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Abstract: In this study, the effects of mixed corn peptides and synthetic pentapeptide 
(QLLPF) on hepatocyte apoptosis induced by ethanol were investigated in vivo. QLLPF, 
was previously characterized from corn protein hydrolysis, which had been shown to exert 
good facilitating alcohol metabolism activity. Mice were pre-treated with the mixed corn 
peptides and the pentapeptide for 1 week and then treated with ethanol. After treatment of 
three weeks, the biochemical indices and the key ethanol metabolizing enzymes, the serum 
TNF-α, liver TGF-β1 concentrations and the protein expressions related to apoptosis were 
determined. We found that the Bcl-2, Bax and cytochrome c expressions in the intrinsic 
pathway and the Fas, FasL and NF-κB expressions in the extrinsic pathway together with 
higher TNF-α and TGF-β1 concentrations were reversed compared with the model group by 
both the mixed corn peptides and the pentapeptide. The activation of caspase3 was also 
suppressed. Additionally, apoptosis was further confirmed with terminal deoxynucleotidyl 
transferase dUTP nick end labeling (TUNEL) and the TUNEL assay demonstrated 
peptides suppressed hepatocyte apoptosis. Our results suggest that apoptosis induced by 
ethanol is alleviated in response to the treatment of corn peptides, potentially due to 
reversing the related protein expression. 
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1. Introduction 

Chronic excessive ethanol intake has been known as a main cause of alcoholic liver disease which is 
one of the most serious liver disorders [1]. Alcohol consumption can lead to cell apoptosis in liver [2], 
which has been also observed in an alcoholic liver injury experiment [3] and in a clinical experiment [4]. 
There are two main signaling pathways of apoptosis: extrinsic pathway which is mediated by death 
receptors and Bcl-2-controlled intrinsic pathway [5]. Also, the intrinsic pathway is often called 
mitochondria-mediated death pathway [6–8]. Acute ethanol induces membrane permeability transition 
(MPT) via oxidative stress, and the MPT mediates mitochondrial pathway of apoptosis in hepatocytes 
exposed to acute ethanol [9]. Moreover, results of another study support that ethanol induces apoptosis 
via two different pathways: MPT and up-regulation of the expression of CD95-Fas ligand [10], 
suggesting that apoptosis induced by ethanol is related with both intrinsic and extrinsic pathways. 

In recent years, the corn protein is acknowledged to be a good source of bioactive peptides  
with a broad spectrum of biological activities, such as inhibiting angiotensin I converting enzyme  
(ACE-I) [11], free radical scavenging activities [12,13], facilitating alcohol metabolism [14],  
and bile acid binding capacity [15]. In our previous studies, corn peptides (CPs) have been  
found to provide significant protection against liver injuries in mice induced by alcohol,  
Bacillus Calmette-Guerin/lipopolysaccharide, carbon tetrachloride and thioacetamide-induced liver 
fibrosis [16–19]. Another study also found that corn oligopeptides have a significant protective effect on 
early alcoholic liver injury in rats [20]. Wu et al. have reported the protective effects of corn peptides 
against alcoholic liver injury in men with chronic alcohol consumption at the dose of 4 g/day and 
indicated that CPs may have protective effects on alcohol-induced liver damage via modulation of lipid 
metabolism and oxidative stress [21]. The results from these studies demonstrate that CPs can  
prevent ethanol-triggered malonaldehyde (MDA) generation and restore the antioxidant capability of 
hepatocytes through increasing glutathione (GSH) content which has been reduced in the injuries. It is 
known that oxidative stress plays an important role in the development of alcoholic liver diseases  
(ALD) [22]. Decreases in intracellular GSH have been shown to be an early event in apoptosis [23]. 
Production of reactive oxygen species may lead to mitochondrial damage that produces a leak of 
cytochrome c (cyt c), which activates caspases and causes apoptosis [24]. There is some research  
about anti-apoptotic effect of bioactive compounds. It has been reported that L-theanine inhibited 
ethanol-induced L02 cell apoptosis by the experiments of DAPI staining, pro-caspase3 level and PARP 
cleavage determination [25]. Recent studies have demonstrated that Aplysin could improve the 
histopathological damages and serum biochemical indices, influence ethanol metabolizing enzymes and 
inhibit the liver apoptosis, which ultimately prevented and protected the ethanol-induced liver  
injury [26]. However, in the previous study, the research related to the hepatoprotective effect of corn 
peptides mainly concentrated on the evaluation of biochemical indices and histopathological analysis. 
The mechanism associated with the protection of apoptosis by corn peptides has not yet been  
addressed. In this study, besides the detection of the key metabolic enzymes and oxidative damage,  
we will focus on whether the corn peptides could inhibit hepatocyte apoptosis induced by ethanol,  
to explore the further mechanisms of corn peptides in exerting a hepatoprotective effect. In addition, the 
hepatoprotective effect of a corn-derived peptide QLLPF identified from the mixed corn peptides [27] 
was also investigated. 
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2. Results 

2.1. Effects of the Peptides on the Body Weights and Liver Index 

The body weights of the mice were measured every day during the experiment period. As shown in 
Figure 1A, the average body weights of all the groups increased during the first seven days, whereas  
that of the model group and the peptide-treated groups decreased after treatment with ethanol. Compared 
with the ethanol treated group, the body weights of the groups treated with the synthetic pentapeptide 
QLLPF and the mixed corn peptides increased during the treatment with ethanol. In addition, Figure 1B 
showed that ethanol intake led to the significant increase in the liver index (p < 0.05), and the 
pentapeptide QLLPF and the mixed corn peptides suppressed these adverse effects. Specifically, the 
liver index of the two mixed corn peptides groups have been reduced to the normal level. 

 

Figure 1. Body weight (A) and the liver index (%) (B) of mice in each group. Values not 
sharing a common letter (a, b, c) differ significantly at p < 0.05. SP, synthetic pentapeptide; 
MP, mixed corn peptides. 

2.2. Effects of the Peptides on the Activities of Serum Alanine Aminotransferase (ALT) and Aspartate 
Aminotransferase (AST), the Levels of Hepatic Malonaldehyde (MDA) and Glutathione (GSH) 

The serum ALT and AST activities are the biomarkers in liver injury. As shown in Table 1, the model 
group showed a significant increase over the control group in the activities of ALT and AST (p < 0.05). 
The two mixed peptides groups showed a significantly lower level of AST than the model group  
(p < 0.05) and the level returned to normal at both 50 and 200 mg/kg doses. The levels of MDA and 
GSH in each group are also listed in Table 1, and the ethanol intake led to a marked increase of MDA and 
a marked decrease of GSH in the model group (p < 0.05). The reduction of MDA and the enhancement 
of GSH (p < 0.05) were indications for the alleviation of liver injury in all the peptides-treated groups. 
As to the levels of MDA and GSH, the two pentapeptides groups showed a significant improvement 
over the corresponding model groups. Generally, the mixed peptides groups exerted a better effect than 
the pentapeptides groups. 
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Table 1. Effects of peptides on serum AST, ALT activities, hepatic MDA and GSH. 

Groups ALT (IU/l) AST (IU/l) 
MDA 

(nmol/mg pro) 
GSH  

(μmol/g pro) 
Control 7.77 ± 3.52 a 10.66 ± 2.03 a 2.51 ± 0.25 a 2.85 ± 0.35 b 
Model 12.75 ± 4.40 b 17.21 ± 8.97 b 5.08 ± 0.45 d 2.27 ± 0.16 a 

SP 10 mg/kg bw 10.45 ± 3.52 ab 15.21 ± 2.77 ab 3.47 ± 0.34 c 3.09 ± 0.45 bc 
SP 30 mg/kg bw 9.56 ± 2.22 ab 12.42 ± 3.52 ab 3.40 ± 0.32 c 3.50 ± 0.39 c 
MP 50 mg/kg bw 8.93 ± 2.34 ab 11.68 ± 2.05 a 3.15 ± 0.40 bc 3.31 ± 0.33 bc 

MP 200 mg/kg bw 8.53 ± 2.03 ab 11.53 ± 1.54 a 2.84 ± 0.44 ab 3.54 ± 0.27 c 
a,b,c,d Values not sharing a common superscript letter differ significantly at p < 0.05. SP, synthetic pentapeptide; 
MP, mixed corn peptides. 

2.3. Effects of the Peptides on Key Ethanol Metabolizing Enzymes 

Alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) are the key enzymes of ADH 
system of ethanol metabolism. As illustrated in Figure 2, the expression levels of ADH and ALDH were 
significantly down-regulated when compared with their corresponding control groups, whereas the 
levels of those were significantly up-regulated in response to the synthetic pentapeptide QLLPF and the 
mixed corn peptides except the level of ALDH in the SP-10 mg/kg bw group. 

 

Figure 2. The relative protein expressions of ADH and ALDH in each group. (A) 
Representative western blots for ADH and ALDH, GAPDH was used as internal control for 
liver tissue; (B) Relative protein levels of ADH & ALDH/GAPDH. Values not sharing a 
common letter (a, b, c, d, e, f) differ significantly of relative protein level of ADH/GAPDH 
at p < 0.05. Values not sharing a common letter (A, B, C, D) differ significantly of relative 
protein level of ALDH/GAPDH at p < 0.05. SP, synthetic pentapeptide; MP, mixed corn 
peptides. Numbers 1–6 indicate groups of Control, Model, SP-10 mg/kg bw, SP-30 mg/kg 
bw, MP-50 mg/kg bw and MP-200 mg/kg bw, separately. 
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2.4. Effects of the Peptides on Cytokines TNF-α, TGF-β1 

The concentrations of TNF-α and TGF-β1 in each group are shown in Figure 3. In the control 
group, the concentrations of TNF-α and TGF-β1 were 58.52 and 20.86 pg/mL, respectively. The 
concentrations were significantly increased to 106.89 and 38.24 pg/mL in the model groups as 
compared to their respective control levels (p < 0.05). However, the levels of the two cytokines showed 
a tendency to decrease during the treatment of the synthetic pentapeptide QLLPF and the mixed corn 
peptides. Additionally, the levels of TNF-α and TGF-β1 in all the peptide-treated groups except the 
low-dose synthetic pentapeptide group of 10 mg/kg bw significantly decreased as compared to the 
model levels (p < 0.05) and returned to the normal level. 

 

Figure 3. The concentrations of serum TNF-α and the liver TGF-β1 in each group. Values 
not sharing a common letter (a, b, c) differ significantly of TNF-α level at p < 0.05. Values 
not sharing a common letter (A, B, C) differ significantly of TGF-β1 level at p < 0.05. SP, 
synthetic pentapeptide; MP, mixed corn peptides. 

2.5. Effects of the Peptides on Apoptotic Pathway in Ethanol-Treated Mice 

2.5.1. Effects of the Peptides on MnSOD 

MnSOD located in the mitochondria is believed to be associated with oxidative stress. As shown in 
Figure 4, when compared with the control, the model group had a significant decrease (p < 0.05) in the 
relative protein level of MnSOD in the mitochondria, whereas every peptide-treated groups showed a 
significant increase over the model group in the level (p < 0.05), indicating the treatment effect of the 
synthetic pentapeptide and the mixed corn peptides. 



Int. J. Mol. Sci. 2015, 16 22067 
 

 

 

Figure 4. The relative protein expressions of MnSOD in each group. (A) Representative 
western blot for MnSOD, VDAC1 was used as internal control; (B) Relative protein level 
of MnSOD/VDAC1. Values not sharing a common letter (a, b, c, d, e, f) differ significantly 
at p < 0.05. SP, synthetic pentapeptide; MP, mixed corn peptides. Numbers 1–6 indicate 
groups of Control, Model, SP-10 mg/kg bw, SP-30 mg/kg bw, MP-50 mg/kg bw and 
MP-200 mg/kg bw, separately. 

2.5.2. Effects of the Peptides on Intrinsic Pathway 

The relative protein levels of cyt c, Bcl-2 and Bax associated with intrinsic pathway were measured 
by Western blot and the results are shown in Figure 5. The relative protein level of cytosolic cyt c in 
model group was enhanced (increased by 1.94-fold) significantly compared with the control, while the 
relative protein level of that was significantly reduced in response to the mixed peptides (p < 0.05). 
Additionally, the relative protein level of the MP-200 mg/kg bw was reduced to the normal level. In 
contrast, the relative protein level of mitochondrial cyt c in model group was reduced significantly by 
ethanol compared with the control group (p < 0.05), and all the peptides-treated groups except the  
SP-10 mg/kg bw group were significantly higher than the model group. Similarly, the relative protein 
levels of Bax and Bcl-2 were increased (by 3.21-fold) and decreased (by 5.19-fold) significantly in the 
model group as compared to their control groups, respectively (p < 0.05). Compared with the model 
group, the relative protein levels of Bax in all the peptides-treated groups were significantly lower than 
that of the model group, and the relative protein levels of Bcl-2 in the groups of SP-30 mg/kg bw,  
MP-50 mg/kg bw and MP-200 mg/kg bw were significantly higher than that of the model group  
(p < 0.05). In addition, the relative protein levels of Bcl-2 in the groups of MP-200 mg/kg bw was 
reversed to the normal level. Generally, these effects were displayed in a dose-dependent manner. 
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Figure 5. The relative protein expressions of cytochrome c, Bcl-2 and Bax in each group. 
Representative western blots for (A) cytochrome c; (B) Bcl-2 and Bax. Tubulin and 
VDAC1 were used as internal controls for cytosol and mitochondria, respectively. GAPDH 
was used as internal control for liver tissue; (C) Relative protein level of cytochrome 
c/Tubulin and cytochrome c/VDAC1; (D) Relative protein levels of Bax & Bcl-2/GAPDH. 
Values not sharing a common letter (a, b, c, d, e) in (C,D) differ significantly of cytochrome 
c/Tubulin and Bax/GAPDH at p < 0.05, separately. Values not sharing a common letter (A, 
B, C, D, E) in (C,D) differ significantly of cytochrome c/VDAC1 and Bcl-2/GAPDH at  
p < 0.05, separately. SP, synthetic pentapeptide; MP, mixed corn peptides. Numbers 1–6 
indicate groups of Control, Model, SP-10 mg/kg bw, SP-30 mg/kg bw, MP-50 mg/kg bw 
and MP-200 mg/kg bw separately. 

2.5.3. Effects of the Peptides on the Extrinsic Pathway 

The relative protein levels of Fas, FasL and NF-κB associated with the death receptors-mediated 
extrinsic pathway are shown in Figure 6. The relative protein levels of Fas and FasL were elevated 
significantly in the model group as compared to their control groups (p < 0.05). Among these 
peptides-treated groups, the relative levels of FasL were significantly decreased in all the 
peptides-treated groups, while the relative levels of Fas significantly decreased and returned to the 
normal level only in the MP-200 mg/kg bw group. In addition, the relative levels of NF-κB significantly 
increased with the treatment of ethanol. However, they significantly decreased in response to the 
synthetic pentapeptide QLLPF and the mixed corn peptides compared with the model groups except for 
the pentapeptide of 10 mg/kg bw (p < 0.05). 
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Figure 6. The relative protein expressions of Fas, FasL and NF-κB in each group. 
Representative western blots for (A) Fas and FasL; (B) NF-κB. GAPDH and LaminB were 
used as internal controls for liver tissue and nucleus, respectively; (C) Relative protein 
levels of Fas & FasL/GAPDH; (D) Relative protein level of NF-κB/LaminB. Values not 
sharing a common letter (a, b, c, d) in (C,D) differ significantly of Fas/GAPDH and 
NF-κB/LaminB at p < 0.05, separately. Values not sharing a common letter (A, B, C, D, E, F) 
in (C) differ significantly of FasL/GAPDH at p < 0.05. SP, synthetic pentapeptide; MP, 
mixed corn peptides. Numbers 1–6 indicate groups of Control, Model, SP-10 mg/kg bw, 
SP-30 mg/kg bw, MP-50 mg/kg bw and MP-200 mg/kg bw separately. 

2.5.4. The Relative Expression Level of Caspase-3 

Caspase-3 is the dominant executioner of programmed cell death downstream. The mRNA and 
protein expression levels of caspase-3 are shown in Figure 7. The relative mRNA expression of 
caspase-3 and the relative protein expression of cleaved caspase-3 were significantly enhanced in 
response to ethanol in the model group (p < 0.05). In contrast, the levels of the synthetic pentapeptide 
QLLPF and the mixed corn peptides groups were significantly reduced compared with the model groups 
(p < 0.05). 
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Figure 7. The relative mRNA and protein expressions of caspase-3 in each group. 
Representative (A) electrophoregram and (B) western blots for caspase-3. GAPDH was 
used as internal control; (C) Relative mRNA level of caspase-3/GAPDH; (D) Relative 
protein levels of caspase-3/GAPDH. Values not sharing a common letter (a, b, c, d, e) in 
(C,D) differ significantly of relative mRNA and protein levels of caspase-3/GAPDH at  
p < 0.05, separately. Values not sharing a common letter (A, B, C, D, E) in (D) differ 
significantly of relative protein level of cleaved caspase-3/GAPDH at p < 0.05. SP, 
synthetic pentapeptide; MP, mixed corn peptides. Numbers 1–6 indicate groups of  
Control, Model, SP-10 mg/kg bw, SP-30 mg/kg bw, MP-50 mg/kg bw and MP-200 mg/kg 
bw separately. 

2.5.5. Effect of Peptides on Apoptosis 

In the present study, TUNEL staining was used to determine the effects of corn peptides on apoptosis, 
by locating apoptotic nuclei (Figure 8). As shown in Figure 8A, compared with the control group,  
a significant number of apoptotic cell nuclei were found in the model group. Interestingly, ballooning 
degeneration and apoptotic nuclei were both existing in the model group. In contrast, treatment with  
the pentapeptide and the mixed corn peptides led to significantly decreased percentages of positive 
nuclei compared with the model group (Figure 8B, p < 0.05). However, there was no significant 
difference in the number of apoptotic cells in the mixed corn peptides and pentapeptide-treated groups. 
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Figure 8. Detection of apoptotic hepatocytes by TUNEL assay in each group. (A) 
Representative images from each group and various administrations are shown at 400× 
magnifications; (B) TUNEL positive cells ratio. Values not sharing a common letter (a, b, c) 
differ significantly at p < 0.05. SP, synthetic pentapeptide; MP, mixed corn peptides. 

3. Discussion 

It is known that acute and chronic alcoholism can cause liver injury. The present study investigated 
the effects of the pentapeptide QLLPF and the mixed corn peptides on ethanol-induced hepatocellular 
apoptosis in mice. The pentapeptide was identified from the mixed corn peptides mentioned and then 
synthesized. In our previous study, we analyzed the peptide sequences with high abundance and 
obtained information about several peptide sequences by HPLC-MS/MS coupled with the peptide 
sequence retrieval in the MS-MS online database (Table S1). According to amino acid analysis,  
the purity of the mixed corn peptides was calculated as 91.70%, with Glu, Leu, Ala and Pro accounting 
for a large proportion at 21.73%, 17.03%, 8.68% and 8.03%, respectively [18]. It is reported that 
branched-chain amino acids are generally associated with the amino-acid metabolism in contracting 
skeletal muscle and supplying pyruvic acid [28]. In the long-term CP ingestion and ethanol loading 
experiment, Yamaguchi et al. reported that the plasma alanine concentration was elevated by not only its 
supply from CP ingestion but also its release from the skeletal muscle as a result of metabolizing 
branched-chain amino acids, especially leucine [29]. Chen and Dickman demonstrate that the ability of 
Pro to scavenge intracellular ROS and inhibit ROS-mediated apoptosis may be an important and 
broad-based function of this amino acid in responding to cellular stress, in addition to its well established 
role as an osmolyte [30]. The three known metabolic enzyme systems that participate in the oxidation of 
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alcohol all lead to overproduction of reactive oxygen species. Therefore, considering the amino acid 
composition of the peptides and the high frequency in the protein sequence, we chose QLLPF for the 
further study. However, it is worth mentioning that the other peptides still need to be investigated and 
some research has been conducted. In the present study, we found that both QLLPF and the mixed corn 
peptides can mitigate the liver injury through the evaluation of biochemical indices, improve the 
expressions of apoptotic-related proteins and ameliorate the hepatocyte apoptosis. 

It is believed that the levels of AST and ALT in serum are elevated in acute ethanol-induced liver 
injury, along with the formation of lipid radicals and the depletion of GSH. As is evident from our 
results, ethanol consumption leads to liver injury characterized by these aforementioned biochemical 
parameters. However, when compared with the model group, these values were reversed with the 
treatment of the two peptides. The ability of alcohol to promote oxidative stress and the role of free 
radicals in alcohol-induced tissue injury clearly are important research areas, because such information 
may be of major therapeutic significance in attempts to prevent or ameliorate alcohol’s toxic effects, 
e.g., by antioxidants, iron chelators, inhibitors of CYP2E1 or of cytokine production/actions, and GSH 
replenishment [31]. According to a previous study [25], L-theanine significantly inhibited the increase of 
ALT, AST and MDA and the decrease of GSH stimulated by ethanol in mice, and it can be further 
speculated that L-theanine prevented ethanol-induced liver injury through enhancing hepatocyte 
antioxidant abilities. Similar results were also reported by Je et al. [32], who found the peptic 
hydrolysate from salmon pectoral fin protein byproducts had a hepatoprotective effect on 
ethanol-induced oxidative stress in Sprague-Dawley rats by examining the levels of ALT, AST, MDA, 
GSH, SOD and GPx. In our previous studies, Yu [18] also reported the antioxidant capability of the corn 
peptides in vitro and in vivo. Based on the values of MDA and GSH, and the expression of MnSOD,  
it can be concluded that the protective effect of the synthetic pentapeptide and the mixed corn peptides  
is related with the attenuation of the oxidative stress. The main metabolic pathway involved in  
the biotransformation of ethanol is oxidation into acetaldehyde, and this process uses NAD+ and is 
primarily achieved by alcohol dehydrogenase [33]. However, the studies on the activities of ADH and 
ALDH are not so consistent [34,35]. In our study, the expressions of ADH and ALDH in the model 
group were suppressed a lot more than the control group, which is in agreement with that reported by 
Sun et al. [34]. The decrease of ADH and ALDH levels indicated that the metabolism of ethanol  
and acetaldehyde was affected, whereas the peptides treatment could accelerate the clearance of  
toxic substances. 

As a highly programmed, genetically controlled form of cell death, apoptosis is essential for the 
maintenance of development and homeostasis in multicellular organisms by eliminating superfluous or 
unwanted cells [36]. However, this balance will be disturbed in an injury induced by chemicals and 
ethanol is one of such chemicals. There are two cytokines that strongly influence the apoptotic process: 
TNF-α and TGF-β1 [37]. In the present study, we found that serum TNF-α and hepatic TGF-β1 were 
significantly elevated in the ethanol-induced injury, but the two cytokines decreased when treated with 
QLLPF and the mixed corn peptides. 

We also detected the expressions of key proteins associated with apoptosis. Mitochondria are central 
to the life of eukaryotic cells and also play a key role in the pathways to cell death [38]. Production of 
reactive oxygen species may lead to mitochondrial damage that produces a leak of cyt c, which activates 
caspases and causes apoptosis [24]. Some research demonstrated that the mitochondria-mediated 
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pathway of apoptosis is not only explained by a mere “loss of function” resulting in a bioenergetic 
defect, but also by a regulated effector mechanism involving cyt c release into the cytosol [39]. 
Additionally, Bcl-2 and Bax are also associated with the intrinsic pathway. Bcl-2 exerts anti-apoptotic 
effects, while Bax exerts pro-apoptotic effect [40]. In the present study, when compared with the model 
group, the synthetic pentapeptide and the mixed corn peptides can inhibit the leaking of cyt from 
mitochondria, down-regulate the expression of Bax and up-regulate the expression of Bcl-2. It was 
reported that rice protein hydrolysate attenuated the apoptosis of myocardiocytes H9c2 through  
the Bcl-2/Bax pathway during H2O2 challenge [41], which is another example to suggest that protein 
hydrolysate has the effect of inhibiting apoptosis. Some reports suggested that ethanol-induced oxidative 
stress mediates the MPT, and the MPT is essential for the induction of the release of mitochondrial cyt c 
and the caspase activation of ethanol [9]. Hence, we also measured the expression of MnSOD,  
the important antioxidant in mitochondria. As expected, the expression of MnSOD was down-regulated 
along with the release of mitochondrial cyt c in the model group, whereas it was up-regulated when 
treated with the two peptides. From these results, it can be concluded that the pentapeptide QLLPF and 
the mixed corn peptides may suppress apoptosis by regulating the intrinsic pathway. 

In addition, a dual mechanism model has also been reported for hepatocyte apoptosis: one is MPT, 
and the other is the up-regulation of FasL [10]. Fas and FasL are the important members in death 
receptors-mediated extrinsic pathway [42]. The combination of Fas and FasL can induce apoptosis by 
starting the signal transduction and activating caspase proteases [43]. NF-κB is best known for the key 
role in normal immune and inflammatory responses, but it is implicated in the control of cell 
proliferation, differentiation, apoptosis and oncogenesis [44]. A study showed that inhibition of NF-kB 
sensitized HaCaT keratinocytes to TNF-induced apoptosis [45]. Feng et al. found that the NF-κB 
mediated the induction of Fas and FasL as well as cellular apoptosis induced by Microcystin-LR in 
HepG2 cells [46]. In this study, Fas, FasL and NF-κB were up-regulated when treated with ethanol, but 
the up-regulation was inhibited by the pentapeptide QLLPF and the mixed corn peptides, suggesting that 
the two peptides might exert the protective effect of ethanol-induced injury through participating in the 
two main signaling pathways of apoptosis. 

As the dominant executioner of programmed cell death downstream, caspase-3 can be activated by 
both intrinsic pathways and extrinsic pathways. In the present study, caspase-3 was up-regulated by  
the stimulation of ethanol at both mRNA and protein expression levels. Compared with the model group, 
the levels were significantly down-regulated in response to QLLPF and the mixed corn peptides. From 
the perspective of protein expression, it is obvious that QLLPF did not show stronger effects than mixed 
corn peptides in the longer hepatoprotective experiment. Compared with QLLPF, the mixed corn 
peptides not only contain QLLPF, but also many other kinds of peptides. Although the content of 
QLLPF in mixed corn peptides group is lower than the QLLPF group, it still has a better effect of 
regulating proteins. Hence, we speculate that the compositions in the mixed peptides may exert a 
synergistic effect against hepatic injury under the experimental conditions, and QLLPF is an important 
contributor in the mixed peptides. The TUNEL assay results also indicated significant inhibition of 
hepatocyte apoptosis when treated with the peptides. However, as we can see from the number of 
apoptotic cells, it was not attenuated in a dose dependent manner. We hold the view that there are some 
other proteins related to apoptosis [5]; there probably exists other protein-mediated pathways. Maybe 
the comprehensive influence of every related protein led to the result. Nevertheless, based on statistical 
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analysis, TUNEL-positive cells in peptides-treated groups were significantly reduced compared to the 
model group. Moreover, the key proteins in the suggested apoptosis pathways were reversed in response 
to the peptides, and some of the proteins have returned to normal levels. Therefore, our results suggest 
that the peptides can inhibit the hepatocyte apoptosis induced by ethanol. 

4. Materials and Methods 

4.1. Materials and Reagents 

Alanine aminotransferase (ALT), aspartate aminotransferase (AST), malonaldehyde (MDA), 
glutathione (GSH), and kits were obtained from Nanjing JianCheng Bioengineering Institute (Nanjing, 
China). Elisa detection kits of tumor necrosis factor (TNF)-α and transforming growth factor (TGF)-β1 
were obtained from Elabscience Biotechnology Co., Ltd. (Wuhan, China). The pentapeptide QLLPF 
was customarily synthesized by AoBo Corp (Shanghai, China) with purity >95%. All other chemicals, 
unless otherwise specified, were of analytical grade and purchased from Sinopharm Chemical Reagent 
Co., Ltd. (Shanghai, China). 

4.2. Preparation of Concentrated Corn Protein and Corn Peptides 

The concentrated corn protein was prepared according to the method of Guo et al. [17]. Briefly, 
protein extraction solvent was prepared by mixing 0.1 M NaOH and 95% EtOH at 45:55 ratio (v/v). 
The corn gluten meal was then soaked in this extraction solvent at 1:15 ratio (w/v) in 50 °C  water bath 
for 2 h. The sample was then centrifuged (25 °C, 2280× g) for 10 min. After centrifugation,  
the separated supernatant was reconstituted with equal volume of distilled water, and the pH of this 
solution was further adjusted to 6.3, the pI of corn protein. A 2% NaCl solution was added to the above 
sample solution at the 1:5 ratio (v/v) for 1 h. After the final centrifugation (25 °C , 2280× g) for 10 min, 
the precipitate was dried under 40 °C  air, and then sieved through an 80# mesh sieve. The process  
of producing corn peptides was carried out according to the method of Yu et al. [18]. Briefly,  
4% concentrated corn protein suspensions (w/v) were heated at 90–100 °C  for 30 min. The temperature 
of suspensions was then dropped to 55 °C , and the pH value was adjusted to 8.0 (the optimum pH of 
alcalase). The corn protein solution was then hydrolyzed by alcalase for 5 h, with an enzyme to 
substrate ratio of 0.8% (w/w). The pH of the reaction mixture was maintained at pH 8.0 by addition of 
1.0 M sodium hydroxide. The reaction was terminated by a 10 min boiling treatment, and the final  
pH was adjusted to 7.0. The hydrolysate was transferred to an UF-membrane system (Prepscale TFF 
system 230 V, Millipore, Billerica, MA, USA), composed of 1.6 L/min pump and a tangential flow 
filter cartridge (PLCC, Millipore). The molecular weight cutoff (MwCO) of the regenerated  
cellulose membranes was 5 KDa with an effective membrane area of 0.09 m2. A fraction of the CPs  
(Mm < 5 kDa; namely mixed peptides) was concentrated and lyophilized for further tests. 

4.3. Animal and Experimental Design 

Kunming male mice (18–22 g) were obtained from Hubei Laboratory Animal Research Center 
(Wuhan, China). All mice were kept in stainless steel wire-bottomed cages with free access to food 
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and water under standard environmental conditions of 22 °C  and dark/light cycle. Animals were 
weighed every day, and measurements of daily food consumption were recorded. 

The animals were cared for and handled in accordance with Regulation No. 5 of the Standing 
Committee of Hubei People’s Congress and the research was approved (HBAC20131018) by the 
ethics committee of Huazhong Agricultural University, Wuhan, China. 

For the prevention experiment of peptides on alcohol-induced liver injury, mice (10/group) were 
randomly divided into the six groups: control group, model group, two synthetic pentapeptide groups 
(the dosages are 10 and 30 mg/kg bw, respectively) and two mixed corn peptides groups (the dosages 
are 50 and 200 mg/kg bw, respectively). Mice were pretreated with peptides dissolved in saline for one 
week through a gavage. During this time, those in the control and model groups received the equal 
volumes of saline. The doses were referred to the preliminary studies [18,27] and pre-test (including 
the mRNA and protein expressions of caspase-3). Peptides were administered intragastrically  
once daily for 3 weeks; food intake of mice were recorded every day. Excluding the mice in the 
control group, the other animals were initially administered intragastrically with 50% (v/v) ethanol  
8 mL/kg/day 4 h after the doses of peptides/saline for 1 week following by an increasing intake of 
ethanol up to 10 mL/kg/day for the remaining 1 week. After the last administration, all groups were 
fasted for 16 h, then they were sacrificed for blood samples, and the serum was collected for 
biochemical assays. The livers were weighed, some were made into 10% of liver tissue homogenates 
for biochemical assays, some were fixed in 10% neutral buffered formalin solution for TUNEL assay, 
and some were stored at −80 °C  for Western blot and real-time PCR assay. 

4.4. Biochemical Parameters of Blood and Liver Analysis 

The blood was centrifuged at 2500 rpm for 10 min at 4 °C . The serum ALT and AST activities as 
well as the contents of GSH and MDA in liver homogenate were determined by using the detection 
kits according to the manufacturer’s instructions. 

4.5. Cytokines Analysis 

The serum TNF-α and the liver TGF-β1 were determined by the Elisa detection kits according to  
the manufacturer’s instructions. 

4.6. Western Blot Analysis 

Liver tissue was lysed by RIPA Lysis Buffer (containing 50 mM Tris, pH 7.4/150 mM  
NaCl/1% Triton X-100/1% sodium deoxycholate/0.1% SDS/1 mM sodium orthovanadate/10 mM  
sodium fluoride/2 mM EDTA/10 μg/mL leupeptin/1 mM phenylmethylsulfonyl fluoride, Beyotime 
Biotechnology, Wuhan, China), equal amounts of proteins (50 μg) from the cytosolic fraction, 
mitochondrial fraction, and liver tissue were separated by SDS-polyacrylamide gel electrophoresis 
using 12% or 10% polyacrylamide gels and then transferred onto a polyvinylidene fluoride membranes 
(Millipore) for 1 h with blotting buffer. The membranes were blocked for 2 h with TBST (10 mM 
Tris-HCl, pH 8.0/150 mM NaCl/0.1% Tween20) containing 5% non-fat milk at room temperature. 
They were incubated with the primary antibody overnight at 4 °C . Antibodies against Bax (1:800) and 
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Bcl-2 (1:800) were purchased from Cell Signaling Technology (Beverly, MA, USA); and FasL (1:200) 
was purchased from Abcam Biotechnology (Cambridge, MA, USA,); cyt c (1:1000), caspase-3  
(1:600), Fas (1:500), NF-κB (1:1000) were purchased from Proteintech Group (Proteintech Group, Inc., 
Wuhan, China). After six 5-min washes in TBST, the membranes were incubated with horseradish 
peroxidase-conjugated secondary antibody (1:50000) (Zhongshan Jinqiao Biological Technology Co., 
Ltd., Beijing, China) at room temperature for 2 h. After six 5-min washes with TBST, the membranes 
were then incubated with ECL substrate solution (Thermo Fisher Scientific Inc., Waltham, MA, USA) 
for several minutes. The excess liquid substrate solution was removed after the brand was obvious and 
the X-ray film was developed and fixed in turn with developing fixing kit (Wuhan Biobuffer Biotech 
Service Co., Ltd., Wuhan, China). 

The relative contents of protein in liver tissue, cytosol, mitochondria and nucleus were expressed as 
the ratio of protein to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (Hangzhou Xianzhi 
Biological Technology Co., Ltd., Hangzhou, China), Tubulin (Beijing Biosynthesis Biotechnology 
Co., Ltd., Beijing, China), voltage dependent anion channel (VDAC) (Santa Cruz Biotechnology, Inc., 
Dallas, TX, USA) and LaminB (Proteintech Group, Inc., Wuhan, China), respectively. 

4.7. Real-Time (RT) PCR Analysis 

The relative transcription levels of caspase-3 were measured using quantitative RT-PCR. The 
GAPDH was used as the internal control. The quantitative RT-PCR was done using an ABI ViiA7 
Real-Time PCR System. The 2−ΔΔCt method was used for relative quantification analysis. All data for 
expression levels determined by quantitative RT-PCR were based on three biological samples with 
three technical replications. 

4.8. Transferase dUTP Nick End Labeling (TUNEL) Assay 

The liver tissues embedded in paraffin were sectioned for the TUNEL assay with a commercial 
TUNEL Apoptosis Assay Kit (Roche Applied Science, Indianapolis, IN, USA). Briefly, the tissue 
section was dewaxed by washing in xylene and rehydrated through a graded series of ethanol and double 
distilled water, and then was incubated for 20 min at 37 °C  with Proteinase K working solution. After 
that, the slides were incubated with TUNEL reaction mixture for 60 min at 37 °C  in a humidified 
atmosphere in the dark. Converter-POD was then added on the sample and the slide was incubated  
in a humidified chamber for another 30 min at 37 °C . Afterwards, the slides were incubated with 
diaminobenzidine (DAB) substrate solution for 5 min at room temperature in the dark. Sample was 
counterstained by hematoxylin, rinsed by water and differentiated by 1% hydrochloric acid alcohol 
solution for a few seconds. Finally, the slides were analyzed by light microscope. For each slide,  
10 microscopic fields were randomly chosen for statistical analysis. 

The apoptotic index was calculated using the following formula. 

Apoptotic index (100%) = (number of TUNEL positive cell nuclei/ 
number of total cell nuclei) × 100% 

(1) 
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4.9. Statistical Analysis 

Analysis of variance was performed using the SPSS program (SPSS version 19). Differences among 
the mean values were established using Duncan Multiple Range Test at p < 0.05. Values are expressed as 
mean ± SD. 

5. Conclusions 

In conclusion, the mixed corn peptides and the corn-derived peptide QLLPF can inhibit the 
hepatocyte apoptosis induced by ethanol. The mechanisms of corn peptides to inhibit hepatocyte 
apoptosis are regulating Bcl-2 family proteins, inhibiting the release of cyt c into the cytosol, regulating 
the cell surface receptor Fas, its ligand FasL and the important nuclear factor NF-κB, and preventing  
the activation of caspase-3. Specifically, the corn peptides may suppress the hepatocyte apoptosis by 
participating in both the intrinsic and extrinsic pathways, which is likely to be an important mechanism 
for preventing alcoholic liver injury. The study provides some insights into understanding the features of 
corn peptides in exerting hepatoprotective effect and enriching their mechanisms, which may facilitate 
the application of corn peptides in the future. 
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