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ABSTRACT

Background:: An application of a novel method of a quantifier elimination in epidemiology 

was  presented in this paper Objective: We investigated the existence of the endemic 

equilibrium for the SEIRS model by QE method and gave a short review of the epidemic 

prediction models for covid-19. Methods: A new method for quantifier elimination for 

the theory of real closed fields. Results: Obtained value of a reproduction number and 

endemic equilibrium for the SEIRS model by QEAnalysis of the SEIR model with the con-

crete values through the example of Severe Acute Respiratory Syndrome (SARS) (a critical 

value of a transmission rate is evaluated in the example). Conclusion: The main result of 

this paper is the obtained value of the endemic equilibrium for the SEIRS model (similar 

result is obtained for the SEIR model). Also, we have analysed the SEIR model through 

the examle of SARS and we reviewed several epidemic prediction models for covid-19.

Keywords: epidemic model, reproduction number, endemic equilibrium, quantifier 

elimination.

1.  BACKGROUND 
Numerous mathematical models 

have been formulated and applied in 
epidemiology. In the compartmental 
models, a population is divided into 
compartments and the certain assump-
tions about the nature and time rate of 
transfer from one compartment to an-
other are specified. The basic model 
is the SIR model presented in [1]. The 
population is divided into three dif-
ferent groups, the Susceptible, the In-
fectious and Recovered in this model. 
Also, these assumptions are given: a 
population is closed and all the recov-
ered individuals have complete immu-
nity. The SIR model was used for mod-
elling chickenpox, smallpox, rubella 
and mumps. The model that we analyse 
in this paper is the SEIR model; a pop-
ulation is divided into four different 
groups, Susceptible, Infectious, Ex-
posed and Recovered [1]. Considering 
the SEIRS model, recovered individ-
uals may become susceptible again in it.                      

The crucial question in epidemiology 
is if a disease currently present in a pop-
ulation will die out or will reach an en-
demic stage. More precisely, the ques-

tion of the stability of a disease free 
equilibrium and of an endemic equi-
librium has been posed. The notion of 
a basic reproduction number R0 was in-
troduced by Dietz in order to answer it 
[7]. R0 is defined as the number of the 
secondary infections from each in-
fected person in a population that con-
sists only of susceptible persons. If a 
value of R0 exceeds one then a disease 
will reach an endemic stage and will al-
ways be present in the population; if a 
value of R0 is less than one the disease 
will die out. 

The models that we have investi-
gated and analysed in this paper are 
the SEIRS and SEIR. We have anal-
ysed the SEIR model using concrete 
values for the Severe Acute Respirator 
Syndrome (SARS), where the data were 
taken from [4]. Namely, the choice of 
the appropriate model for a certain 
disease is important in epidemiology. 
If we take SARS as the example, we 
cannot apply the classical SIR model 
on it. Although the SIR model provides 
the general framework to investigate a 
spread of a disease, it is too simple to ac-
curately model the outbreak of SARS 
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and generally does not fit to a real data [14]. So, we have de-
cided to use the SEIR model in our analysis. In this model 
a current number of people in the Infective class can be low 
while a number in the Exposed class is high; in this case the 
epidemic may seem stopped but it will be out of a control 
when the people from Exposed class migrate to Infective class 
and transmit a disease further (especially in case sanitary 
inspection is not good). Let us mention some other models 
that can be used in the analysis of a same disease, the SEIQR 
and SEIRP model. The SEIRP model was introduced in the 
paper [14]. A motivation for creating this new model was the 
fact that the SARS virus was less severe in the places with the 
poor hygiene conditions. So, there exists the possibility that a 
vaccination against another disease could protect the people 
against SARS. Another possibility is that a very similar dis-
ease spread before and immunized some of the people against 
SARS. A previously stated was the hypothesis in [14] and it 
was a base hypothesis for a new SEIRP model. So, a new class 
P was added to the SEIR model and it represented a group of 
people that already had some kind of a protection. 

A global epidemiology of SARS was influenced by a phe-
nomenon called superspreading. The largest outbreak of 
SARS occurred in Beijing in a year 2003 [15]. A statistical 
data showed that the most of the superspreading events oc-
curred in the hospital environment. The superspreading was 
associated with the patients with a large number of contacts. 
After introducing the infection control measures in Beijing 
in response to the outbreak, the chances for events of super-
spreading were significantly reduced.

Both the SEIR and SEIRS model are used for the diseases 
with a long incubation duration. In the SEIRS model recovery 
does not confer permanent immunity so one application of 
this model can be application to malaria.   

Since a new virus covid-19 is similar to SARS, we will re-
view prediction models appropriate for it. Several models 
were analysed in order to predict  dynamic of the disease in 
[16]. The obtained results were compared to a real data. For 
example, the SEIR model was used to predict a number of 
covid-19 cases in Hubei. The SIRD model was used for the 
prediction in Italy, while the SEIRQ model was used for the 
data in China. The ARIMA model was used for prediction in 
three countries, Italy, Spain and France. When comparing the 
obtained values to a real data, the conclusion was that the two 
models, the SEIRQ and the ARIMA model, have the lowest 
difference between the obtained predicted values and the real 
data values. So, the SEIRQ and the ARIMA models are appro-
priate for covid-19. Let us mention here the SLIAR model that 
has been also used for the respiratory diseases. One variation 
of the SLIAR model was used for covid-19 in [17], where the 
parametrisation involves the same number of parameters as 
the basic model. We can point out that the simple models that 
can be fitted using the minimal number of parameters were 
very useful during the early stage of the covid-19 pandemic. 

As a result in this paper for the SEIRS model, we obtained 
a value of the reproduction number and a value of endemic 
equilibrium by a novel method of QE. We also obtained these  
results for the SEIR model. When we compare our result to 
the result presented in paper [6], we can see that their algo-
rithm returned only the formula for a reproduction number 
while a value of an endemic equilibrium was not calculated.         

Considering the methods of mathematical logic used in this 
paper, we used a method for quantifier elimination first pre-
sented in [13]. The first real quantifier elimination procedure 
was presented by Tarski in [9]. Collins developed the first 
elementary recursive real quantifier elimination procedure 
[10,11], which was based on cylindrical algebraic decompo-
sition (CAD). 

In the other papers related to the application of QE, the 
completely different methods of QE were used. To be more 
precise, the approach that requires both quantifier elimina-
tion and simplification of a formula was used in [6]. QE based 
on virtual term substitution, Hermitian QE based on real 
roots counting and QE by cylindrical algebraic decomposi-
tion were used.  

2. OBJECTIVE
The aim of this paper is to evaluate the endemic equilibrium 

of the SEIRS model and to analyse the SEIR model through 
the example of SARS.

3. MATERIAL AND METHODS
Quantifier Elimination
Let us introduce the basic definitions which are of impor-

tance for quantifier elimination.
The language L is recursive if the set of codes for symbols 

from L is recursive. The first order theory T is recursive if the 
set of codes for axioms for T is recursive. An L-theory T is 
complete if for every sentence   in a language L the following 
holds:

T ⊢ ϕ or T ⊢ ¬ϕ.

For each theory T arises question of its decidability, i.e. the 
existence of algorithm which for given  ϕ ∈ SentL gives 
an answer whether T ⊢ ϕ  or T ⊬ ϕIn the case of recursive 
complete theory in a recursive language, the answer is affir-
mative.

    A theory T of a language L admits quantifier elimination 
if for every formula ϕ (ν) ∈ ForL there exist a quantifier 
free formula ψ (ν) ∈ ForL such that:

T ⊢ ∀ν (ϕ (ν) ↔ ψ (ν))

Every logic formula is equivalent to its following prenex 
normal form:

Q1x1 . . . Qnxnϕ (x1, . . . , xn, y1, . . . , ym) ,

where Qi ∈ {∀, ∃}  and ϕ  is a formula without quan-
tifiers in DNF; formula of the form ∀xϕ  is equivalent to 
¬∃x¬ϕ; ∃x (ϕ ∨ ψ) ↔ ∃xϕ ∨ ∃xψ  is a valid for-
mula. Using the previous we see that an L-theory T admits 
quantifier elimination if and only if for every L-formula of 
the form ∃xϕ (y, x) , where ϕ  is a conjunction of atomic 
formulas and negations of atomic formulas, exists equivalent 
quantifier free formula ψ (y) .

The method used in this paper is the original general algo-
rithm for QE for any theory T presented in [13]. This algo-
rithm is applied to the theory of real closed fields (RCF).

Preliminaries. Theories of ACF and RCF
The notion of the algebraically closed fields and real closed 



ORIGINAL PAPER / ACTA INFORM MED. 2024, 32(1): 71-75 73

Application of Quantifier Elimination in Epidemiology

field is well known in mathematical logic. 
In order to know how to eliminate quantifiers in a theory of 

algebraically closed fields, it is sufficient to know how to elim-
inate the existential quantifier in the formula of the form:

∃x (t1 = 0 ∧ · · · ∧ tk = 0 ∧ t ̸= 0) ,

where ti represent an atomic formula of a language L. So, 
every ti is polinomial by x whose coefficients are polynomials 
by the other variables with coefficients in Z. 

In order to know how to eliminate quantifiers in a theory of 
real closed fields, it is sufficient to know how to eliminate the 
existential quantifier in the formula of the form:

∃x (p1 = 0 ∧ · · · ∧ pk = 0 ∧ q1 > 0 ∧ · · · ∧ qm > 0) ,

where pi, qj  are polinomials by x whose coefficients are poly-
nomials by the other variables with coefficients in Z.

4. RESULTS
Application of QE in Epidemiology 
In this paper we will investigate the SEIRS and the SEIR 

model that are presented in [3]. Note that the recovered in-
dividuals may be susceptible again in the SEIRS model. So, 
a population is divided into the following classes: the Sus-
ceptible (S), the Exposed (E), the Infectious (I) and the Re-
covered (R). The Susceptible class contains the individuals 
who are at risk of become infected. The Exposed class repre-
sent the individuals who may or may not develop the disease. 
The Infectious class contains the individuals who have been 
infected. The Recovered class represent the individuals who 
have been recovered. Mathematical models consist of the sys-
tems of differential equations that describe the dynamics in 
each class.

SEIRS model
The SEIRS  model has been investigated by the quantifier 

elimination methods in [6]. The methods for QE in this paper 
completely differ from the methods used in [6]. Additionally, 
we obtained a value of the endemic equilibrium as a ne w re-
sult directly by QE. 

The SEIRS model for the transmission of infectious dis-
eases is presented by the system of four differential equations

:
d

dt
S = µ+ γR− µS − βIS

d

dt
E = βIS − (µ+ σ)E

d

dt
I = σE − (ν + µ) I

d

dt
R = νI − (µ+ γ)R,

where the meaning of the variables and parameters is the 
following:

S  susceptibles
E  exposed
I  infectious
R  recovered
β  transmission parameter
µ  birth rate = mortality rate
σ  rate of change from exposed to infectious

γ  rate of loss of immunity
ν  rate of loss of infectiousness
The birth rate is equal to the mortality rate in this model.
A point in SEIR-space is an equilibrium point if 

µ+ γR− µS − βIS = 0 ∧ βIS − (µ+ σ)E = 0∧

∧σE − (ν + µ) I = 0 ∧ νI − (µ+ γ)R = 0,

(it holds: I + S + E +R = 1 ) and represents an en-
demic state if

S > 0 ∧ E > 0 ∧ I > 0 ∧R > 0.

(a disease free equilibrium, obtained by setting I = 0, always 
exist and has a value (1, 0, 0, 0)) 

There exists an endemic equilibrium for the SEIRS model if 
the following formula holds:

(∃E) (∃R) (∃I) (∃S) (µ+ γR− µS − βIS = 0 ∧ βIS − (µ+ σ)E = 0 ∧ σE − (ν + µ) I = 0 ∧ νI

(∃E) (∃R) (∃I) (∃S) (µ+ γR− µS − βIS = 0 ∧

βIS − (µ+ σ)E = 0 ∧ σE − (ν + µ) I = 0 ∧ νI −

(µ+ γ)R = 0 ∧ S > 0 ∧ E > 0 ∧ I > 0 ∧R > 0)

  
I + S + E +R = 1

 (1)

Let us rewrite the system first. We combine a substitution 
method and QE method. We express the values of E and R 
from the third and fourth equation, respectively:

 
   

E =
(ν + µ) I

δ
, R =

νI

µ+ γ  
(2)

The next step is to substitute the previous values into the 
second equation and a formula (1). So, we get the following 
system:

βIS − (ν + σ)
(ν + µ) I

σ
= 0

I + S +
(ν + µ) I

σ
+

νI

µ+ γ
= 1

or equivalently

βIS − (ν + σ)
(ν + µ) I

σ
= 0

I + S +
(ν + µ) I

σ
+

νI

µ+ γ
− 1 = 0

Now we apply QE algorithm to the inner quantified subfor-
mula of a formula:

(∃I) (∃S)

(

βIS − (µ+ σ)
(ν + µ) I

σ
= 0 ∧ I + S +

(ν + µ) I

σ
+

νI

µ+ γ
− 1 = 0 ∧ S > 0 ∧ I > 0

)

(∃I) (∃S)

(

βIS − (µ+ σ)
(ν + µ) I

σ
= 0 ∧ I + S +

(ν + µ) I

σ
+

νI

µ+ γ
− 1 = 0 ∧ S > 0 ∧ I > 0

)

More precisely, we apply the algorithm to the formula:

(∃S)

(

βIS − (µ+ σ)
(ν + µ) I

σ
= 0 ∧ I + S +

(ν + µ) I

σ
+

νI

µ+ γ
− 1 = 0 ∧ S > 0 ∧ I > 0

)
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(∃S)

(

βIS − (µ+ σ)
(ν + µ) I

σ
= 0 ∧ I + S +

(ν + µ) I

σ
+

νI

µ+ γ
− 1 = 0 ∧ S > 0 ∧ I > 0

)

By the QE method we have

T1 = A2t1 − A1t2

where t1 ≡ βIS − (µ+ σ) (ν+µ)I

σ , 

t2 ≡ I + S + (ν+µ)I

σ
+ νI

µ+σ
− 1

 
and the coefficients 
are equal 

A1 = βI, A2 = 1 . Our formula is equivalent to:

A2 ̸= 0 ∧ (∃S) (T1 = 0 ∧ t2 = 0 ∧ S > 0 ∧ I > 0) .

When we rewrite the equality T1 = 0 we get the fol-
lowing one:

(µ+ σ)
ν + µ

σ
+ βI + β

(ν + µ) I

σ
+

βνI

µ+ γ
− β = 0

Now we substitute values from (2) into the previous for-
mula. A formula is equivalent to:

(µ+ σ)
ν + µ

σ
+ βI + βE + βR− β = 0

When we express a value of S from (1) and substitute it into 
the previous formula we get:

(µ+ σ)
ν + µ

σ
+ β − βS − β = 0

So, we can express a value of S as a function of parameters:

  
S =

(µ+ σ) (ν + µ)

σβ  
(3)

Now we use the second equality t2 = 0 and substitute a 
value of S into it. It follows:

I +
(µ+ σ) (ν + µ)

σβ
+

(ν + µ) I

σ
+

νI

µ+ σ
− 1 = 0

We can see that the previous equality has only one un-
known I and we can express a value of I as a function of pa-
rameters. When we combine it with a condition I >0 we get 
the following:

  

(µ+ σ) (ν + µ)

σβ
< 1

 
(4)

Notice that a resulting formula represents a condition for 
a reproduction number in the epidemiological literature. The 
identical formula (4) was obtained in [6], but the method for 
QE was different. More precisely, REDLOG was used in [6] 
and it computes a quantifier free equivalent formula that con-
sists of 25 atomic formulas. So, their result needed to be sim-
plified in order to transform the obtained formula into a for-
mula (4).  

Let us find a value of the endemic equilibrium. We have al-
ready evaluated a value of S∗ by the method of QE directly 
and that is obtained in (3):  

S
∗

=
(µ+ σ) (ν + µ)

σβ

We can substitute the previous value into the system in 
which derivatives are equal to zero and evaluate the endemic 
equilibrium. Since it holds:

S∗

=
1

R0

,

we present the obtained value as a function of R0
:

(S
∗

, E
∗

, I
∗

, R
∗

) =

(

1

R0

,
µ+ ν

σ
I
∗

,
(µ+ γ)µ

R0 (β (µ+ γ)− γν)
(R0 − 1) ,

ν

µ+ γ
I
∗

)

.

 

(S
∗

, E
∗

, I
∗

, R
∗

) =

(

1

R0

,
µ+ ν

σ
I
∗

,
(µ+ γ)µ

R0 (β (µ+ γ)− γν)
(R0 − 1) ,

ν

µ+ γ
I
∗

)

.

Since in the paper [6] a value of endemic equilibrium was 
not obtained, we can point out this value as a new result ob-
tained by QE method.

Numerical analysis of the SEIR model for SARS
The SEIR model has been presented in [3]. We have ob-

tained the values of a reproduction number and an endemic 
equilibrium by QE method described in 4.1. In order to 
analyse the SEIR model we have taken the data for Severe 
Acute Respiratory Syndrome (SARS) from [4]. The numer-
ical data are the following:
transmission rate β = 0.75
rate of natural mortality µ = 0.000034
rate of change from 
exposed to infectious

σ = 0.33

recovery rate of infected individuals γ1 = 0.125
recovery rate of  
diagnosed individuals

γ2 = 0.2

When we use a formula for a basic reproduction number:

R0 =
βσ

(µ+ γ) (µ+ σ)
,

and substitute values from a table into it, we get   
R0 = 3.75. Note that we have used the second value  
γ2 = 0.2  for a value of γ. Since it holds(R0 = 3.75)>1, the en-
demic equilibrium is stable.

Let us analyse the sensitivity of endemic equilibrium of the 
SEIR model. We suppose that the values of mortality rate, 
expose rate and recovery rate are considered to be fixed in 
this analysis. While the values of three parameters μ, σ, γ are 
fixed, the corresponding value of a transmission rate has been 
changing. We have calculated the value of the reproduction 
number  R0 for every combination of parameters and repre-
sented the results in the Table 1. We can notice that in cases 
when a value of transmission rate β decreases (0.75 → 0.15) 
while the values of the other three parameters are fixed, then a 
value of  R0 decreases. In cases when a value of R0 becomes less 
than one, the endemic equilibrium becomes unstable. 

Now let us find the critical value of a transmission rate. In 
order to find this value, we set up the equality R0 = 1, where 
the values of the other parameters are fixed. So, we get a re-
sulting value β* = 0.2. We can conclude that in a case we set 
up the values of three parameters to be constant, a disease will 
spread out if a value of a transmission rate is bigger than a crit-
ical value β* = 0.2; the disease will be controlled if a value of β 
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is less than β* = 0.2. 
Before the vaccine against SARS was invented, the quar-

antine and the isolation were the only control measures. The 
aim of these measures was to decrease a value of a transmis-
sion rate and control a disease. However, in a practice a dis-
ease did not die out because of the phenomenon called super-
spreading. Namely, the superspreading is the transmission 
of an infectious disease to a very large number of uninfected 
persons by the relatively small number of highly contagious 
persons. Beijing experienced the largest outbreak of SARS, 
with more than 2500 cases reported between March and June 
2003 [15]. The superspreading mostly depends on the envi-
ronment (the hospitals have a crucial role) and the age of a 
patient. This phenomenon also played major role in a trans-
mission of SARS in Singapore and Toronto. After introducing 
the measures decided by  WHO and relayed by governments 
a situation approved significantly.

5. CONCLUSION
We successfully applied a method of mathematical logic, 

quantifier elimination, in epidemiology. We presented the 
application of QE for the SEIRS model in this paper. We ob-
tained the values of a reproduction number and an endemic 
equilibrium as a result. Considering the methods used in the 
other papers related to the application of QE, the methods 
for QE were completely different. A resulting quantifier free 
equivalent formula consists of 25 atomic formulas for the 
SEIRS model, while the value of endemic equilibrium was 
not evaluated in [6].

In this paper, we also analysed one concrete example for 
SARS. The SEIR model was applied in the analysis. A main 
problem in a practice was the phenomenon called super-
spreading, but measures decided by WHO were effective in 
preventing superspreading. Considering the SEIRS model, it 
is applicable to the diseases with a long incubation period and 
temporary immunity of recovered persons. One example of 
its application is an application to malaria.  

In the introductory part we reviewed the prediction models 
for covid-19. When comparing the predictions of several 
models with the real data, it was concluded that the SEIRQ 
and the ARIMA model were appropriate for analysis of 
covid-19 [16]. 
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µ β σ γ R0 Nature of EE state
0.000034 0.75 0.33 0.2 3.75 Stable

0.000034 0.7 0.33 0.2 3.5 Stable

0.000034 0.5 0.33 0.2 2.5 Stable

0.000034 0.3 0.33 0.2 1.5 Stable

0.000034 0.2 0.33 0.2 1 Critical value

0.000034 0.18 0.33 0.2 0.9 Unstable

0.000034 0.15 0.33 0.2 0.75 Unstable

Table 1. Sensitivity analysis of the Endemic Equilibrium state


