
marine drugs 

Article

Comparison of the Sulfonamide Inhibition Profiles of
the α-Carbonic Anhydrase Isoforms (SpiCA1, SpiCA2
and SpiCA3) Encoded by the Genome of the
Scleractinian Coral Stylophora pistillata

Sonia Del Prete 1 , Silvia Bua 2 , Fatmah A. S. Alasmary 3, Zeid AlOthman 3 ,
Sylvie Tambutté 4, Didier Zoccola 4,* , Claudiu T. Supuran 2,3 and Clemente Capasso 1,*

1 Istituto di Bioscienze e Biorisorse, National Research Council (CNR), Via Pietro Castellino 111,
80131 Napoli, Italy; sonia.delprete@ibbr.cnr.it

2 Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di
Firenze, Via U. Schiff 6, 50019 Sesto Fiorentino, Florence, Italy; silvia.bua@unifi.it (S.B.);
claudiu.supuran@unifi.it (C.T.S.)

3 Department of Chemistry, College of Science, King Saud University,
P.O. Box 2455 Riyadh 11451, Saudi Arabia; fasmari@ksu.edu.sa (F.A.S.A.); zaothman@KSU.EDU.SA (Z.A.)

4 Department of Marine Biology, Centre Scientifique de Monaco, 8 Quai Antoine 1, 98000 Monaco, Monaco;
stambutte@centrescientifique.mc

* Correspondence: zoccola@centrescientifique.mc (D.Z.); clemente.capasso@ibbr.cnr.it (C.C.);
Tel.: +377-97-774470 (D.Z.); +39-081-6132559 (C.C.)

Received: 12 February 2019; Accepted: 26 February 2019; Published: 1 March 2019
����������
�������

Abstract: The ubiquitous metalloenzymes carbonic anhydrases (CAs, EC 4.2.1.1) are responsible
for the reversible hydration of CO2 to bicarbonate (HCO3

−) and protons (H+). Bicarbonate may
subsequently generate carbonate used in many functional activities by marine organisms. CAs
play a crucial role in several physiological processes, e.g., respiration, inorganic carbon transport,
intra and extra-cellular pH regulation, and bio-mineralization. Multiple transcript variants and
protein isoforms exist in the organisms. Recently, 16 α-CA isoforms have been identified in the coral
Stylophora pistillata. Here, we focalized the interest on three coral isoforms: SpiCA1 and SpiCA2,
localized in the coral-calcifying cells; and SpiCA3, expressed in the cytoplasm of the coral cell layers.
The three recombinant enzymes were heterologously expressed and investigated for their inhibition
profiles with sulfonamides and sulfamates. The three coral CA isoforms differ significantly in their
susceptibility to inhibition with sulfonamides. This study provides new insights into the coral
physiology and the comprehension of molecular mechanisms involved in the bio-mineralization
processes, since CAs interact with bicarbonate transporters, accelerating the trans-membrane
bicarbonate movement and modulating the pH at both sides of the plasma membranes.

Keywords: carbonic anhydrases; sulfonamides; CA isoforms; biomineralization; corals CAs;
recombinant enzyme

1. Introduction

Coral reef architecture comes from the deposition of massive calcium carbonate skeletons secreted
by scleractinian corals, or hard corals [1]. These corals represent the habitat for a vast diversity of
organisms [2]. They live in intimate symbiosis with unicellular dinoflagellate symbionts, commonly
called zooxanthellae, which are hosted in the coral tissues. The enzymes carbonic anhydrases (CAs, EC
4.2.1.1) play major roles in two essential processes of coral’s physiology; they are involved in the carbon
supply for calcium carbonate precipitation (formation of skeletons) as well as in carbon-concentrating
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mechanisms for symbiont photosynthesis [3]. Numerous studies have shown CAs are ubiquitous
metallo-enzymes, which are responsible for the reversible hydration of CO2 to bicarbonate (HCO3

−),
carbonate (CO3

2−), and protons (H+) [2,4–15]. In the biological systems, the CO2, HCO3
−, CO3

2−, and
H+ are interconnected by equilibrium reactions, and their concentrations are regulated by CAs [5,16–19].
Thus, these enzymes play a crucial role in several physiological processes such as respiration, inorganic
carbon transport, intra and extra-cellular pH regulation, or the bio-mineralization process [20–24]. Up
to the present time, seven polyphyletic classes of CAs have been described and indicated with the Greek
letters α, β, γ, δ, ζ, η and θ [19,25–27]. Moreover, members of each class possess multiple transcript
variants and protein isoforms, which are characterized by different biochemical properties and have
specific tissue/organ and sub-cellular localizations [4,5,17,28–31]. For examples, CAs present in
animals belong to α-class [32,33], plants and algae have α-, β-, γ-, δ- and θ-classes; fungi encode for α-
and β-CAs; protozoa for α-, β- and/or η-CAs; bacteria for α-, β- and γ-CA classes [30,31,34–38].
Intriguing, in the oyster Pinctada fucata a matrix protein, called nacrein, has been identified. It
participates in the formation of the nacreous layer and is characterized by a CA domain present
at the N-terminus part of the polypeptide sequence [39]. In mammals, 16 α-CA isoforms have been
identified: Eight of them are cytosolic, five are membrane-bound, two are mitochondrial, and only
one is secreted, the last three being devoid of catalytic activity and referred to as CA Related Proteins
(CARPs) [16,18,27].

In corals, most of the available results on CAs were obtained by measuring the CA activity
in crude tissue extracts using non-specific CA inhibitors or antibodies raised against human
isoforms [6,7,14,40,41]. Recently, the development of molecular biology tools allowed the isolation
and full characterization of several CA isoforms in different coral species, such as Lobactis scutaria [42],
Stylophora pistillata [2,8], and Acropora millepora [43]. In particular, our groups analyzing the molecular
data in the branching coral Stylophora pistillata identified 16 α-CA isoforms in the transcriptome and
genome of this scleractinian coral [2,3,8,44–48]. Among them, two α-CAs were isolated (STPCA
and STPCA-2, here, indicated as SpiCA1 and SpiCA2, respectively) and have been localized in the
coral-calcifying cells, within the epithelium facing the skeleton [2,8]. It has been proposed that SpiCA1
catalyzes the inter-conversion between the different inorganic forms of dissolved inorganic carbon
at the site of calcification, whereas SpiCA2 is an intracellular enzyme, which is found as an organic
matrix protein incorporated in the skeleton [49,50]. Recently, a novel α-CA, named SpiCA3, which
is cytoplasmic and ubiquitously expressed in all the coral cell layers, has been characterized [20].
This isoform showed a catalytic activity 1.14-times higher than human CA II and is one of the most
effective CO2 catalysts among all CAs known to date with a kcat of 1.6 × 106 s−1 and a kcat/KM

of 1.5 × 108 M−1 s−1 [20]. Intriguingly, the three coral CAs (SpiCA1, SpiCA2, and SpiCA3) differ
significantly in their catalytic activity and susceptibility to inhibition with anions [20]. Here, the
sulfonamide inhibition profile of the SpiCA3 has been investigated for the first time. Sulfonamides and
their bio-isosteres represent the most important class of CA inhibitors (CAIs). Furthermore, the SpiCA3
inhibition profile was compared with those obtained for SpiCA1 and SpiCA2 previously studied by
our groups [45].

2. Results and Discussion

2.1. Recombinant Enzymes

The recombinant SpiCA1, SpiCA2, and SpiCA3 were obtained, as described earlier [2,20,44,51,52].
Figure 1 shows a multi-alignment of the three α-CA isoforms encoded by the genome S. pistillata and
investigated up until now. It is readily apparent that the three coral isoforms show the main features
of a typical mammalian α-CAs. They possess the conserved: (i) Three His ligands, which coordinate
the Zn(II) ion crucial for catalysis, (His94, His96, and His119, hCA I numbering system); (ii) the two
gate-keeping residues (Glu106 and Thr199), which are implicated in the substrate orientation and
the binding of the inhibitors; and (iii) the proton shuttle residue (His64), which is involved in the
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transfer of the proton (H+) from the water coordinated to the Zn(II) ion to the environment, influencing
and making very fast the rate of the catalytic reaction. Furthermore, SpiCA3, diversely from the
other two coral isoforms, is a cytoplasmic protein. SpiCA1 and SpiCA2 are, in fact, secreted proteins
characterized by the presence of a signal peptide at the N-terminal of their amino acid sequences (see
Figure 1). Interesting, the insertions and deletions of a relatively extended number of amino acid
residues along the polypeptide chain, which affect the three coral isoforms (Figure 1), may influence
the kinetic and inhibition behavior of the coral enzymes, probably because of significant alterations of
their three-dimensional structure. For example, SpiCA3 showed a kcat = 106 s−1, which is one order of
magnitude higher than the kcat (105 s−1) of the other two isoforms.
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Figure 1. This Multiple amino acid sequence alignment of the α-CAs encoded by the genome of
S. pistillata (SpiCA1, SpiCA2, and SpiCA3). The main features of α-CA are indicated with different
colors: zinc ligands are in blue; the “gate-keeper” residues are in orange; the histidine proton shuttle
is in red; long stretches of 31 and 35 amino acid residues, in black bold. The insertion or deletion
of amino acid residues are indicated with the grey transparent boxes, while the signal peptides
typifying the SpiCA1 and SpiCA2 isoforms are included in the red transparent box. The symbol (*)
signifies identity at a position, while the symbols (:) and (.) designates conserved and semi-conserved
substitutions, respectively. The SpiCA1 numbering system was used. The multiple sequence alignment
was performed with the program Muscle Ver. 3.8. SpiCA1, S. pistillata isoform 1 (accession no.
ACA53457.1); SpiCA2, S. pistillata isoform 2 (accession no. EU532164.1); and SpiCA3, S. pistillata
isoform 3 (accession no. XP_022794253.1).

2.2. Sulfonamide Used as CAIs

As described in the literature, it has been demonstrated that the sulfonamide CA inhibitors
(CAIs), such as acetazolamide or ethoxzolamide, drastically decrease the coral calcification rates,
with inhibition of up to 73% [50]. These data suggest that the coral CAs are finely tuned in
providing carbonate and H+ ions for the control of the calcification process and pH homeostasis,
respectively [6,14,53,54]. Unfortunately, very few studies are available on the inhibition of the CAs
encoded by coral genomes. The CAIs can be clustered into several different groups considering their
binding mode to the enzyme active site [29,55]: (1) The metal ion binders (anion, sulfonamides and their
bioisosteres, dithiocarbamates, xanthates, etc.); (2) compounds which anchor to the zinc-coordinated
water molecule/hydroxide ion (phenols, polyamines, thioxocoumarins, sulfocumarins); (3) compounds
occluding the active site entrance, such as coumarins and their isosteres; (4) compounds binding
out of the active site, such as an aromatic carboxylic acid derivative; and (5) inhibitors with an
unknown binding mechanism, such as secondary/tertiary sulfonamides, protein tyrosine kinase
inhibitors, and fullerenes, for which the X-ray crystallographic structure is unavailable [29]. The most
investigated CAIs are the anions and the sulfonamides [19,29,56,57]. A library of 40 compounds,
39 primary sulfonamides, and one sulfamate, were used as CAIs (Figure 2). Derivatives 1–24 and
AAZ-HCT are either simple aromatic/heterocyclic sulfonamides widely used as building blocks for
obtaining new families of such pharmacological agents, or they are clinically used agents, among
which acetazolamide (AAZ), methazolamide (MZA), ethoxzolamide (EZA), and dichlorophenamide
(DCP) are the classical, systemically acting antiglaucoma CAIs. Dorzolamide (DZA) and brinzolamide
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(BRZ) are topically acting antiglaucoma agents; benzolamide (BZA) is an orphan drug belonging to
this class of pharmacological agents.Mar. Drugs 2019, 17, x 4 of 11 
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Moreover, the zonisamide (ZNS), sulthiame (SLT), and the sulfamic acid ester topiramate (TPM)
are widely used antiepileptic drugs. Sulpiride (SLP) and indisulam (IND) were also shown by our
group to belong to this class of pharmacological agents, together with the COX2 selective inhibitors
celecoxib (CLX) and valdecoxib (VLX). Saccharin (SAC) and the diuretic hydrochlorothiazide (HCT)
are also known to act as CAIs. As shown in Figure 3, sulfonamides, such as the clinically used
derivatives acetazolamide, methazolamide, ethoxzolamide, dichlorophenamide, dorzolamide, and
brinzolamide, bind in a tetrahedral geometry to the Zn(II) ion in the deprotonated state, with the
nitrogen atom of the sulfonamide moiety coordinated to Zn(II) and an extended network of hydrogen
bonds, involving amino acid residues of the enzyme, also participating in the anchoring of the inhibitor
molecule to the metal ion [19,29,55,58]. The aromatic/heterocyclic part of the inhibitor interacts with
the hydrophilic and hydrophobic residues of the catalytic cavity (Figure 3) [19,29,56,57].



Mar. Drugs 2019, 17, 146 5 of 11
Mar. Drugs 2019, 17, x 5 of 11 

 

 
 

Figure 3. Schematic representation of the metal binding mode of CAIs to human (h) CA isoform hCA 
II, such as sulfonamides and their bio-isosters. 

2.3. CA Inhibition Data and Comparative Analysis 

Table 1 shows inhibition data of sulfonamides (and one sulfamate, TPM) against the human 
α-CAs (isoforms hCA I and hCA II) and the recombinant coral α-CA isoforms (SpiCA1, SpiCA2, and 
SpiCA3). Recently, our groups reported data for hCAI, hCAII, SpiCA1, and SpiCA2 earlier [8,45]. 
The following should be noted regarding the inhibition of the three coral enzymes with the 
compounds investigated in this study: 

(i) High potency inhibitors 

Most of the tested sulfonamides were effective inhibitors of the coral isoform SpiCA1 with a Ki 

in the range of 16–92 nM. This is the case of the compounds 5, 7, 8, 14, 18, 19, 20, AAZ, MZA, EZA, 
DZA, BRZ, BZA, TMP, VLX, CLX, SLT, and SAC. Intriguingly, the majority of these compounds 
were moderate inhibitors of SpiCA2 and SpiCA3 showing a KI > 100 nM. The SpiCA2 inhibition 
profile showed only one compound (AAZ) with a KI < 100 nM; while SpiCA3 was well inhibited by 
compounds 17, 19, 20, 21, 23, 24, and IND.  

(ii) Medium potency inhibitors 

A large number of simple aromatic sulfonamides, such as derivatives 2–20, and the 
pharmacological sulfonamides AAZ, MZA, EZA, DZA, BRZ, BZA, ZNS, TMP, SLP, IND, CLX, 
SLT, and SAC showed moderate SpiCA2 inhibitory properties with a KI in the range 105–868 nM. 
Intriguing, the sulfonamide inhibition profile of SpiCA2 was characterized mainly by moderate 
inhibitors (Table 1). The compounds, which resulted in effective and moderate inhibitors of SpiCA1 
or moderate inhibitors of SpiCA2, such as 2, 5, 6, 7, 8, TMP, ZNS, SLP, CLX, and SAC resulted in the 
worst inhibitors for the coral isoform SpiCA3. The majority of these derivatives are 
benzenesulfonamides with one or two simple substituents in ortho, para, or the 3,4-positions of the 
aromatic ring with respect to the sulfamoyl zinc-binding moiety. 

Figure 3. Schematic representation of the metal binding mode of CAIs to human (h) CA isoform hCA
II, such as sulfonamides and their bio-isosters.

2.3. CA Inhibition Data and Comparative Analysis

Table 1 shows inhibition data of sulfonamides (and one sulfamate, TPM) against the human
α-CAs (isoforms hCA I and hCA II) and the recombinant coral α-CA isoforms (SpiCA1, SpiCA2, and
SpiCA3). Recently, our groups reported data for hCAI, hCAII, SpiCA1, and SpiCA2 earlier [8,45]. The
following should be noted regarding the inhibition of the three coral enzymes with the compounds
investigated in this study:

(i) High potency inhibitors
Most of the tested sulfonamides were effective inhibitors of the coral isoform SpiCA1 with a Ki

in the range of 16–92 nM. This is the case of the compounds 5, 7, 8, 14, 18, 19, 20, AAZ, MZA, EZA,
DZA, BRZ, BZA, TMP, VLX, CLX, SLT, and SAC. Intriguingly, the majority of these compounds
were moderate inhibitors of SpiCA2 and SpiCA3 showing a KI > 100 nM. The SpiCA2 inhibition
profile showed only one compound (AAZ) with a KI < 100 nM; while SpiCA3 was well inhibited by
compounds 17, 19, 20, 21, 23, 24, and IND.

(ii) Medium potency inhibitors
A large number of simple aromatic sulfonamides, such as derivatives 2–20, and the

pharmacological sulfonamides AAZ, MZA, EZA, DZA, BRZ, BZA, ZNS, TMP, SLP, IND, CLX, SLT,
and SAC showed moderate SpiCA2 inhibitory properties with a KI in the range 105–868 nM. Intriguing,
the sulfonamide inhibition profile of SpiCA2 was characterized mainly by moderate inhibitors (Table 1).
The compounds, which resulted in effective and moderate inhibitors of SpiCA1 or moderate inhibitors
of SpiCA2, such as 2, 5, 6, 7, 8, TMP, ZNS, SLP, CLX, and SAC resulted in the worst inhibitors for
the coral isoform SpiCA3. The majority of these derivatives are benzenesulfonamides with one or
two simple substituents in ortho, para, or the 3,4-positions of the aromatic ring with respect to the
sulfamoyl zinc-binding moiety.

(iii) Ineffective inhibitors
A large number of sulfonamides, such as derivatives 1, 2, 5, 6, 7, 8, 10, TPM, ZNS, SLP, VLX,

CLX, and SAC were weak inhibitors of SpiCA3 showing a Ki > 1000 nM. Interesting, the coral isoform
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SpiCA2 showed only one ineffective derivative (VLX), while the SpiCA1 was the isoform better
inhibited by all the compounds used in the present study.

(iv) Human isoforms versus coral enzymes
The comparison of the inhibition profile of the human isoforms with those of the coral enzymes

showed that SpiCA1 resulted very similar to the isoform hCAII. Furthermore, the isoform hCAI was
not inhibited by most of the derivatives indicated with the numbers 1, 2, and those of the range 4–17
(KI > 1000 nM). Moreover, the clinically used agents, among which DZA, BRZ, and CLX didn’t affect
the hCAI activity, while they were high potency inhibitors for hCAII and SpiCA1 and low potency
inhibitors for SpCA2 and SpiCA3.

Table 1. Inhibition of human α-CAs (hCA I and hCA II) and the three recombinant enzyme from
S. pistillata (SpiCA1, SpiCA2, and SpiCA3) with sulfonamides 1–24 and the clinically used drugs
AAZ—HCT reported in Figure 2.

Inhibitor
KI * (nM)

hCA I a hCA II a SpiCA1 a SpiCA2 a SpiCA3

1 28,000 300 - - 5059
2 25,000 240 364 300 4276
3 79 8 - - 667
4 78,500 320 614 516 694
5 25,000 170 83 508 7871
6 21,000 160 94 577 7828
7 8300 60 75 493 3318
8 9800 110 88 551 1815
9 6500 40 104 540 918

10 7300 54 - - 2532
11 5800 63 367 481 856
12 8400 75 295 840 430
13 8600 60 105 361 275
14 9300 19 92 357 578
15 5500 80 - - 487
16 9500 94 - - 199
17 21,000 125 770 701 66
18 164 46 30 661 241
19 109 33 25 868 83
20 6 2 28 333 74
21 69 11 - - 53
22 164 46 - - 568
23 109 33 - - 62
24 95 30 - - 46

AAZ 250 12 16 74 737
MZA 50 14 21 132 821
EZA 25 8 39 105 56
DZA 50,000 9 18 113 354
BRZ 45,000 3 48 169 250
BZA 15 9 20 214 394
TPM 250 10 29 367 5828
ZNS 56 35 259 645 5513
SLP 1200 40 430 415 >10,000
IND 31 15 163 394 92
VLX 54,000 43 29 5710 2918
CLX 50,000 21 34 690 9102
SLT 374 9 45 123 251
SAC 18,540 5959 40 104 >10,000
HCT 328 290 - - 243

* Errors in the range of 5–10% of the reported data, from 3 different assays (data not shown) a Human recombinant
isozymes and coral recombinant isoforms, stopped flow CO2 hydrase assay method, from References 12 and
45.—means not tested.
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3. Material and Methods

3.1. Isoform Expression and Purification

The recombinant SpiCA1, SpiCA2, and SpiCA3 were obtained, as described earlier [2,20,44,51,52].
Briefly, the BL21 DE3 competent cells (Agilent) were transformed with the recombinant vectors
containing one of the three coral isoforms, grown at 37 ◦C and induced with 0.1 mM IPTG. After
30 min, ZnSO4 (0.5 mM) was added to the culture medium and cells were grown for an additional
four h. Then, cells were harvested and re-suspended in the following buffer: 50 mM Tris/HCl, pH 8.0,
0.5 mM PMSF, and 1 mM benzamidine. Subsequently, bacterial cells containing the overexpressed
CAs were disrupted by sonication at 4 ◦C and centrifugated at 12,000× g for 45 min. The resultant
supernatant was loaded onto a His-select HF Nickel affinity column (GE Healthcare, dimension:
1.0 × 10.0 cm), equilibrated with 0.02 M phosphate buffer (pH 8.0) containing 0.01 M imidazole and
0.5 M KCl at a flow rate of 1.0 mL/min. The recombinant proteins were eluted from the column using
0.3 M imidazole, and then, dialyzed against 50 mM Tris/HCl, pH 8.3.

3.2. Amino Acid Sequence Analysis

Multi-alignment of amino acid sequences was performed using the program MUSCLE (MUltiple
Sequence Comparison by Log-Expectation, EMBL-EBI in Hinxton, Cambridge (UK) Version 3.8), a
new computer program for creating multiple alignments of protein sequence [59].

3.3. Enzyme Inhibition Profile

An Applied Photophysics stopped-flow instrument (Leatherhead, Surrey (UK)) has been used for
assaying the CA catalyzed CO2 hydration activity [60]. Phenol red (at a concentration of 0.2 mM) has
been used as an indicator, working at the absorbance maximum of 557 nm, with 20 mM TRIS (pH 8.3)
as buffer, and 20 mM NaClO4 (for maintaining constant the ionic strength), following the initial rates
of the CA-catalyzed CO2 hydration reaction for a period of 10–100 s. The CO2 concentrations ranged
from 1.7 to 17 mM for the determination of the kinetic parameters (by Lineweaver-Burk plots) and
inhibition constants. For each inhibitor, at least six traces of the initial 5%–10% of the reaction have been
used for determining the initial velocity. The un-catalyzed rates were determined in the same manner
and subtracted from the total observed rates. Stock solutions of inhibitor (10–100 mM) were prepared
in distilled-deionized water, and dilutions up to 0.01 mM were done after that with the assay buffer.
Inhibitor and enzyme solutions were preincubated together for 15 min at room temperature before
assay, to allow for the formation of the E-I complex or the eventual active site-mediated hydrolysis
of the inhibitor. The inhibition constants were obtained by non-linear least-squares methods using
PRISM 3 and the Cheng-Prusoff equation, as reported earlier [61–63], and represent the mean from at
least three different determinations. All CA isoforms were recombinant ones obtained in-house. All
salts/small molecules were of the highest purity available, from Sigma-Aldrich (Milan, Italy).

4. Conclusions

In general, CAs are metalloenzymes integrated with a structural-functional complex of sequential
enzymes [64–66] interconnected by metabolites produced from one catalyst and passed into the active
site of another enzyme [64,65]. For example, CA isoforms interact with bicarbonate transporters
increasing the local bicarbonate concentration, and thus, accelerating the transmembrane bicarbonate
movement, and modulating the pH at both sides of the plasma membranes [64,66]. All these metabolic
processes influence the coral physiology. Therefore, the study of the coral CA inhibition profiles
may provide new insights to design experiments aimed at a better understanding of the molecular
mechanisms involved in coral biomineralization and symbiosis. Furthermore, from the Table 1, it is
readily apparent that the sulfonamide inhibition profile of the coral isoforms is substantially different
from those of the cytosolic human isoforms, proving that it might be possible to design selective
inhibitors using the scaffold of leads detected here for producing antiinfectives agents towards the
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pathogenic CAs [67]. The study of the inhibition profiles of new CAs, such as the coral ones, will
give new advances in the synthesis of novel CAIs or in the modification/optimization of the existing
inhibitors for making them more selective towards the pathogenic CAs.
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