCA community as early as possible. We
will also incorporate HCA data, both cellular and spatial,
as well as key analytical pipelines, and apply them to
address biology-driven questions posed by individual
biological collaborators. In parallel, we will integrate 5′-
based single-cell data from multiple sample providers to
explore gene regulation, focusing on promoter and
enhancer activities, on a global scale, leading to the cis-
regulatory atlas.
To ensure high-quality single-cell data production, the

consortium created a central data center in RIKEN and a
team of sample coordinators that closely interacts with
individual sample providers to optimize protocols and QC
for library production and sequencing. Most human
specimens will come from clinical biopsies and surgical
resections of living patients, and occasionally from healthy
living donors, deceased transplant organ donors, and
rapid autopsy from deceased donors. Therefore, max-
imizing sample quality early in sample collection by
minimizing the time between biopsy/resection and pre-
servation is critical. Although several reviews comparing
dissociation methods have been reported60–62, the “gold
standard” SOP for tissue dissociation, unfortunately, is
not available at this stage. When access to fresh samples is
not possible, cryopreservation after cellular dissociation
may maintain higher quality compared with direct cryo-
preservation of the whole biospecimen. Nonetheless,
cryopreservation of adjacent sections or tissues will ben-
efit by gathering pathological information and storage for

future technologies, and implementing complementary
methods, such as multiplexed spatial analysis, should
reflect cellular compositions found through dissociation
methods. To further minimize possible technical and
biological variations, the consortium can provide SOPs
with clear instructions, and requires comprehensive
metadata (donor information, site, and time). The Human
Cell Atlas relies on a central repository for SOPs (proto-
cols.io63) and systematic collection of metadata. Constant
exchange of protocols and metadata with the open-source
community will move toward standardization in the
long run.
Performing cell sorting to enrich the desired cell type is

possible, although conventional fluorescence-activated
cell sorters (FACS) contain insidious chemicals and
induce physical stress to cells that may alter gene
expression profiles. The latest single-cell genomics plat-
forms can profile a relatively large number of cells
(~3000–5000 cells) in a single run, allowing for unbiased
sampling of the cell population without FACS. When the
desired cell population is rare, performing negative
selection by means of bead-conjugated antibodies tar-
geting unwanted cell populations (e.g., dead cells and
CD45+ immune cells) will significantly enrich for target
cells, and at the same time, minimize cellular stress.
Concurrently, DNA-barcoded antibodies can be used to
target specific epitopes and profile the transcriptome and
target protein64.
The consortium requires robust QC metrics that are

critical to the success of downstream processes. A high
proportion and appropriate number of viable cells will
increase the chance of generating a high-quality dataset.

Fig. 1 A model of single cell medical network (SC_MED) consortium. A systematic workflow to facilitate each collaborating partner through IRB,
sample acquisition, technology profilling and data analysis to realize publication. In parallel, seamless integration of data from all collabarators to
contribute healthy samples to the human cells atlas database. Genomics analysis based on 5-based technology to inter Cis-gene regulatory network
across the human body.
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Additional metrics to avoid sample mislabeling, patient
data swapping, and employing robust computational QCs
are implemented to ease data integration and lead to a
more biologically meaningful interpretation of single-cell
genomics data.

Data integration and genomic analysis
Compared with bulk data analysis, single-cell genomics

data bring unique challenges in their analysis in two
aspects: high dimensionality due to the sheer increase in
the number of observations made, and high variability
from the inherent sparsity of the data stemming from
both biological variations and limited sensitivity of the
current methods. Furthermore, the massive amount of
data that are generated from single-cell analyses brings
additional challenges in data access, management, and
infrastructure. As such, we established a robust database
framework to handle vigorous activities that are specifi-
cally tailored to address individual collaborators while
maintaining standardization through single-cell genomics
platforms, dissociation protocols, centralized databases,
and experimental designs. The general outline of com-
putational tools is described below; however, to narrow
the gap between computational scientists and sample
collaborators, the consortium continues to develop and
implement graphic user interfaces that can be easily
implemented by collaborating members.
Estimation of the gene expression levels from scRNAseq

data requires careful quality control steps to remove
unwanted noise from cell debris or free-floating RNA.
The raw expression data that pass this QC step need to be
normalized using single-cell-specific approaches, such as
the use of spike-ins and modeling of cell-specific factors,
as the global scaling approach used in bulk data analysis is
no longer suitable [CellRanger65 and SCATER66]. A
number of expression-level imputation approaches have
been developed as well to estimate the expression values
that might have been missed owing to dropout events
[MAGIC67, scIMPUTE68, and SCRABBLE69]. In addition,
the data need to be corrected for other confounding
factors such as batch effects and cell cycles [SEURAT70,
fastMNN71, SCLVM72, and CCREMOVER73].
Once the data processing is complete, the next step is to

assign identities to individual cells, which are usually from
mixed populations. This step generally involves dimen-
sional reduction and clustering of the expression data to
group the cells with similar transcription profiles [PCA74,
TSNE75, and UMAP76]. While traditional clustering
methods, such as hierarchical clustering, can be used, a
number of single-cell-specific methods have been devel-
oped, and there are benchmarks [SC377 and DUO78]. For
those cells undergoing continuous differentiation or sti-
mulations, trajectory inference techniques have been used
to assign them onto a continuous path of changes in order

to establish a temporal ordering of the cells, which is
referred to as pseudotime [DIFFMAP79, MONOCLE80,
and RNAVELOCITY81]. Finally, when discussing cell
identity, one confounding factor that is especially relevant
to single-cell genomics consortia is how one differentiates
between cell type (stable features of a cell’s identity) and
cell state (transient aspects of a cell’s status). How to
firmly establish these concepts using data-driven and
generalizable approaches is a discussion that is necessary
within the single-cell consortium.
Once the cell types have been established, we can pro-

ceed to identify the gene signatures that are specific to
each type, and make inferences about the biology behind
them. The most common technique is to perform dif-
ferential expression analysis among different populations
of cell types or states. Due to the technical challenges
imposed by the high dispersion and dropout events
inherent in scRNAseq data, numerous efforts have been
made to develop single-cell-specific techniques that
address these issues [MAST82 and SCDE83]. Other
approaches involve the inference of gene-regulatory net-
works, using both existing methods developed for bulk
data and newly developed single-cell-specific methods
[WGCNA84 and SCODE85].
Finally, the ongoing efforts to generate single-cell

genomics data that can be spatially resolved have
brought some important advances recently, giving us a
chance to not only identify the cell types but also their
spatial locations in the original tissue the cells were
sampled from [STAHL86, SEQFISH18, and SLIDE-
SEQ19]. This has important implications for single-cell
genomic consortia, as it will allow us to investigate the
interplay between gene-regulatory networks and physi-
cal locations of different cell types that interact with one
another. For readers who would like more in-depth
reviews of the current methodologies employed in this
field, there are a number of comprehensive review
papers and handbooks that have been published in
recent years87–90.

Perspective
Despite the generation of a growing amount of single-

cell data, single-cell consortia from the US/EU can inad-
vertently lead to biased representation of single-cell
genomics data, further exacerbating the skewness of
genetic representation that was pandemic during the
genomic era91,92. For instance, a concern for lack of Asian
genomes in the reference datasets is rising (e.g., 1.3% of
GTEX is Asian, where 59.6% of Asians make up the
world’s population93). Poor representation in reference
data can lead to misinterpretation of research and clinical
results94. While greater efforts are being made to repre-
sent regional/ethnic diversity in global consortia including
HCA, uplifting regional research groups to lead data
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production is necessary, and creation of a local con-
sortium can be one of the steps to achieve meaningful
human cell reference for all. It will be imperative to work
with regional research–clinical communities together
with funding agencies to initiate a dialogue toward better
standardization and harmonization of single-cell geno-
mics data while maintaining a constructive relationship
with global single-cell genomics communities to engage
and represent all of us on the global scale.
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