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Glycosylation alterations, a key driver throughout tumorigenesis and tumor

progression, could regulate the microenvironment and immune response as

well as lead to harmful metabolism and cell signaling. In this study, we first

comprehensively evaluated the glycosylation modification patterns of LGGs

based on glycosyltransferase family genes and systematically integrated these

modification patterns with tumor metabolism and immune microenvironment

characteristics. Glycosylation score was also developed to quantify

glycosylation modification patterns of individuals. As a result, two

glycosylation modification patterns were identified, with distinct prognosis,

metabolism, and immune microenvironment features. The glycosylation

subtype A and cluster A were characterized by higher carbohydrates and

amino acid metabolism activity, higher levels of infiltrating cells, and poor

prognosis, whereas an opposite modification pattern was observed in

glycosylation subtype B and cluster B. In addition, a high glycosylation score

is closer to a microenvironment characterized by chronic inflammation,

immunosuppression, and tumor promotion. Following analysis and

validation, the glycosylation score was a reliable and independent prognostic

index. More importantly, the glycosylation score influenced the response to

immunotherapy, chemotherapy, or targeted therapy, which provided a novel

insight into promoting personalized therapy in the future andmay contribute to

developing novel therapeutic drugs or exploring promising drug combination

therapy strategies.
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Introduction

Diffuse gliomas, a heterogeneous group of the supporting

glial cell neoplasms, are the most prevalent primary malignancies

of the central nervous system (CNS). The World Health

Organization (WHO) classified gliomas into grades I–IV (Yu

H. et al., 2021). Grades II and III gliomas are often defined as

lower-grade gliomas (LGGs) because these tumors represent a

completely different entity from glioblastoma (grade IV). Up to

80% of LGGs harbor isocitrate dehydrogenase (IDH) mutations,

but only approximately 5% of glioblastomas are IDH-mutant

(Youssef and Miller, 2020). More importantly, this molecular

finding conveys a relatively optimistic and favorable prognosis

(Schiff et al., 2019). Complete surgical resection followed by

chemoradiotherapy is the currently favored therapy for LGGs

(Schiff et al., 2019; Yu H. et al., 2021). However, LGGs cannot be

cured completely, and more than 70% of patients will inevitably

experience tumor recurrence or malignant progression within

10 years (Gittleman et al., 2020), owing to its high invasiveness

and aggressiveness. Thus, reducing tumor recurrence and

delaying tumor progression are the most issues and

challenges. Even after active efforts of applying multiple

treatment modalities, however, the malignant behaviors and

clinical outcomes of these tumors vary greatly from person to

person (Aoki et al., 2018; Berzero et al., 2021). Due to the high

heterogeneity of LGGs, it was insufficient for the existing

molecular patterns of LGGs to fully explain clinical outcomes

and predict prognosis. Therefore, more comprehensive research

to better understand potential molecular mechanisms in LGGs

oncogenesis and progression is needed, which will contribute to

better patient stratification and further making clinical decisions

to improve patient management.

Glycosylation, a recognized hallmark of cancer(Thomas

et al., 2021), is defined as an enzymatic process that could

accelerate the production of glycosidic linkages between

saccharides and other saccharides, lipids, or proteins (Pinho

and Reis, 2015). Emerging evidence demonstrated that altered

glycans serve as a key driver throughout tumorigenesis and

tumor progression; hence, changes in cellular glycosylation, as

a key component of malignant progression, have recently

attracted more and more attention (Stowell et al., 2015).

Glycosylation is involved in almost all important biological

processes, such as protein quality control, protein clearance,

intracellular trafficking, cell–cell interaction, cell–matrix

adhesion, and various signal transduction cascades (Thomas

et al., 2021). In addition, abnormal and modified glycosylation

alterations caused by cellular and metabolic changes will not only

significantly affect the overall charge and conformation of

glycoproteins, thereby changing its biological activity and

directly affecting tissue cell growth and survival (Stowell et al.,

2015). Also, these changes of glycosylation also cause abnormal

expression of membrane-localized glycans, which will trigger

cellular malignant transformation and mediate cancer cell

proliferation, survival, and metastasis (Marsico et al., 2018;

Chandler et al., 2019; Thomas et al., 2021). Accumulating

findings suggest that abnormal glycan profiles could regulate

the microenvironment and immune response (Mereiter et al.,

2019) and even hinder an effective immune response (Polmear

and Good-Jacobson, 2021). In addition, the metabolic state

(Campbell and Wellen, 2018) or metabolic reprogramming

(Carvalho-Cruz et al., 2018) of the tumor cell can lead to

aberrant glycosylation intra- and extra-cellular. On the

contrary, aberrant glycosylation can also lead to harmful

metabolism and cell signaling. However, these mechanisms

are not fully understood. Therefore, evaluating the association

between glycosylation modification patterns and immune

landscape, along with metabolism alterations will contribute

to strengthening our understanding of the vital role of

glycosylation in tumor biology, and is expected to provide

valuable strategies for improving personalized management of

patients.

In the present study, we integrated the transcriptomic

information of LGGs samples to identify the glycosylation

patterns associated with distinct prognosis and immune and

metabolic characteristics. Moreover, we first proposed a scoring

system to quantify the glycosylation patterns of individual LGGs

patients, and it can provide clinical decision-makers with a novel

perspective to better stratify patients, predict treatment response,

and improve individualized treatment strategies.

Materials and methods

Data source and preprocessing

The overview of our study design is shown in Supplementary

Figure S1. The LGGs gene expression data and matched clinical

annotations were retrieved from TCGA and Chinese Glioma

Genome Atlas (CGGA) databases. Only patients with survival

time greater than 30 days were involved in this study. In total,

four cohorts were enrolled: TCGA-LGG (481 samples), CGGA-

mRNAseq_693 (420 samples), CGGA-mRNAseq_325

(170 samples), and CGGA-mRNA-array_301 (159 samples).

The TCGA-LGG cohort data by log2(x+1) transformed were

downloaded from the UCSC Xena website (https://xena.ucsc.

edu/), and the other three cohorts were downloaded from the

CGGA official website (http://www.cgga.org.cn/index.jsp). At the

same time, the mRNA sequencing (mRNA-seq) data in CGGA

was also log2(x+1) normalized.

Glycosylation-based consensus clustering
analysis

We collected the genes of the main glycosyltransferase

families involved in human species-specific glycosylation

Frontiers in Cell and Developmental Biology frontiersin.org02

Tang et al. 10.3389/fcell.2022.886989

https://xena.ucsc.edu/
https://xena.ucsc.edu/
http://www.cgga.org.cn/index.jsp
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.886989


mechanisms (Mohamed Abd-El-Halim et al., 2021), including

221 genes retrieved from the GlycoGene Database (GGDB,

http://riodb.ibase.aist.go.jp/rcmg/ggdb) and 213 genes

extracted from the Hugo Gene Nomenclature Committee

(HGNC, https://www.genenames.org/data/genegroup/#!/group/

424). Eventually, a total of 143 overlap genes were selected in our

analysis. Consensus clustering (Zhang et al., 2020) was

performed to identify distinct glycosylation subtypes according

to the expression of these 143 genes in the TCGA cohort. The

ConsensuClusterPlus package was used and 1000 times

repetitions were conducted to ensure the stability of clustering

results. In addition, we applied the T-distributed stochastic

neighbor embedding (t-SNE) to verify the reliability of

subtype assignments based on the expression of the

aforementioned genes (Bai et al., 2021).

Gene set variation analysis

To explore the variations in biological processes between

glycosylation modification patterns, we selected the GSVA

enrichment analysis to accomplish this purpose by using the

“GSVA” package. GSVA is usually applied to estimate the

variation of pathway and biological process activity in a

nonparametric and unsupervised manner (Hänzelmann et al.,

2013). The gene sets of “c2.cp.kegg.v7.4.symbols”, GOBP, and

metabolism-associated pathway signatures derived from KEGG

and REACTOME were both downloaded from the molecular

signature database (MsigDB, http://www.gsea-msigdb.org/gsea/

msigdb/search.jsp). Adjusted p < 0.05 was considered statistically

significant.

Estimation of tumor microenvironment
characteristics

The single sample gene set enrichment analysis (ssGSEA)

was applied to estimate the enrichment scores of 13 immune

functions and 16 immune cells. The scores were normalized to

specific distribution from 0 to 1 and could quantify the relative

abundance of estimated items. Themarker gene sets were curated

from a current study (Bindea et al., 2013), and the “GSVA”

package was introduced to conduct the aforementioned analysis.

Moreover, to comprehensively estimate the infiltration level of

immune cells and stromal cells in the TME, Immune Cell

Abundance Identifier (ImmuCellAI) (Miao et al., 2020),

Tumor Immune Estimation Resource (TIMER) (Yu L. et al.,

2021), and microenvironment cell population counter (MCP-

counter) (Ye et al., 2021) algorithms were also utilized in our

study. Among them, the former is calculated in the web tool

ImmuCellAI (http://bioinfo.life.hust.edu.cn/ImmuCellAI#!/),

while the latter two algorithms are implemented on the

Sangerbox platform (http://vip.sangerbox.com/home.html).

Identification of glycosylation-related hub
genes

To identify glycosylation-related genes (GRGs), we

performed differential expression analysis between

glycosylation distinct subtypes. The “limma” package was used

to determine differentially expressed genes (DEGs), and the

significance filtering criteria were set as | log2 (fold change)

| > 1 as well as adjusted p value less than 0.0001. In addition, to

ensure the reliability of GRGs, weighted gene co-expression

network analysis (WGCNA) was also introduced to establish

co-expressed gene modules strongly related to glycosylation.

Based on the expression of 8619 prognostic genes (univariate

Cox analysis p < 0.01), a gene co-expression network was

established by using the “WGCNA” R package (Langfelder

and Horvath, 2008). The Pearson correlation was calculated

according to the expression of these filtered genes, and an

optimal soft-thresholding power β = 7 was selected to build

an unsigned weighted adjacency matrix followed by a topological

overlap matrix (TOM) conversion. Finally, the average linkage

hierarchical was clustered with the parameter height = 0.25, and

the criterion for gene module identification was set as a cutting

height of 0.9 along with the module genes a minimum number of

20. The modules of | correlation coefficient | > 0.5 were

considered as closely related to glycosylation and selected for

a subsequent analysis. The intersections of DEGs and module

genes screened by WGCNA were defined as GRGs.

Generation and validation of glycosylation
gene signature and glycosylation score

To quantify the glycosylation modification patterns of

individual patients, we developed a glycosylation scoring

scheme to assess the glycosylation modification pattern of

individuals with LGGs, which was glycosylation gene

signature and the glycosylation score. Primarily, we

divided the GRGs into two groups based on their hazard

ratio (HR) of the univariate Cox regression model. Genes

with HR > 1 and those with HR < 1 were defined as the

glycosylation gene signatures A and B, respectively. Next, we

conducted GSVA for dimension reduction of the signatures A

and B, the GSVA value of which were separately termed as

value A and value B. Finally, both value A and value B were

selected to calculate the glycosylation score as follows:

glycosylation score = value A- value B. Patients with LGGs

were classified into high and low glycosylation score groups

based on the median cutoff value, and scores between the

glycosylation subtypes or clusters were assessed by the

Wilcoxon test.

Moreover, the prognostic value of the glycosylation scores

was validated in three cohorts of the CGGA database by using the

same signatures and the cutoff value.
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Correlation between the glycosylation
score and other related biological
processes

To explore the association between the glycosylation score and

some related biological pathways. The gene sets related to stromal

activation were extracted from the supplementary material of a

current study (Mariathasan et al., 2018), including

epithelial–mesenchymal transition (EMT) signatures (EMT1,

EMT2, and EMT3) and pan-fibroblast TGFb response signature

(Pan-FTBRS). Moreover, immune checkpoint- and immune

activation–related genes were retrieved from the publication of

Zhang et al. (2020). In addition, immunosuppressive factors and

immunosuppressive cell recruitment factors were obtained from

another study (Su et al., 2019). The differences in biological process

between distinct glycosylation score groups were assessed via the

Wilcoxon test.

Small molecule drugs screening and drug
sensitivity prediction

Differentially expressed genes (DEGs) between the high and low

glycosylation score groups were set as adjusted p-value < 0.001 and |

log2 (fold change) | > 1, which were determined by using the

“limma” package. The DEGs were visualized into volcano plots and

submitted to performGeneOntology (GO) andKyoto Encyclopedia

of Genes and Genomes (KEGG) enrichment analyses by the

“clusterProfiler” package. Furthermore, both of the top 500 up-

and downregulated genes were uploaded into the Connectivity Map

02 (CMap, https://portals.broadinstitute.org/cmap/) database, and a

CMap mode-of-action (MoA) analysis was applied to discover

possible small molecular drugs for LGGs andmechanisms of action.

We evaluate the predictive capacity of glycosylation score in

responding to chemotherapeutic agents and immunotherapy.

The 50% inhibiting concentration (IC50) value of 138 drugs

of each patient was quantified using the pRRophetic algorithm

(Tan et al., 2021), and the differences between high and low

glycosylation score subgroups compared by using the Wilcoxon

test. In addition, the response to immunotherapy was predicted

by using immunophenoscore (IPS) (Gui et al., 2021; Wu et al.,

2021), which was obtained without bias based on determining

components of immunogenicity including effector cells,

immunosuppressor cells, major histocompatibility complex

(MHC) molecules, and immune modulators. The statistical

difference of the IPS value was tested by the Wilcoxon test.

Statistical analysis

R software (version 4.1.0) was applied to conduct statistical

analysis. We adopted the Kaplan–Meier (K-M) analysis and log-

rank tests to perform the survival analysis with the “survival” R

package. The prognostic value of glycosylation score was evaluated by

a multivariate Cox regression model and a time-dependent receiver

operating characteristic (ROC) analysis using R packages “survival’

and “timeROC”. Comparisons between glycosylation subgroups,

clusters, and score groups were presented via the Wilcoxon test.

Results

Glycosylation-related molecular subtypes
with distinct survival, metabolism, and
immune microenvironment features in
LGGs

Based on the expression of 143 genes involved in

glycosyltransferase families, 481 patients from the TCGA

database were obviously divided into two groups when k = 2

(Figure 1A) by the consensus clustering analysis, which was

termed as glycosylation subtype A and subtype B, respectively.

The t-SNE algorithm confirmed that glycosylation subtype

assignments are reliable and can be completely distinguished

(Figure 1B). The survival analysis revealed that patients of

subtype A showed a significantly shortened survival time

compared with patients of subtype B (Figure 1C, log-rank test).

To explore the biological molecular changes between distinct

glycosylation subtypes, the KEGG gene set was used to

performed GSVA enrichment analysis. As shown in

Figure 1D, subtype A presented enrichment pathways

prominently related to carcinogenic activation and immune

regulation pathways such as nucleotide excision repair,

homologous recombination, antigen processing and

presentation, and NOD-like receptor signaling pathway, while

subtype B is markedly enriched in metabolism-related processes,

including steroid biosynthesis, oxidative phosphorylation, citrate

cycle TCA cycle, and so on. Next, we further compare the

metabolism and immune microenvironment features affected

by glycosylation modification patterns between the subtypes. The

results of ssGSEA showed a significant up-regulation in immune

infiltrating cells (Figure 1E) and immune function (Figure 1F) of

subtype A. Furthermore, the GSVA results revealed significant

differences in metabolic processes (Figure 2A), with subtype B

mainly active in lipid metabolism (Figure 2B) and other

metabolism (Figure 2C), while subtype A was mainly active in

carbohydrates metabolism (Figure 2D) and amino acid

metabolism (Figure 2E).

Survival, metabolism, and immune
microenvironment characteristics in
glycosylation clusters for LGGs

To further validate the glycosylation modification patterns

and the potential biological behavior, GRGs identified by
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differentially expressed analysis and WGCNA were further

inputted into the subsequent investigation. Primarily,

1945 DEGs between glycosylation subtypes including 788 up-

regulated genes and 1157 down-regulated genes were visualized

in the volcano plot (Figure 3A), and the top 100 ones are

displayed in Figure 3B. Then 18 gene modules (Figure 3C)

were recognized by WGCNA, and six modules (light yellow,

brown, grey60, dark orange, dark grey, and tan) were closely

related to glycosylation (Figure 3D). Eventually, 971 interactions

(Figure 3E), considered GRGs (Supplementary Table S1), were

uploaded into the consensus clustering analysis. Consistent with

the subtype grouping of glycosylation modification patterns, the

TCGA-LGGs cohort was divided into two distinct clusters, which

were defined as glycosylation clusters A and B (Figure 3F). Also,

the t-SNE algorithm data confirmed the rationality of the cluster

assignments (Figure 3G). As expected, we found that patients in

cluster A exhibited significantly shortened the survival time

(Figure 3H; log-rank test). This demonstrated that two

distinct glycosylation modification patterns did exist and work

in LGGs. We further probed into the metabolism and immune

microenvironment characteristics of the glycosylation clusters. In

short, glycosylation cluster A showed higher scores of immune

infiltrating cells (Figure 4A) and immune function (Figure 4B),

except for CD8+ T cells, mast cells, and natural killer (NK) cells.

FIGURE 1
Glycosylation-related molecular subtypes with distinct survival and immune microenvironment features in LGGs. (A) Consensus
clustering matrix of 481 samples from the TCGA dataset for k = 2. (B) t-SNE of the expression profiles of glycosyltransferase family genes in
the TCGA cohort confirmed the subtypes. (C) K-M analysis for the subtypes of LGGs patients. (D) GSVA enrichment analysis displayed the
differences of KEGG pathways between the two subtypes. Red represented higher pathway activity and blue represented lower pathway
activity. The boxplots visualized the ssGSEA enrichment scores of immune infiltrating cells (E) and immune functions (F) between the
subtypes. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not significant.
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Moreover, metabolic characteristics also showed significant

differences (Figures 4B–E) between glycosylation clusters.

Excitedly, these results were much similar to that of between

glycosylation subtypes. Collectively, the concordance between

prognostic, metabolic, and immune microenvironment

characteristics in glycosylation clusters and subtypes

confirmed again that glycosylation modification played a vital

role in metabolic reprogramming and immune regulation, and

this classification was steady and reliable.

Development of the glycosylation scoring
system as an independent prognostic
factor for LGGs

Although our findings revealed the role of glycosylation

modification in prognosis, metabolic reprogramming, and

immune modulation, these analyses could not accurately

quantify the glycosylation modification patterns of

individual tumors. Therefore, to enable the quantification

of glycosylation patterns in individual LGGs patients, we

developed a glycosylation scoring system termed as the

glycosylation score. Based on the median glycosylation

score of 0.009856, patients were classified into the high and

low glycosylation score subgroups. Figure 5A showed the

distribution of clinical traits including age, gender, grade,

overall survival, and survival status between high and low

glycosylation score subgroups, while Figure 5B further

displayed the grade distribution, glycosylation subtypes,

and clusters assignment of patients from distinct

glycosylation score subgroups, which are summarized in

Supplementary Table S2. The Wilcoxon test demonstrated

that patients in subtype A had a higher glycosylation score

compared to subtype B (Figure 5C); meanwhile, cluster A

FIGURE 2
Metabolism features of the glycosylation subtypes. (A) Heat map depicted the activation states of metabolism-associated process between
subtypes based on GSVA enrichment scores. Red represents activated processes and blue represents inhibited processes. Differences of GSVA
enrichment scores of the metabolism-associated process including lipid metabolism (B), other metabolism (C), carbohydrates metabolism (D), and
amino acid metabolism (E) between the subtypes. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not significant.
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showed a higher glycosylation score than that of cluster B

(Figure 5D). This indicated that a high glycosylation score

could be closely related to poor prognosis, whereas a low

glycosylation score could be closely related to a favorable

prognosis. Of course, this hypothesis was confirmed by a

subsequent survival analysis (Figure 5E) based on

glycosylation scores. We analyzed the prognostic values of

glycosylation scores in depth. The multivariate cox regression

analysis demonstrated that the glycosylation score was an

independent risk factor with its HR = 2.010 for LGGs

(Figure 5F). Meanwhile, the time-dependent area under the

curve (AUC) suggested that the glycosylation score had a

robust and reliable value in predicting the prognosis for LGGs

in the TCGA cohort (Figure 5G).

FIGURE 3
Identification of GRGs and glycosylation clusters. (A) Volcanomap showed the DEGs between the glycosylation subtypes. Red represented up-
regulated genes and green represented down-regulated genes. (B) Heat map showed clinical features and top 100 DEGs between glycosylation
subtypes. (C) Gene co-expression network and gene modules were identified by WGCNA. (D) In total, 18 gene modules were recognized, and six
modules marked with red frames, with | correlation coefficient | > 0.5, were considered as closely related to glycosylation. (E) In total,
971 overlapping genes were determined by DEGs and WGCNA were defined as GRGs. (F) Consensus clustering matrix for k = 2 and (G) t-SNE
identified glycosylation clusters, which were both based on the expression profiles of GRGs in the TCGA cohort. (H) K-M analysis for the clusters of
LGGs patients.
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We further verified the predictive effectiveness of glycosylation

score in three independent external cohorts according to the same

glycosylation gene signatures and cutoff score. Consistent with findings

in the TCGA cohort, patients with a high glycosylation score showed a

significantly shortened survival than those with a low glycosylation

score in validation cohorts including CGGA-mRNAseq_693

(Supplementary Figure S2A), CGGA-mRNAseq_325

(Supplementary Figure S2B), and CGGA-mRNA-array_301

(Supplementary Figure S2C). Similarly, superior time-dependent

AUCswere observed in those cohorts (Supplementary Figures S2D–F).

Glycosylation score is associated with
metabolism and immune
microenvironment features of LGGs

The correlations between the glycosylation score and

metabolism as well as immune microenvironment features were

further explored in this study. Consistent with findings observed in

distinct glycosylation patterns, the glycosylation score was strongly

linked to metabolism activity (Supplementary Figure S3A) and

immune microenvironment infiltrations (Figure 6). The results

showed that the high glycosylation score subgroup was associated

with enhanced activity in most amino acid metabolism

(Supplementary Figure S3B) and carbohydrates metabolism

(Supplementary Figure S3C); on the contrary, the low

glycosylation score subgroup was associated with enhanced

activity in most lipid metabolism (Supplementary Figure S3D)

and other metabolism (Supplementary Figure S3E). Meanwhile,

the distribution of infiltrating cells estimated by ImmuCellAI,

TIMER, MCP-counter, and ssGSEA algorithms between the

high and low glycosylation subgroups were also investigated.

Our results (Figure 6) suggested that the high glycosylation

score subgroup had a significantly higher infiltrating level than

the low glycosylation score subgroup. Most of the infiltrating

immune and stromal cells increased in the high glycosylation

score subgroup, whereas T helper 1 (Th1) and CD8+ naïve cells

decreased in this subgroup. Furthermore, there were higher scores

FIGURE 4
Immune microenvironment and metabolism features of the glycosylation clusters. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns, not
significant. The boxplots showed the enrichment scores of (A) immune infiltrations and (B) immune functions differed in the clusters. Boxplots
depicted the differences in enrichment scores of metabolism-associated processes between glycosylation clusters, which included (C) amino acid
metabolism, (D) carbohydrates metabolism, (E) lipid metabolism, and (F) other metabolism.
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of 13 immune functions in the high glycosylation score subgroup

(Figure 7A), compared to the low glycosylation score

subgroup. Taken together, the glycosylation score presented a

close association with metabolism and immune

microenvironment features of LGGs.

Correlation of cytokine, chemokine, and
other related biological processes in
glycosylation score subgroups

To explore potential mechanisms correlated with different

glycosylation score subgroups in depth, we compared the

expression of chemokine and cytokine between subgroups.

These cytokine and chemokine retrieved from published

literature, of which, includes the transcripts correlated with

immune activation (Figure 7B), immunosuppressive cell

recruitment factors (Figure 7C), immunosuppressive factors

(Figure 7D), and immune checkpoints (Figure 7E). We

observed that most of these genes were expressed higher in

the high glycosylation score subgroups, revealing the

coexistence of a chronic inflammation state and a suppressed

immune microenvironment in this subgroup. To better depict

the role of glycosylation scores, we evaluated other related

biological processes, including immune activation, stromal

activation, and cancer promotion, in patients with LGGs.

Consistent with the aforementioned observations, patients in

the high glycosylation score subgroup exhibited a much higher

enrichment score of immune activation–related biological

processes (Figure 7F). On the other hand, higher stromal

activation and cancer promotion scores were also enriched in

this subgroup. Collectively, the glycosylation score did play a

non-negligible role in affecting LGG progression.

Potential small molecule compounds and
drug sensitivity prediction

To explore potential small therapeutic drugs for patients with

high glycosylation scores, 2090 DEGs, including 923 up-

FIGURE 5
Development of the glycosylation scoring system and its prognostic values for LGGs. (A)Clinical features in the high and low glycosylation score
subgroups. (B) Alluvial diagram of glycosylation score in groups with different grades, subtypes, and clusters. The boxplot showed the distribution of
glycosylation score in the different (C) subtypes and (D) clusters. The p-values were both less than 0.0001. (E) K-M curves for patients with low and
high glycosylation scores. (F)Multivariate Cox regression analysis for the glycosylation score and clinical variables. GS, glycosylation score. (G)
Time-dependent AUC value of the glycosylation score demonstrated it as a robust and reliable prognostic index.
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regulated genes and 1167 down-regulated genes, between the

high and low glycosylation score subgroups were identified

(Figure 8A). The GO analysis results illustrated that the DEGs

are primarily involved in modulation of chemical synaptic

transmission, regulation of trans-synaptic signaling, synaptic

membrane, ion channel complex, gated channel activity, and

ion channel activity (Figure 8B). Meantime, these DEGs were

significantly enriched in the cholinergic synapse, GABAergic

synapse, glutamatergic synapse, neuroactive ligand–receptor

interaction, serotonergic synapse, and synaptic vesicle cycle

signaling pathways (Figure 8C). Based on the CMap MoA

analysis, a total of 14 potential small therapeutic drugs (such

as spiradoline, propofol, and dextromethorphan) and 13 drug

mechanisms (such as opioid receptor agonist, GABA receptor

agonist, and glutamate receptor antagonist) were identified

(Figure 8D).

To explore the potential role of glycosylation score in the drug

sensitivity prediction, we compared the IC50 value of 138 drugs in

TCGA-LGGs patients by using the pRRophetic algorithm; of which,

the results showed that therewere 29 drugs (such as gefitinib, nilotinib,

and axitinib) in which the estimated IC50 value were significantly

lower in the low glycosylation score subgroup compared to the high

glycosylation score subgroup (Supplementary Figure S4A), indicating

that patients in the low glycosylation score subgroup might respond

better to these chemotherapy drugs. Similarly, patients in the low

glycosylation score subgroup had a higher IPS score, suggesting that

patients in this subgroup might be more sensitive to immunotherapy

(Supplementary Figure S4B).

FIGURE 6
Landscape of infiltrating cells in the high and low glycosylation score subgroups. The heatmap depicted the immune and stromal cell infiltration
scores. Red represents cells infiltrated higher in the high glycosylation score subgroup and blue represents cells infiltrated lower in the high
glycosylation score subgroup. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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Discussion

Increasing evidence demonstrated that glycosylation plays

an indispensable role in metabolism, immune response, and

malignancy (Fujita et al., 2021; Hu et al., 2021; Pijnenborg

et al., 2021), which is a complex and multistep process through

multiple glycosyltransferase enzymes (Schjoldager et al.,

2020). However, most studies concentrated on a single

glycosyltransferase enzyme, and the overall metabolism and

immune microenvironment landscape characteristics

mediated by integrated glycosyltransferase enzymes have

not been fully recognized. Therefore, the identification of

distinct glycosylation modification patterns in the

metabolism and immune microenvironment landscape

characteristics will contribute to improve our

understanding of the roles of glycosylation modification

patterns and provide novel insights for making more

effective managements of LGGs.

In the present study, we identified two distinct

glycosylation modification patterns, characterized by

different prognosis, metabolism, and immune

microenvironment features. The glycosylation subtype A

and cluster A were characterized by the higher

carbohydrates and amino acid metabolism activity, higher

level of infiltrating cells, and poor prognosis. However, an

opposite modification pattern was observed in glycosylation

FIGURE 7
Cytokine, chemokine, and other related biological processes in glycosylation score subgroups. (*p < 0.05; **p < 0.01; ***p < 0.001; ****p <
0.0001; ns, not significant) (A)Difference in the enrichment score of immune functions between glycosylation score subgroups. (B)Difference in the
gene expression related to immune activation between glycosylation score subgroups. The difference in the expression of (C) immunosuppressive
cell recruitment factors and (D) immunosuppressive factors between glycosylation score subgroups. (E) Difference in the gene expression
related to immune checkpoints between glycosylation score subgroups. (F) Difference in the gene expression of other related biological processes
including immune activation, stromal activation, and cancer promotion between glycosylation score subgroups. ERI, extracellular matrix (ECM)
receptor interaction; Pan-F-TBRS, pan-fibroblast TGFb response signature; APAP, antigen processing and presentation; TLR, Toll-like receptor; NLR,
NOD-like receptor; RILR, RIG-I-like receptor; TCR, T cell receptor; BCR, B cell receptor.
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subtype B and cluster B, that is, characterized by the higher

lipid and other metabolism activity, lower level of infiltrating

cells, and better prognosis. A previous study demonstrated

that the tumor microenvironment plays a crucial role in

immune response and tumor progression (Galon and

Bruni, 2019). Appropriate stromal status contributes to

migration of T cells, whereas loose or dense stromal might

hinder the migration of T cells and limit their entry into the

tumor parenchyma (Salmon et al., 2012). In addition, the

abundance of immune cells would prevent them from

penetrating tumor cell nests and being retained in the

surrounding stroma (Joyce and Fearon, 2015). Consist with

these findings, the glycosylation subtype A and cluster A

infiltrated higher immune cells but with poor prognosis,

reflecting an inefficient antitumor immune. Metabolic

reprogramming is one of the well-established hallmarks of

cancers, a flexible metabolic reorganization, which is tailored

to meet their energy requirement and maintain the

homeostasis of environmental conditions (An and Duan,

2022; Corchado-Cobos et al., 2022). These metabolic

variations include the synthesis of protein, cell membranes,

and nucleic acids, which all promote cell proliferation

(Corchado-Cobos et al., 2022). Confusingly, lipid

metabolism is widely believed to be oncogenic and facilitate

tumor progression; our analysis showed that hyperactive lipid

metabolism was related to a better prognosis, indicating an

anticancer role of lipid metabolism in LGGs. However, our

finding was confirmed by present studies (Peng et al., 2018;

Shen et al., 2020). This is an attractive and novel theory, and

the underlying mechanism is still ambiguous and needs to be

confirmed.

Furthermore, we developed a scoring system termed

‘glycosylation score’ by using GSVA to quantify the

glycosylation modification patterns and provide more

precise management strategies for individual LGGs

patients. GSVA, a non-parametric and unsupervised

method, can map gene expression data from a sample into

predefined gene sets and summarize it into a single

enrichment score for each gene set. A significant benefit of

this gene set–based method is the rationality that genes

FIGURE 8
Potential small molecule compounds based on the glycosylation score. (A) Volcano plot showed 2090 DEGs between the high and low
glycosylation score subgroups including 923 up- (red) and 1167 down-regulated (blue) genes. (B) Results of GO functional annotation for the DEGs,
including biological process (BP), cellular component (CC), and molecular function (MF). (C) KEGG pathway enrichment analysis results showed the
top six pathways ranked by the p-value. (D) CMap MoA analysis identified 13 mechanisms of action shared by 14 small therapeutic drugs
potentially applicable for high glycosylation score patients.
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functioned collectively and varied by genetic modifications or

disease states. Another advantage is the comparability that

GSVA could calculate an expression-level statistic with

different dynamic ranges to a common scale. In other

words, the enrichment scores of the same gene set in

different datasets are comparable (Hänzelmann et al.,

2013). While, many existing studies adopted least absolute

shrinkage and selection operator (LASSO) regression (Tan

et al., 2022; Yang and Zhang, 2022) or principal component

analysis (PCA) (Zhang et al., 2020; Chong et al., 2021), which

cannot satisfy the aforementioned two advantages at the same

time. In result, the glycosylation modification pattern subtype

A and cluster A showed a higher glycosylation score, while the

glycosylation modification pattern subtype B and cluster B

exhibited a lower glycosylation score. Consistent with the

aforementioned findings, the glycosylation score was closely

related to prognosis, metabolism status, and immune

microenvironment cell-infiltrating. Moreover, integrated

analyses also demonstrated that the glycosylation score was

an independent prognostic index in LGGs, and its predictive

efficacy was evaluated by a time-dependent ROC analysis and

validated in three independent external cohorts. Collectively,

the glycosylation score did play a non-negligible role in LGGs

progression and became a novel and reliable tool for

quantifying glycosylation modification patterns in LGGs.

Immunotherapy, an emerging potential therapy for cancers,

has attracted considerable attention in recent years. However,

only a subset of patients responds well to this therapy (Ott et al.,

2021). Thus, it is particularly important to stratify LGGs patients

and screen the ones who may benefit from immunotherapy.

Further analyses highlighted that the high glycosylation score

subgroup is closer to a microenvironment characterized by

chronic inflammation, immunosuppression, and tumor

promotion. We observed that this subgroup showed higher

levels of cytokine, chemokine, and biological processes

activity, involving immune activation, immunosuppression,

stromal activation, and cancer promotion. Previous studies

demonstrated that activation of EMT- and TGF-β–related
pathways could lead to a decrease of lymphocyte cells into

tumor parenchyma (Galon and Bruni, 2019) and a weakness

of their cytotoxicity effects (Salmon et al., 2012), which were

considered T-cell suppressive. In addition, the previous

publication confirmed that stromal activation represented a

major mechanism of immune evasion (Galon and Bruni,

2019) and mediated resistance to checkpoint immunotherapy

(Mariathasan et al., 2018). Accordingly, we speculated that the

patients with high glycosylation scores are more likely to

experience resistance to immunotherapy. Next, the findings of

higher IPS distributed in the low glycosylation score subgroup

also suggested that patients with low glycosylation scores may

respond better to immunotherapy.

To further gain novel insight into the applicability of

glycosylation score and provide clues for optimizing the

personalized treatment of patients, the CMap database was

applied to explore potential drugs and corresponding targets

for high glycosylation score subgroup patients. A total of

14 potential small therapeutic drugs and 13 drug mechanisms

were identified, which could contribute to providing new

treatment opportunities for LGGs patients; therefore, these

findings are needed to be validated by further experiments.

Furthermore, the drug sensitivity analysis by the pRRophetic

algorithm revealed that 29 antitumor drugs such as gefitinib,

nilotinib, and axitinib responded distinctly differently between

high and low glycosylation score subgroups. These results

suggested that the glycosylation score influenced the

therapeutic efficacy of chemotherapy and targeted therapy.

Therefore, this points out new directions for the potential

clinical application of the glycosylation score. A

comprehensive strategy combing immunotherapy,

chemotherapy, and targeted therapy based on glycosylation

score may be excellent.

In summary, the glycosylation score could be applied to

comprehensively evaluate the glycosylation modification

patterns, along with their corresponding immune

microenvironment and metabolism features. Furthermore, the

glycosylation score could be used as an independent prognostic

index for predicting LGGs patients’ survival. More importantly,

our results also provided a novel insight into promoting

personalized therapy in the future, which may contribute to

developing novel therapeutic drugs or exploring promising drug

combination therapy strategies.

Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and

accession number(s) can be found in the article/

Supplementary Material.

Author contributions

Conceptualization: LT and HY; formal analysis: WY;

investigation: GT; methodology: GT; project administration:

WY; resources: GT; software: WY; supervision: WY;

validation: LT and HY; visualization: WY; writing–original

draft: GT; writing–review and editing: LT and HY. All authors

have read and agreed to the published version of the manuscript.

Acknowledgments

We sincerely acknowledge the public databases CGGA and

TCGA for providing the transcriptomic information of LGGs

samples.

Frontiers in Cell and Developmental Biology frontiersin.org13

Tang et al. 10.3389/fcell.2022.886989

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.886989


Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors, and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fcell.2022.

886989/full#supplementary-material

References

An, Y., and Duan, H. (2022). The role of m6A RNA methylation in cancer
metabolism. Mol. Cancer 21 (1), 14. doi:10.1186/s12943-022-01500-4

Aoki, K., Nakamura, H., Suzuki, H., Matsuo, K., Kataoka, K., Shimamura, T., et al.
(2018). Prognostic relevance of genetic alterations in diffuse lower-grade gliomas.
Neuro. Oncol. 20 (1), 66–77. doi:10.1093/neuonc/nox132

Bai, D., Feng, H., Yang, J., Yin, A., Lin, X., Qian, A., et al. (2021). Genomic analysis
uncovers prognostic and immunogenic characteristics of ferroptosis for clear cell
renal cell carcinoma. Mol. Ther. Nucleic Acids 25, 186–197. doi:10.1016/j.omtn.
2021.05.009

Berzero, G., Di Stefano, A. L., Ronchi, S., Bielle, F., Villa, C., Guillerm, E., et al.
(2021). IDH-Wildtype lower-grade diffuse gliomas: the importance of histological
grade and molecular assessment for prognostic stratification. Neuro. Oncol. 23 (6),
955–966. doi:10.1093/neuonc/noaa258

Bindea, G., Mlecnik, B., Tosolini, M., Kirilovsky, A., Waldner, M., Obenauf, A. C.,
et al. (2013). Spatiotemporal dynamics of intratumoral immune cells reveal the
immune landscape in human cancer. Immunity 39 (4), 782–795. doi:10.1016/j.
immuni.2013.10.003

Campbell, S. L., and Wellen, K. E. (2018). Metabolic signaling to the nucleus in
cancer. Mol. Cell 71 (3), 398–408. doi:10.1016/j.molcel.2018.07.015

Carvalho-Cruz, P., Alisson-Silva, F., Todeschini, A. R., and Dias, W. B. (2018).
Cellular glycosylation senses metabolic changes and modulates cell plasticity during
epithelial to mesenchymal transition.Dev. Dyn. 247 (3), 481–491. doi:10.1002/dvdy.
24553

Chandler, K. B., Costello, C. E., and Rahimi, N. (2019). Glycosylation in the tumor
microenvironment: Implications for tumor angiogenesis and metastasis. Cells 8 (6),
E544. doi:10.3390/cells8060544

Chong, W., Shang, L., Liu, J., Fang, Z., Du, F., Wu, H., et al. (2021). m(6)A
regulator-based methylation modification patterns characterized by distinct tumor
microenvironment immune profiles in colon cancer. Theranostics 11 (5),
2201–2217. doi:10.7150/thno.52717

Corchado-Cobos, R., García-Sancha, N., Mendiburu-Eliçabe, M., Gómez-Vecino,
A., Jiménez-Navas, A., Pérez-Baena, M. J., et al. (2022). Pathophysiological
integration of metabolic reprogramming in breast cancer. Cancers (Basel) 14 (2),
322. doi:10.3390/cancers14020322

Fujita, K., Hatano, K., Hashimoto, M., Tomiyama, E., Miyoshi, E., Nonomura, N.,
et al. (2021). Fucosylation in urological cancers. Int. J. Mol. Sci. 22 (24), 13333.
doi:10.3390/ijms222413333

Galon, J., and Bruni, D. (2019). Approaches to treat immune hot, altered and cold
tumours with combination immunotherapies. Nat. Rev. Drug Discov. 18 (3),
197–218. doi:10.1038/s41573-018-0007-y

Gittleman, H., Sloan, A. E., and Barnholtz-Sloan, J. S. (2020). An independently
validated survival nomogram for lower-grade glioma. Neuro. Oncol. 22 (5),
665–674. doi:10.1093/neuonc/noz191

Gui, C. P., Wei, J. H., Chen, Y. H., Fu, L. M., Tang, Y. M., Cao, J. Z., et al. (2021). A
new thinking: extended application of genomic selection to screen multiomics data
for development of novel hypoxia-immune biomarkers and target therapy of clear
cell renal cell carcinoma. Brief. Bioinform. 22 (6), bbab173. doi:10.1093/bib/
bbab173

Hänzelmann, S., Castelo, R., and Guinney, J. (2013). GSVA: gene set variation
analysis for microarray and RNA-seq data. BMC Bioinforma. 14, 7. doi:10.1186/
1471-2105-14-7

Hu, S., Ren, S., Cai, Y., Liu, J., Han, Y., Zhao, Y., et al. (2021). Glycoprotein
PTGDS promotes tumorigenesis of diffuse large B-cell lymphoma by MYH9-
mediated regulation of Wnt-β-catenin-STAT3 signaling. Cell Death Differ. 29,
642–656. doi:10.1038/s41418-021-00880-2

Joyce, J. A., and Fearon, D. T. (2015). T cell exclusion, immune privilege, and the
tumor microenvironment. Science 348 (6230), 74–80. doi:10.1126/science.aaa6204

Langfelder, P., and Horvath, S. (2008). WGCNA: an R package for weighted
correlation network analysis. BMC Bioinforma. 9, 559. doi:10.1186/1471-2105-
9-559

Mariathasan, S., Turley, S. J., Nickles, D., Castiglioni, A., Yuen, K., Wang, Y.,
et al. (2018). TGFβ attenuates tumour response to PD-L1 blockade by
contributing to exclusion of T cells. Nature 554 (7693), 544–548. doi:10.1038/
nature25501

Marsico, G., Russo, L., Quondamatteo, F., and Pandit, A. (2018). Glycosylation
and integrin regulation in cancer. Trends Cancer 4 (8), 537–552. doi:10.1016/j.
trecan.2018.05.009

Mereiter, S., Balmaña, M., Campos, D., Gomes, J., and Reis, C. A. (2019).
Glycosylation in the era of cancer-targeted therapy: where are we heading?
Cancer Cell 36 (1), 6–16. doi:10.1016/j.ccell.2019.06.006

Miao, Y. R., Zhang, Q., Lei, Q., Luo, M., Xie, G. Y., Wang, H., et al. (2020).
ImmuCellAI: a unique method for comprehensive T-cell subsets abundance
prediction and its application in cancer immunotherapy. Adv. Sci. 7 (7),
1902880. doi:10.1002/advs.201902880

Mohamed Abd-El-Halim, Y., El Kaoutari, A., Silvy, F., Rubis, M., Bigonnet, M.,
Roques, J., et al. (2021). A glycosyltransferase gene signature to detect pancreatic
ductal adenocarcinoma patients with poor prognosis. EBioMedicine 71, 103541.
doi:10.1016/j.ebiom.2021.103541

Ott, M., Prins, R. M., and Heimberger, A. B. (2021). The immune landscape of
common CNS malignancies: implications for immunotherapy. Nat. Rev. Clin.
Oncol. 18 (11), 729–744. doi:10.1038/s41571-021-00518-9

Peng, X., Chen, Z., Farshidfar, F., Xu, X., Lorenzi, P. L., Wang, Y., et al. (2018).
Molecular characterization and clinical relevance of metabolic expression
subtypes in human cancers. Cell Rep. 23 (1), 255–269. e254. doi:10.1016/j.
celrep.2018.03.077

Pijnenborg, J. F. A., Rossing, E., Merx, J., Noga, M. J., Titulaer, W. H. C., Eerden,
N., et al. (2021). Fluorinated rhamnosides inhibit cellular fucosylation. Nat.
Commun. 12 (1), 7024. doi:10.1038/s41467-021-27355-9

Pinho, S. S., and Reis, C. A. (2015). Glycosylation in cancer: mechanisms and
clinical implications. Nat. Rev. Cancer 15 (9), 540–555. doi:10.1038/nrc3982

Polmear, J., and Good-Jacobson, K. L. (2021). Antibody glycosylation directs
innate and adaptive immune collaboration. Curr. Opin. Immunol. 74, 125–132.
doi:10.1016/j.coi.2021.12.002

Salmon, H., Franciszkiewicz, K., Damotte, D., Dieu-Nosjean, M. C., Validire, P.,
Trautmann, A., et al. (2012). Matrix architecture defines the preferential localization
and migration of T cells into the stroma of human lung tumors. J. Clin. Invest. 122
(3), 899–910. doi:10.1172/jci45817

Schiff, D., Van den Bent, M., Vogelbaum, M. A., Wick, W., Miller, C. R.,
Taphoorn, M., et al. (2019). Recent developments and future directions in adult
lower-grade gliomas: society for Neuro-Oncology (SNO) and European Association
of Neuro-Oncology (EANO) consensus. Neuro. Oncol. 21 (7), 837–853. doi:10.
1093/neuonc/noz033

Frontiers in Cell and Developmental Biology frontiersin.org14

Tang et al. 10.3389/fcell.2022.886989

https://www.frontiersin.org/articles/10.3389/fcell.2022.886989/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcell.2022.886989/full#supplementary-material
https://doi.org/10.1186/s12943-022-01500-4
https://doi.org/10.1093/neuonc/nox132
https://doi.org/10.1016/j.omtn.2021.05.009
https://doi.org/10.1016/j.omtn.2021.05.009
https://doi.org/10.1093/neuonc/noaa258
https://doi.org/10.1016/j.immuni.2013.10.003
https://doi.org/10.1016/j.immuni.2013.10.003
https://doi.org/10.1016/j.molcel.2018.07.015
https://doi.org/10.1002/dvdy.24553
https://doi.org/10.1002/dvdy.24553
https://doi.org/10.3390/cells8060544
https://doi.org/10.7150/thno.52717
https://doi.org/10.3390/cancers14020322
https://doi.org/10.3390/ijms222413333
https://doi.org/10.1038/s41573-018-0007-y
https://doi.org/10.1093/neuonc/noz191
https://doi.org/10.1093/bib/bbab173
https://doi.org/10.1093/bib/bbab173
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.1038/s41418-021-00880-2
https://doi.org/10.1126/science.aaa6204
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1038/nature25501
https://doi.org/10.1038/nature25501
https://doi.org/10.1016/j.trecan.2018.05.009
https://doi.org/10.1016/j.trecan.2018.05.009
https://doi.org/10.1016/j.ccell.2019.06.006
https://doi.org/10.1002/advs.201902880
https://doi.org/10.1016/j.ebiom.2021.103541
https://doi.org/10.1038/s41571-021-00518-9
https://doi.org/10.1016/j.celrep.2018.03.077
https://doi.org/10.1016/j.celrep.2018.03.077
https://doi.org/10.1038/s41467-021-27355-9
https://doi.org/10.1038/nrc3982
https://doi.org/10.1016/j.coi.2021.12.002
https://doi.org/10.1172/jci45817
https://doi.org/10.1093/neuonc/noz033
https://doi.org/10.1093/neuonc/noz033
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.886989


Schjoldager, K. T., Narimatsu, Y., Joshi, H. J., and Clausen, H. (2020). Global view
of human protein glycosylation pathways and functions. Nat. Rev. Mol. Cell Biol. 21
(12), 729–749. doi:10.1038/s41580-020-00294-x

Shen, X., Hu, B., Xu, J., Qin, W., Fu, Y., Wang, S., et al. (2020). The m6A
methylation landscape stratifies hepatocellular carcinoma into 3 subtypes with
distinct metabolic characteristics. Cancer Biol. Med. 17 (4), 937–952. doi:10.20892/j.
issn.2095-3941.2020.0402

Stowell, S. R., Ju, T., and Cummings, R. D. (2015). Protein glycosylation in cancer.
Annu. Rev. Pathol. 10, 473–510. doi:10.1146/annurev-pathol-012414-040438

Su, J., Ma, Q., Long, W., Tang, H., Wu, C., Luo, M., et al. (2019). LCTL is a
prognostic biomarker and correlates with stromal and immune infiltration in
gliomas. Front. Oncol. 9, 1083. doi:10.3389/fonc.2019.01083

Tan, G., Wu, A., Li, Z., Chen, G., Wu, Y., Huang, S., et al. (2021). Bioinformatics
analysis based on immune-autophagy-related lncRNAs combined with immune
infiltration in bladder cancer. Transl. Androl. Urol. 10 (8), 3440–3455. doi:10.21037/
tau-21-560

Tan, K., Wu, W., Zhu, K., Lu, L., and Lv, Z. (2022). Identification and
characterization of a glucometabolic prognostic gene signature in neuroblastoma
based on N6-methyladenosine eraser ALKBH5. J. Cancer 13 (7), 2105–2125. doi:10.
7150/jca.69408

Thomas, D., Rathinavel, A. K., and Radhakrishnan, P. (2021). Altered glycosylation
in cancer: a promising target for biomarkers and therapeutics. Biochim. Biophys. Acta.
Rev. Cancer 1875 (1), 188464. doi:10.1016/j.bbcan.2020.188464

Wu, P., Sun, W., and Zhang, H. (2021). An immune-related prognostic signature
for thyroid carcinoma to predict survival and response to immune checkpoint
inhibitors. Cancer Immunol. Immunother. 71, 747–759. doi:10.1007/s00262-021-
03020-4

Yang, F., and Zhang, Y. (2022). Apoptosis-related genes-based prognostic
signature for osteosarcoma. Aging (Albany NY) 14, 3813–3825. doi:10.18632/
aging.204042

Ye, Y., Ma, J., Zhang, Q., Xiong, K., Zhang, Z., Chen, C., et al. (2021). A CTL/
M2 macrophage-related four-gene signature predicting metastasis-free survival in
triple-negative breast cancer treated with adjuvant radiotherapy. Breast Cancer Res.
Treat. 190 (2), 329–341. doi:10.1007/s10549-021-06379-1

Youssef, G., and Miller, J. J. (2020). Lower grade gliomas. Curr. Neurol. Neurosci.
Rep. 20 (7), 21. doi:10.1007/s11910-020-01040-8

Yu, H., Zhang, D., and Lian, M. (2021a). Identification of an epigenetic prognostic
signature for patients with lower-grade gliomas. CNS Neurosci. Ther. 27 (4),
470–483. doi:10.1111/cns.13587

Yu, L., Ding, Y., Wan, T., Deng, T., Huang, H., and Liu, J. (2021b). Significance of
CD47 and its association with tumor immune microenvironment heterogeneity in
ovarian cancer. Front. Immunol. 12, 768115. doi:10.3389/fimmu.2021.768115

Zhang, B., Wu, Q., Li, B., Wang, D., Wang, L., and Zhou, Y. L. (2020). m(6)A
regulator-mediated methylation modification patterns and tumor
microenvironment infiltration characterization in gastric cancer. Mol. Cancer 19
(1), 53. doi:10.1186/s12943-020-01170-0

Frontiers in Cell and Developmental Biology frontiersin.org15

Tang et al. 10.3389/fcell.2022.886989

https://doi.org/10.1038/s41580-020-00294-x
https://doi.org/10.20892/j.issn.2095-3941.2020.0402
https://doi.org/10.20892/j.issn.2095-3941.2020.0402
https://doi.org/10.1146/annurev-pathol-012414-040438
https://doi.org/10.3389/fonc.2019.01083
https://doi.org/10.21037/tau-21-560
https://doi.org/10.21037/tau-21-560
https://doi.org/10.7150/jca.69408
https://doi.org/10.7150/jca.69408
https://doi.org/10.1016/j.bbcan.2020.188464
https://doi.org/10.1007/s00262-021-03020-4
https://doi.org/10.1007/s00262-021-03020-4
https://doi.org/10.18632/aging.204042
https://doi.org/10.18632/aging.204042
https://doi.org/10.1007/s10549-021-06379-1
https://doi.org/10.1007/s11910-020-01040-8
https://doi.org/10.1111/cns.13587
https://doi.org/10.3389/fimmu.2021.768115
https://doi.org/10.1186/s12943-020-01170-0
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.886989

	Glycosylation modification patterns reveal distinct tumor metabolism and immune microenvironment landscape in lower-grade g ...
	Introduction
	Materials and methods
	Data source and preprocessing
	Glycosylation-based consensus clustering analysis
	Gene set variation analysis
	Estimation of tumor microenvironment characteristics
	Identification of glycosylation-related hub genes
	Generation and validation of glycosylation gene signature and glycosylation score
	Correlation between the glycosylation score and other related biological processes
	Small molecule drugs screening and drug sensitivity prediction
	Statistical analysis

	Results
	Glycosylation-related molecular subtypes with distinct survival, metabolism, and immune microenvironment features in LGGs
	Survival, metabolism, and immune microenvironment characteristics in glycosylation clusters for LGGs
	Development of the glycosylation scoring system as an independent prognostic factor for LGGs
	Glycosylation score is associated with metabolism and immune microenvironment features of LGGs
	Correlation of cytokine, chemokine, and other related biological processes in glycosylation score subgroups
	Potential small molecule compounds and drug sensitivity prediction

	Discussion
	Data availability statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


