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Abstract

Given that the majority of multi-exon genes generate diverse functional products, it is important to evaluate expression at the
isoform level. Previous studies have demonstrated strong gene-level correlations between RNA sequencing (RNA-seq) and micro-
array platforms, but have not studied their concordance at the isoform level. We performed transcript abundance estimation on
raw RNA-seq and exon-array expression profiles available for common glioblastoma multiforme samples from The Cancer
Genome Atlas using different analysis pipelines, and compared both the isoform- and gene-level expression estimates between
programs and platforms. The results showed better concordance between RNA-seq/exon-array and reverse transcription-quanti-
tative polymerase chain reaction (RT-qPCR) platforms for fold change estimates than for raw abundance estimates, suggesting
that fold change normalization against a control is an important step for integrating expression data across platforms. Based on
RT-qPCR validations, eXpress and Multi-Mapping Bayesian Gene eXpression (MMBGX) programs achieved the best performance
for RNA-seq and exon-array platforms, respectively, for deriving the isoform-level fold change values. While eXpress achieved
the highest correlation with the RT-qPCR and exon-array (MMBGX) results overall, RSEM was more highly correlated with
MMBGX for the subset of transcripts that are highly variable across the samples. eXpress appears to be most successful in dis-
criminating lowly expressed transcripts, but IsoformEx and RSEM correlate more strongly with MMBGX for highly expressed tran-
scripts. The results also reinforce how potentially important isoform-level expression changes can be masked by gene-level esti-
mates, and demonstrate that exon arrays yield comparable results to RNA-seq for evaluating isoform-level expression changes.
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With each successive discovery in genetics, the true dynamic
complexity of the genome has become increasingly apparent,
requiring relatively consistent updates to the technical defin-
ition of the word ‘gene’ [1]. It is now understood that the

majority of human genes produce multiple functional products,
or isoforms, primarily through alternative transcription and
splicing [2–4]. Different isoforms within the same gene have
been shown to participate in different functional pathways [5],
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and the altered expression of specific isoforms have been asso-
ciated with numerous diseases [6–10]. Therefore, gene expres-
sion studies should strive to evaluate expression at the isoform
level or risk ignoring important dynamics that are not discern-
ible at lower resolutions of gene expression. Practically speak-
ing, however, accurately estimating isoform expression is a
much more difficult enterprise than quantifying aggregate gene
expression, owing to significant sequence fragment ambiguity
in overlapping regions between alternative isoforms. Several
technology platforms exist for measuring isoform expression,
including RNA sequencing (RNA-seq), exon arrays and reverse
transcription-quantitative polymerase chain reaction (RT-qPCR)
and a litany of analysis tools have been developed that take dif-
ferent probabilistic approaches to ambiguous fragment assign-
ment. Because there are strengths and biases associated with
each of these platforms and pipelines, and the robustness of
biological study results increases with the inclusion of more
microarray and RNA-seq data sets [11, 12], better understanding
how isoform expression estimates relate between them could
inform future data integration strategies, leading to improve-
ments in the reliability of expression results and the ability to
detect various genetic aberrations.

In particular, we are interested in understanding the correl-
ations between RNA-seq and exon-array isoform expression
data in humans and their concordance with RT-qPCR measure-
ments depending on the analysis software used. Previous stud-
ies have demonstrated strong gene-level correlations between
RNA-seq and microarray expression platforms [13–23], but have
not studied their relationship at the isoform level.

To assess the correlations between platforms at the isoform
level, we performed transcript abundance estimation on raw
RNA-seq and exon-array expression profiles from common
samples in The Cancer Genome Atlas (TCGA) using a number of
exon-array and RNA-seq analysis programs. Abundance esti-
mates were correlated between platforms for each sample, and
the results were also compared against RT-qPCR results for a
subset of transcripts in glioblastoma multiforme (GBM).

Methods
TCGA data

The study uses 102 GBM tumor and 4 normal brain (organ-spe-
cific control) samples from TCGA (http://cancergenome.nih.gov),
in which both RNA-seq and exon-array transcriptome quantifica-
tion were performed (Supplementary Table S1). A subset of 20
lung squamous cell carcinoma (LUSC) tumor-tissue samples
from TCGA (Supplementary Table S2) was used for validation of
relative expression correlations. The raw expression files, down-
loaded from the Cancer Genomics Hub (https://cghub.ucsc.edu/),
were used as the starting point for all subsequent analyses.

Exon-array transcript abundance estimation

A number of algorithms are available for quantifying individual
isoform abundance from exon-array data. Three such programs
were tested on the TCGA exon-array data: the Multi-Mapping
Bayesian Gene eXpression (MMBGX) method [24], the puma R/
Bioconductor package [25] and the Multiple Exon Array
Preprocessing (MEAP) method [26]. Each of these algorithms has
shown better performance than two other popular tools, PILER
and RMA, in their respective studies. Furthermore, these three
methods were preferred for their ability to resolve both gene
and isoform transcript abundances from exon-array data.

Transcripts were quantified according to the Ensembl 70
(GRCh37.p8) reference annotation. Refer to Supplementary
Table S3 for version information and execution parameters.

RNA-seq transcript abundance estimation

Reads were aligned and quantified according to the Ensembl 70
(GRCh37.p8) reference annotation. RNA-seq transcript abun-
dances were estimated using the following tools: TopHat/
Cufflinks [27], RSEM [28], eXpress [29], Sailfish [30], Salmon [31],
Kallisto [32] and IsoformEx [33]. Genome/transcriptome align-
ments were made using Bowtie2 [34] with paired-end reads, ex-
cept for IsoformEx, for which Bowtie [35] and only one end of
each paired-end read were used. The tools were nearly exclu-
sively run according to their default parameters—refer to
Supplementary Table S4 for version and additional parameter in-
formation. Although some tools offer additional bias correction
options, such options have been shown to have minimal effects
on the overall accuracy of abundance estimates [36]. Gene-level
estimates were calculated by summing their individual isoform
abundances according to Ensembl 70. Because each analysis tool
resolves a different number of transcripts for a given sample,
abundance estimates must be normalized between tools to gen-
erate comparable values. Each output was therefore adjusted as

TPMadj ¼
TPMtP

t2T TPMt½ � � 106

where T represents the subset of transcripts resolved by all of the
programs for a given sample. The geometric means from the four
control samples were used as control expression values for calcu-
lating fold change. The control values were normalized to each
tumor sample according to the corresponding T for better visual
approximation of fold change, but because it should not be
assumed that the total relative abundance for these subsets are
necessarily stable between samples, when determining differen-
tial expression, effective read counts and Fragments Per Kilobase
Million (FPKM) values adjusted according to Trimmed Mean of M-
values (TMM) normalization [37] were used instead. TPMadj values
less than 0.001 were discarded as noise (Supplementary Figure
S1). Abundance estimates from each program were compared
against one another in terms of the number of commonly
resolved transcripts and their relative expression estimates.
IsoformEx was not evaluated on the LUSC validation data set.

RT-qPCR analysis

The GBM tissue collection, RNA isolation, transcript selection,
assay design and RT-qPCR analysis were performed as previously
described by Pal et al. [38]. The transcripts included in the RT-qPCR
analysis represent the most reliably quantified set of isoforms
among those most discriminative between GBM molecular sub-
types (neural, proneural, mesenchymal and classical). Despite the
superior sensitivity and specificity offered by RT-qPCR, producing
highly sensitive splice-specific primers for RT-qPCR can be a chal-
lenge [39, 40]. Because isoform specificity was limited for corres-
ponding commercially available TaqMan chemistry-based qPCR
assays, care was taken to avoid assays that co-detect transcripts
showing low or negative correlation in GBM expression [38].

Expression and fold change correlation analysis

Sample-by-sample correlations between RNA-seq and exon-
array estimates were evaluated using Spearman’s correlation
(rS) for each RNA-seq analysis program against MMBGX.
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Spearman’s correlation was preferred to Pearson’s correlation
to reduce bias between platforms and diminish the effect of
RNA-seq outliers. A subset of MMBGX estimates (4.3% of iso-
forms, 1.4% of genes) featured combinations of transcripts (e.g.
ENST00000025008þENST00000435644) from which independent
abundances could not be accurately disaggregated. For these re-
sults, corresponding combinations were created in the RNA-seq
data by linearly summing the abundance estimates for each
transcript. For RT-qPCR correlations, TPMadj expression esti-
mates were further normalized by POLR2A expression, which
was used as an endogenous control for the RT-qPCR analysis.

Differential expression analysis

Differential gene and isoform expression between tumor and
normal samples was determined using the limma R/Bioconductor
package [41] on the MMBGX and eXpress results. Differential ex-
pression was selected based on fold changes >2.0 and an false
discovery rate (FDR)-adjusted p value threshold of 0.05. Estimated
transcript counts from RNA-seq were first normalized using
TMM normalization [37], and transformed using the voom
method [42]. Transcripts with average counts fewer than one per
sample were excluded. All 102 tumor samples and 4 organ-spe-
cific controls were included in the analysis. Differential expres-
sion results from exon array and RNA-seq were then compared
to evaluate consistency between platforms in identifying differ-
entially expressed (DE) genes and isoforms. To assess the extent
to which isoform-level transcript dynamics are masked at the
gene level, genes containing both significantly up- and downre-
gulated isoforms were identified and similarly evaluated.

Results
Exon-array abundance estimation

Gene and isoform abundance estimates were generated from the
TCGA GBM exon-array data using the MMBGX method [24], the
puma R/Bioconductor package [25] and the MEAP method [26].
The mean expression estimates across all samples were com-
pared with the RT-qPCR data (Supplementary Table S5). While
the MEAP results demonstrated the strongest numerical concord-
ance with corresponding RT-qPCR measurements (Spearman
rank coefficient, rS ¼ 0.851), it substantially underperformed the
other programs in terms of the number of transcripts that were
resolved (n ¼ 56 027–56 262). The puma package resolved 121 741
transcripts per sample, and had a relatively low Spearman correl-
ation with RT-qPCR (rS ¼ 0.727). Because MMBGX provided a
strong correlation with RT-qPCR (rS¼ 0.836), quantified the great-
est number of transcripts per sample (n¼ 179 071) and yielded ex-
pression distributions that accorded well with those from RNA-
seq, it was selected as the tool to be used for the remainder of the
study when comparing exon-array results with various RNA-seq
expression estimates.

RNA-seq abundance estimation

Transcript abundance estimates were also generated from the
TCGA GBM RNA-seq data using the TopHat/Cufflinks [27], RSEM
[28], eXpress [29], Sailfish [30], Salmon [31], Kallisto [32] and
IsoformEx [33] analysis pipelines. Although each program’s re-
sults were limited to the same reference annotation, each
method resolved a different number of transcripts per sample
(Table 1). Both the number of commonly resolved isoforms and
the expression correlations between programs vary signifi-
cantly, ranging from 58664 to 148026 transcripts and from 0.52

to 0.94, respectively. eXpress resolved the greatest number of
transcripts per sample. While RSEM, Kallisto and Cufflinks
showed strong correlations among them (rS � 0.9), the other
four programs were correlated only moderately (rS ¼ 0.52–0.79).

Comparison of gene and isoform expression profiles
between platforms

The gene-level expression correlations between RNA-seq and
exon-array estimates (MMBGX) observed in this study (median
rS ¼ 0.72–0.78) accord with results from previous studies that
compared RNA-seq with microarrays [14–20]. For isoform ex-
pression estimates, poor correlations were found between RNA-
seq and exon array compared with gene-level correlations
(Figure 1). The fold change correlations for isoforms were rela-
tively stronger than those for raw expression. At the gene level,
however, fold change correlations were lower than expression
correlations. This can be primarily attributed to lowly expressed
genes with fewer transcripts—when the gene expression results
were filtered to exclude lowly expressed genes, then both the
expression and fold change correlations improved significantly,
with the fold change correlations exceeding the raw expression
correlations (Supplementary Figure S2).

In terms of overall isoform-level correlation with MMBGX re-
sults, the RNA-seq analysis tools performed fairly consistently,
with median correlations ranging from 0.41 to 0.48 rS for raw ex-
pression and from 0.40 to 50 rS for fold change values
(Figure 2A). Consistent raw expression correlations with an
identical relative order between RNA-seq programs were
observed using LUSC data (Supplementary Figure S3). eXpress
yielded the strongest overall expression and fold-change correl-
ations with MMBGX and resolved the greatest number of com-
mon transcripts (Figure 2B). This relatively strong concordance
between eXpress and MMBGX appears to be driven by associ-
ated, lowly expressed transcripts. While the least abundant
quartile of isoforms estimated by eXpress correlated extremely
well with MMBGX relative to those of other RNA-seq tools, the
most abundant quartile of isoforms from every other program
correlated more strongly with MMBGX than did eXpress (Figure
2C). When considering only the most variable set of isoforms, as
is sometimes done when selecting relevant genes for cancer
subtype identification, correlations between platforms improve
dramatically, with eXpress providing the strongest expression
correlations with MMBGX (rS¼ 0.54 and 0.63 for top 5% and 1%
most variable isoforms, respectively) and RSEM the strongest
fold change correlations (rS ¼ 0.72 and 0.81, respectively)
(Supplementary Figure S4). Interestingly, relative isoform-level
correlations with MMBGX do not extend accordingly to gene-
level estimates (Supplementary Figure S5). For example, while
Salmon had one of the lowest average isoform expression cor-
relations with MMBGX (rS ¼ 0.41), it had the highest average ex-
pression correlation with MMBGX for genes (rS ¼ 0.78) among
the programs tested. Salmon appears to be the most consistent
RNA-seq analysis tool in terms of its relation to MMBGX results
(SD ¼ 0.026 and 0.037 for isoform expression and fold change
correlations, respectively), whereas the correlations between
eXpress and MMBGX vary the most between samples (SD ¼
0.055 and 0.060) (Supplementary Table S6).

Comparison of differential isoform expression calls
between platforms

Because MMBGX and eXpress shared the most commonly
resolved transcripts and the strongest overall expression and
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fold change correlations, their data were used in comparing
RNA-seq and exon-array platforms in identifying differential
expression between tumor and normal tissue samples. Of the
nearly 149 359 transcripts resolved among all samples, roughly
10% (13 207) were consistently identified as DE by both plat-
forms. An additional 23 841 isoforms were DE according to the
RNA-seq estimates, and another 5794 isoforms were DE only in

the exon-array results (Figure 3B). Therefore, only about 36% of
the DE RNA-seq isoforms were also DE according to exon array,
while about 70% of the DE exon-array isoforms were likewise DE
in the RNA-seq results. There were 81 transcripts that were
identified as DE by both platforms, but were inconsistent in
terms of their direction of fold change, resulting in a consist-
ency rate of 0.994. At the gene level, 4371 of 33 514 genes (13.0%)

Table 1. Correlations between RNA-seq abundance estimates

Number of overlapping resolved isoforms per sample.

Expression estimates from each of the tested RNA-seq quantification methods were compared with one another. The number of resolved transcripts shared between

each pair of methods is shown in the lower-left. The Spearman correlation between each pair of methods is shown in the upper right.

Figure 1. Scatter plots of average expression and fold change (tumor versus normal) estimates between exon array and RNA-seq at both gene and isoform levels.

Normalized expression estimates were averaged across samples for each program. RNA-seq estimates were then averaged across programs. Transcripts that were not

resolved by a majority of RNA-seq programs were excluded. Transcripts with an average expression TPMadj< log2(0.001) were considered to be not expressed.
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were similarly DE according to both platforms, with an add-
itional 3810 genes and 1863 genes identified as DE individually
by RNA-seq and exon array, respectively, and 25 genes were in-
consistently DE between platforms (Figure 3A).

Changes in splicing patterns or utilization of alternative pro-
moters can alter the relative isoform expression ratios for a
given gene without necessarily changing the overall gene ex-
pression. To get a better sense of how much gene-level expres-
sion measurements mask changes in individual isoform
expression, DE genes, with two or more DE isoforms, were
counted using the eXpress and MMBGX estimates (Table 2).
Although it was rare for genes to feature both significantly up-
and downregulated isoforms (about 0.6% of genes identified in
RNA-seq or exon array—296 total), only 24% of those genes were
identified as DE, compared with the 78% of genes that were
identified as DE if they had multiple DE isoforms all regulated in
the same direction. Ultimately, for genes in which at least one
isoform was identified as DE in RNA-seq or exon array, only

about two thirds of those genes were identified as DE at the
gene level.

RT-qPCR correlations

The relative abundance estimates from each RNA-seq program
were compared with RT-qPCR expression measurements from a
subset of 159 transcripts previously selected as GBM subtype
classifiers [38] (Figure 4). All programs produced high fold
change correlations with the RT-qPCR results (rS ¼ 0.812–0.900),
with eXpress demonstrating the strongest concordance with
RT-qPCR (rS¼ 0.900). The MMBGX correlation (rS¼ 0.836) was
comparable with those of the RNA-seq methods. However,
the correlations based on expression estimates were quite low
(rS ¼ 0.115–0.424), suggesting that fold change normalization
eliminated inter-platform distribution discrepancies. Fold
change correlations with RT-qPCR were consistent across differ-
ent levels of RT-qPCR expression for both RNA-seq and exon

Figure 2. Spearman correlation coefficients between MMBGX and different RNA-seq quantification methods. (A) Box plots summarize the distribution of individual

sample correlations with MMBGX estimates according to each RNA-seq tool tested. Median correlation values are shown (n¼102). For each method, correlations were

calculated for both raw expression values and fold change values relative to the normal-tissue samples. (B) Average number of commonly resolved isoforms between

MMBGX and each RNA-seq method. MMBGX-only transcripts (yellow) included only if in top 50% of transcripts. (C) Correlations between MMBGX and each RNA-seq

method for relatively highly expressed (75–100%) and lowly expressed (0–25%) isoforms.
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array (average RNA-seq rS ¼ 0.831 and 0.816 for upper and
lower quartiles of RT-qPCR expression, respectively, and
MMBGX rS ¼ 0.750 and 0.755 for respective quartiles).

Discussion

Since the advent of next-generation sequencing, gene expression
studies have increasingly used RNA-seq to measure gene expres-
sion. RNA-seq offers several important advantages over array-
based techniques. RNA-seq removes the need for prior knowledge
of targeted sequences and offers single-nucleotide resolution,
thereby enabling accurate identification of novel isoforms, RNA
editing events, allele-specific expression, sequence variants and
somatic mutations, all of which have been implicated in cancer
development [43–45]. Nevertheless, microarrays are a thoroughly
proven technology, and the quality of microarray data has im-
proved significantly over the past two decades [46], including the
development of exon arrays, which allow for the differentiation
of gene isoforms. Arrays also remain more cost-effective than
RNA-seq for standard gene expression profiling in model organ-
isms [14, 47]. Indeed, the majority of existing and newly uploaded
data in public gene expression databases such as TCGA and Gene

Expression Omnibus [48] and ArrayExpress [49] are still from
microarray platforms [15, 17]. Even as RNA-seq surpasses arrays
in terms of routine use, the trove of array-based data remains a
valuable investment that can be used to compliment new
sequencing-based expression studies, particularly because an
ideal method of validation remains elusive.

Indeed, a primary challenge in evaluating expression quanti-
fication methods is the difficulty of benchmarking on real data,
as one cannot know the true abundances of endogenous tran-
scripts. RT-qPCR still serves as the gold-standard method for vali-
dating sequencing and array results, although its results can be
inconsistent [50, 51]. In this study, certain programs outper-
formed others in terms of their correspondence with the RT-
qPCR results, but the differences were not substantial, and our
RT-qPCR subset, despite being highly relevant in GBM, represents
only a relatively small sampling of transcripts. The results may
therefore change if a different subset of isoforms were selected.

Furthermore, the relative performance of the programs eval-
uated herein changed significantly according to the criteria
being evaluated. eXpress was the most highly correlated with
the RT-qPCR and MMBGX results overall, but RSEM was more
highly correlated with MMBGX for changes in highly variable

Figure 3. Scatter plots of fold changes labeled according to differential expression. Average fold changes (tumor versus normal) between exon array and RNA-seq are plot-

ted and labeled according to whether they were identified as DE. Genes/isoforms identified as DE by both platforms with consistent direction of change are plotted in

green. Genes/isoforms identified as DE by only RNA-seq or exon array are plotted in blue and yellow, respectively. Genes/isoforms not identified as DE by either platform

are plotted in gray. Genes/isoforms identified as DE by both platforms but with inconsistent directions of change are plotted in red. (A) Gene-level DE. (B) Isoform-level DE.

Table 2. Differential gene expression versus Isoform dynamics

Platform Genes DEG Genes, �1
DEI

DEG, �1 DEI Genes, �2
DEI same dir.

DEG, �2 DEI
same dir.

Genes, �2
DEI opp. dir.

DEG, �2 DEI
opp. dir.

RNA-seq 35 441 8434 11 921 8071 (67.7%) 6353 5040 (79.3%) 128 26 (20.3%)
Exon array 49 039 6876 8560 5986 (69.9%) 3379 2841 (84.1%) 173 45 (26.0%)
RNA-seq \ Exon array 33 514 4371 5001 3858 (77.1%) 2486 2203 (88.6%) 5 0 (0.0%)
RNA-seq [ Exon array 50 963 10 939 15 480 10 199 (65.9%) 7246 5678 (78.4%) 296 71 (24.0%)

Differential expression was measured in genes (DEG) with one or more DE isoforms (DEI) using the eXpress and MMBGX data, and in genes with two or more DEI

according to whether or not any pairs of differentially expressed isoforms featured opposite directions of change within the same gene. The percentages describe the

proportion of each category of gene called as DE.
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transcripts. eXpress appears to be most successful in discriminat-
ing lowly expressed transcripts, but IsoformEx and RSEM correl-
ate more strongly with MMBGX for highly expressed transcripts.
The relative isoform-level correlations between platforms were
also not extended accordingly to gene-level correlations, in which
RSEM and Salmon featured the strongest concordance with
MMBGX. Ultimately, results like these are exemplary of why it is
dubious to declare any existing program as the ‘best’, as they ap-
pear to feature different strengths and weakness that call for con-
sideration on a study-by-study basis according to an
investigator’s aims. Certainly, if computational resources are a
concern, Sailfish, Salmon and Kallisto are in a class of their own
relative to the other programs in this study [30–32, 36].

While there are many cancer types in TCGA, only three—
GBM, ovarian serous cystadenocarcinoma (OV) and LUSC—
feature both exon-array and RNA-seq data. Moreover, GBM is
the only tumor type that features same normal (organ-specific
control) samples simultaneously quantified by both RNA-seq
and exon array in TCGA. We, therefore, choose GBM for this

study. The relative RNA-seq and exon-array expression con-
cordances in LUSC were consistent with those for GBM, al-
though additional analysis with valid controls is needed to
confirm that the relative fold change concordances are consist-
ent for other cancer types as well. Regardless of the quantifica-
tion programs used, however, isoform fold change values
consistently demonstrated stronger agreement across plat-
forms than did raw expression estimates. This suggests that
intra-platform normalization against similar control data re-
duces discrepancies when subsequently integrating data be-
tween different platforms.

How expression data could be integrated between RNA-seq
and exon-array platforms inevitably depends on the aims of the
corresponding study. Limiting follow-up analysis to isoforms
identified as DE by both platforms would reduce the number of
false positives, whereas considering all DE isoforms from both
platforms would improve study sensitivity. Data integration
could also be performed in the context of platform-specific
biases. Array probes lack the specificity of sequencing-based

Figure 4. RT-qPCR correlations. (A) The transcripts included in RT-qPCR analysis, according to their average expression estimates from the RNA-seq and MMBGX exon-

array tumor results. (B) The transcripts included in RT-qPCR analysis, according to their average fold change estimates relative to normal brain from the RNA-seq and

MMBGX exon-array results. (C) The Spearman correlations and number of shared, resolved transcripts between the various programs tested and the RT-qPCR

estimates.
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techniques, which can result in less accurate estimates for
lowly expressed transcripts [21] or present problems when co-
detected transcripts are not highly correlated in their patterns
of expression [38]. Transcript length bias is also a known feature
of RNA-seq [12], and therefore exon-array data could be used to
increase power for detecting shorter DE transcripts, but add-
itional study is needed to determine optimal thresholds for in-
tegration in terms of platform-specific biases.

Another challenge in gene expression analyses is determin-
ing the level of transcript abundance that constitutes biologic-
ally relevant expression. In routine expression analyses,
heuristics featuring arbitrary thresholds (e.g. FPKM> 1) are
often used, although several quantitative methods have re-
cently been developed to distinguish biologically active genes
from experimental noise [52, 53]. The similar issue in our study
was selecting the RNA-seq expression range to use for calculat-
ing isoform expression correlations between platforms. Because
of the way certain programs assign uncertainty to read counts
and report expression estimates, often expression values are re-
ported that are non-zero but are so close to zero that their
logged values result in a significant negative tail of outliers rela-
tive to the bulk of the expression distribution. At these lower
RNA-seq expression values, correlations between platforms are
reduced to noise (rS ¼�0.09 to 0.05). In their proposed RNA-seq
normalization method, Hart et al. [53] set log2(FPKM) values less
than �15 as undetected. We found that the correlations and
number of transcripts shared between platforms did not im-
prove below TPMadj¼ log2(0.001) (%�10) (Supplementary Figure
S1), and therefore considered transcripts with adjusted expres-
sion estimates below this value to be non-expressed.

Our results reinforce the fact that potentially important, iso-
form-level genetic changes can be masked by gene-level meas-
urements. Almost a third of genes with at least one DE isoform
in the RNA-seq or exon-array results were not likewise classi-
fied as DE. Even when considering genes with�2 DE isoforms in
both RNA-seq and exon array, thereby corresponding to stron-
ger differential signals, >10% of these genes were not identified
as DE. In cases where DE isoforms within the same gene were
dis-regulated in opposite directions of change, it was much
more unlikely for those genes to be called as DE. These cases
were rare, however, especially when considering genes in both
RNA-seq and exon array, for which there were only five identi-
fied. These genes should be studied further in the context of
GBM to evaluate their relevancy and determine why many more
were identified in RNA-seq or exon-array estimates, but not in
both. Importantly, the extent to which DE isoforms within the
same gene are dis-regulated in opposite directions and the
associated relevance likely depend on cancer type.

This study focuses on correlations between RNA-seq and
exon-array estimates, but differential isoform expression can
also be evaluated using exon-junction arrays, which feature
probes that span exon–exon junctions. Exon-junction arrays are
commonly used for the analysis of alternative splicing [54, 55],
and while exon arrays have several advantages over exon-junc-
tion arrays [56], exon-junction arrays can be more informative
in isoform de-convolution [57–59]. Exon junction information
can also be applied in RNA-seq-based isoform quantification, as
with TopHat/Cufflinks [27, 60] and IsoformEx [33]. Although
exon-array quantification using MMBGX produced comparable
estimates to those from RNA-seq in this study, incorporation of
exon junction information may result in improved array-based
isoform expression estimates.

Given the inconsistencies in isoform quantification and the
lack of an ideal method of validation against real data,

integrating isoform expression data across methods and plat-
forms might be a prudent strategy for improving the confidence
of expression study results. This study demonstrates how using
exon arrays to quantify isoform abundance produces compar-
able results to sequencing-based estimates, how normalizing
against controls before integrating data across platforms im-
proves complementarity, and how the preference for one RNA-
seq quantification algorithm should depend on individual study
parameters. With a better understanding on the relationship
between exon-array- and sequencing-based results, future iso-
form expression studies can increase their returns by incorpo-
rating data from both platforms.

Supplementary data

Supplementary data are available online at http://bib.oxford
journals.org/.
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Key Points
• Gene expression studies should strive to evaluate ex-

pression at the isoform level or risk masking import-
ant expression dynamics.

• Exon-array expression analysis can yield comparable
results to RNA-seq pipelines for evaluating isoform-
level expression changes, suggesting that integrating
isoform expression data across platforms and pipe-
lines may improve the reliability of expression esti-
mates. Accurate integration of isoform-level expres-
sion data across platforms and pipelines will,
however, depend on the availability of normal (tissue
or organ specific) control samples within each plat-
form and tumor type.

• While eXpress achieved the highest correlation with
the RT-qPCR and exon-array (MMBGX) results overall,
RSEM was more highly correlated with MMBGX for
changes in highly variable transcripts. eXpress appears
to be most successful in discriminating lowly ex-
pressed transcripts, but IsoformEx and RSEM correlate
more strongly with MMBGX for highly expressed
transcripts.

• Isoform fold change values consistently demonstrate
stronger agreement across platforms than raw expres-
sion estimates, suggesting that fold change normaliza-
tion against a control is an important step for integrat-
ing expression data across platforms. Further, fold
change correlations with RT-qPCR were consistent
across different levels of RT-qPCR expression for both
RNA-seq and exon-array platforms.

• eXpress demonstrated the highest overall concordance
with exon-array and RT-qPCR estimates, but the pref-
erence for one RNA-seq quantification algorithm
should depend on individual study parameters.
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