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a b s t r a c t 

Quercetin is a biologically active flavonoid that has been used as a popular health sup- 

plement. It is reported that quercetin may cause flavonoid-drug interaction mediated by 

P-glycoprotein, the most predominant efflux transporter. In this study, we comprehen- 

sively evaluated the potential of the pharmacokinetic interaction of quercetin mediated by 

multidrug resistance-associated protein 2 (MRP2), another major efflux transporter. MRP2- 

transfected MDCKII cells and LS174T cells were used to evaluate the potential inhibition 

and induction of MRP2 by quercetin in vitro . To evaluate the induction effect of quercetin 

on Mrp2 in vivo , Mrp2 mRNA expression in rat liver, kidney, and small intestinal tissues was 

determined after the oral administration of quercetin (50, 100, or 250 mg/kg) for seven days. 

Mrp2-mediated interaction potential was also evaluated by the pharmacokinetic study of 

phenolsulfonphthalein in rats after single or multiple doses of quercetin. Additionally, the 

effect of quercetin on absorption of docetaxel, a P-glycoprotein and CYP3A4 substrate, was 

also evaluated. Quercetin inhibited the function of MRP2 at 10 μM and induced the mRNA 

expression of MRP2 at 50 μM in vitro . Additionally, at 100 mg/kg, quercetin markedly in- 

creased Mrp2 expression in the small intestine of rats. However, there was no significant 

change in phenolsulfonphthalein pharmacokinetics due to single- (50, 100, or 250 mg/kg) or 

multiple-dose (50, 100, or 250 mg/kg for seven days) quercetin co-administration. By con- 

trast, a significant interaction caused by quercetin (100 mg/kg) was observed in the absorp- 

tion of docetaxel. The results suggested that although quercetin modulates the function 

and expression of MRP2 in vitro , it may have a low potential of Mrp2-mediated interaction 

and present negligible safety concerns related to the interaction. 
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. Introduction 

uercetin is a flavonoid that exists abundantly in the gly- 
osidated form in various fruits and vegetables, such as ap- 
les, onions, capers, and red wine. The daily dietary intake 
f quercetin is 5–40 mg; however, around 200–500 mg of 
uercetin can be consumed in a day in high-end consumers 

1] . Various bioactivities of quercetin have been supported by 
n vitro , preclinical, and epidemiological studies. Health sup- 
lements containing quercetin aglycone have been used at 
oses up to 1500 mg/d [2] . Rutin (quercetin-3- O -rutinoside) is 
nother commercially available source of quercetin [3] . 

Herb-drug or flavonoid-drug interactions can compromise 
he efficacy and safety of co-administered drugs. Drug me- 
abolizing enzymes have mainly been investigated in this 
egard; however, drug transporters that are major deter- 

inants of plasma or tissue drug exposure have recently 
ained attention. In particular, there has been a growing in- 
erest in the interaction between herbs/flavonoids and ef- 
ux transporters, such as P-glycoprotein (P-gp) and multidrug 
esistance-associated proteins (MRPs), because they may di- 
ectly affect the oral absorption and tumor distribution of an- 
icancer agents [4] . 

Quercetin is reported to cause flavonoid-drug interactions 
y modulating the function and/or expression of metabolic 
nzymes. Quercetin induces the mRNA expression of CYP3A4 
y about two-fold in human hepatocytes [5] . In addition,
he activity of CYP3A4, CYP2C8, and CYP2C9 decreases by 
uercetin treatment, whereas the activity of CYP1A1 is in- 
reased [6,7] . Moreover, it clinically decreases and increases 
YP1A2- and 2A6-mediated caffeine metabolism, respectively 

8] . 
In a previous study, after the co-administration of 

uercetin (50 mg/kg) and digoxin in pigs, two-thirds of the pigs 
ied, and the remaining one showed signs of acute poisoning 
o digoxin due to increased digoxin concentration as a result 
f P-gp inhibition by quercetin; it was considered as an exam- 
le of fatal pharmacokinetic flavonoid-drug interactions [9] .

n addition, quercetin inhibited the efflux of taxol and irinote- 
an in Caco-2 cells [10,11] . It increased the oral absorption rate 
f irinotecan and decreased the biliary excretion of its toxic 
etabolite in a preclinical study [10] . These results suggest 

he potential use of quercetin in combination with anticancer 
gents to increase the efficacy and safety of chemotherapeutic 
egimens. 

Quercetin is also reported to have an inducing effect on 

ransporters. mRNA and protein expression of MRP1 was in- 
reased when MCF-7 cells were treated with 50 and 100 μM 

uercetin for 48 h, and the protein expression of UGT1A6 
nd MRP2 was increased in Caco-2 cells after treatment with 

uercetin for 72 h [12,13] . 
Mrp2 it has been considered a potential source of herb- 

rug interactions. Grape juice, Scutellariae Radix extract, Rhei 
hizoma extract, praeruptorin, and Inchinkoto have been re- 
orted to cause pharmacokinetic interactions that are asso- 
iated with MRP2/Mrp2 [14–18] . Despite the possibility of the 
nteraction of quercetin with Mrp2, follow-up studies were 
ot conducted properly. In this study, we evaluated com- 
rehensively the effect of quercetin on the inhibition and 

nduction of Mrp2 using in vitro models and an in vivo rat 
odel. 

. Materials and methods 

.1. Materials 

uercetin dihydrate, phenolsulfonphthalein (PSP),
robenecid, rifampicin, vincristine, Hank’s balanced salts,
inimum essential medium (MEM) non-essential amino acid 

olution, poly- L -lysine hydrobromide, D -glucose, HEPES, and 

odium bicarbonate were purchased from Sigma (St. Louis,
O). Docetaxel trihydrate was obtained from Shin Poong 

harmaceutical Co. Ltd. (Ansan, Republic of Korea). Zoletil®
0 (a mixture of 25 mg/ml of zolazepam and tiletamine each) 
as obtained from Virbac (Carros, France). All other chemicals 

nd reagents were of analytical or HPLC grade as appropriate.

.2. Uptake assay in MDCKII-WT and MDCKII-MRP2 

ells 

DCKII-mock (MDCKII-WT) and MRP2-transfected MDCKII 
MDCKII-MRP2) cell lines were kindly provided by Dr. Piet Borst 
The Netherlands Cancer Institute) [19] and were grown in 

EM supplemented with 1 × MEM non-essential amino acid,
0 mM HEPES, 2 mM L -glutamine, 100 units/ml penicillin,
00 μg/ml streptomycin, and 10% FBS at 37 °C in a humidified 

% CO 2 atmosphere [19] . After two days of seeding at a density
f 5 × 10 4 cells/ml, cells were washed twice with 1 × PBS and 

ere incubated in a transport media consisting of 1 × Hank’s 
alanced salts solution, 10 mM HEPES, 4 mM sodium bicar- 
onate, and 10 mM glucose. After 30 min, cells were incu- 
ated in 1 mM PSP following pretreatment with the test com- 
ound (1 mM probenecid in the transport media, and 5 and 

0 μM quercetin in 0.5% DMSO) for 15 min. Cellular uptake 
as stopped after 90 min by washing the cells four times with 

ce-cold PBS. After lysis using 1 N NaOH, cell lysates were neu- 
ralized by adding 1 N HCl and subjected to HPLC analysis as 
reviously reported [20] . 

.3. mRNA quantification and efflux assay in LS174T 

ells 

S174T cell line was obtained from the Korean Cell Line Bank 
Seoul, Republic of Korea) and cultured in RPMI1640 supple- 

ented with 100 units/ml penicillin, 100 μg/ml streptomycin,
nd 10% FBS at 37 °C in a humidified 5% CO 2 atmosphere.
ells were seeded at a density of 2 × 10 5 cells/ml (for RNA 

xtraction) and 1 × 10 5 cells/ml (for efflux assay onto culture 
lates coated with poly- L -lysine) and were incubated in a cul- 
ure medium containing rifampicin (10 μM), vincristine (5 and 

0 nM), and quercetin (5, 10, and 50 μM in 0.5% DMSO); the
edium was replaced every 24 h. After 48 h, total RNA was 

solated and the calcein efflux assay was conducted according 
o the manufacturer’s protocol (RNAiso, Takara, Japan) and a 
revious report, respectively [21] . cDNA was synthesized using 
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Takara PCR 

TM Kit (AMV) ver. 3.0, and mRNA expression was
quantified using a LightCycler ver. 1.5 (Roche, Germany) and
SYBR Premix Ex Taq (Takara, Japan). The mRNA levels were
calculated by relative quantification with glyceraldehyde-3-
phosphate dehydrogenase mRNA level as the endogenous
control. The effect of quercetin on calcein efflux via MRP2 was
evaluated based on the ratio of calcein level in the media to
that in the cells. After drug treatment for 48 h as described
above, calcein level in the media and in cells was quantified
after incubation with 1 μM calcein-AM at 4 °C for 20 min fol-
lowed by incubation in the transport media at 37 °C for 1 h. 

2.4. mRNA quantification in the liver, kidney, and small 
intestine of rats 

Quercetin (50, 100, and 250 mg/kg in 0.5% Na-carboxymethyl
cellulose) or vehicle was orally administered for seven consec-
utive days to male Sprague-Dawley rats obtained from Sam-
tako (Osan, Republic of Korea) and liver, kidney, and small in-
testinal tissues were excised on the 8 d. RNA extraction and
real-time qPCR were carried out as described in the section of
“2.3. mRNA quantification and efflux assay in LS174T cells ”. mRNA
levels were calculated by relative quantification with 18s RNA
as the endogenous control. 

2.5. Pharmacokinetic study of PSP in rats 

Male Sprague-Dawley rats (220–300 g) obtained from Samtako
(Osan, Republic of Korea) were housed at 25 °C and a 12-h
light/dark cycle and had free access to food and water, except
12 h fasting before the experiment. For the single-dose ad-
ministration study, quercetin (50, 100, and 250 mg/kg) or vehi-
cle was orally administered 1 h before PSP administration. For
the multiple-dose administration study, rats were pretreated
in the same manner as mentioned in the section of “2.4. mRNA
quantification in the liver, kidney, and small intestine of rats ”. Under
anesthesia with 1 ml/kg of Zoletil® 50 (IP), femoral artery/vein,
bile duct, and urinary bladder were cannulated with polyethy-
lene tubes and PSP was intravenously injected at a dose of
0.8 mg/kg. Mannitol solution (4%, w/v) was infused at a rate of
2 ml/h via the femoral vein as an osmotic diuretic. Blood sam-
ples were collected from the femoral artery and centrifuged
at 16 850 × g for 3 min. Bile and urine samples were collected
in pre-weighed tubes and bile flow rate was measured gravi-
metrically assuming a density of 1.0. All samples were stored
at −80 °C until analysis. PSP quantification was performed
as previously reported using HPLC [20] . The experimental
protocol of the animal study was approved by the Commit-
tee on Care and Use of Laboratory Animals of Kyung Hee
University. 

2.6. Pharmacokinetic study of docetaxel in rats 

After fasting for 12 h, male Sprague-Dawley rats were anes-
thetized with ether and surgical process was performed as
described previously [22] . After awakening from anesthesia,
rats were orally administered quercetin alone or a mixture
with docetaxel. The doses of quercetin and docetaxel were
100 mg/kg and 40 mg/kg, respectively. Blood samples were
collected from carotid artery at the designated time for 10 h.
The plasma concentration of docetaxel was quantified by LC-
MSMS analysis as previously reported [22] . 

2.7. Pharmacokinetic analysis 

Pharmacokinetic parameters of PSP and docetaxel were de-
termined using the model-independent method. The equa-
tions for area under the plasma concentration-time curve
from time zero to infinity (AUC inf ), clearance (CL), the vol-
ume of distribution at steady-state ( V dss ), mean residence
time (MRT), biliary clearance from plasma to bile (CL bile ),
and urinary clearance from plasma to urine (CL urine ) were as
follows: 

AU C inf = AU C last + AU C terminal 

AU C terminal = C p , last /k 

CL = Dose / AU C inf 

 dss = MRT × CL 

MRT = AUM C inf / AU C inf 

C L bile = X bile , 120 min / AU C last 

C L urine = X urine , 120 min / AU C last 

where AUC last , C p , last , k , AUMC inf , X bile, 120 min , and
X urine, 120 min represent the AUC from time zero to the last
sampling time point calculated using the linear trapezoidal
method, the plasma concentration of PSP or docetaxel at the
last sampling time point, the slope of the terminal phase
of the plasma concentration-time curve, the area under the
first-moment curve of the plasma concentration-time curve
from time zero to infinity, the excreted amount of PSP in the
bile for 120 min, and the excreted amount of PSP in the urine
for 120 min, respectively. 

2.8. Statistical analysis 

Statistical significance was analyzed using SPSS 15.0 program.
Unpaired t -test was applied to analyze data obtained from
in vitro experiments using MDCKII and LS174T cells and in
vivo pharmacokinetic study of docetaxel. Differences in the
mRNA expression and pharmacokinetic parameters of PSP be-
tween control and quercetin-treated rats were verified using
one-way ANOVA followed by LSD and Dunnett’s post hoc test,
respectively. A value of P < 0.05 was considered statistically
significant. 

3. Results and discussion 

The uptake of PSP, a typical MRP2 substrate, into MDCKII-MRP2
was low compared to that into MDCKII-WT. In addition, the
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Fig. 1 – Effects of quercetin on the membrane transport of 
phenolsulfonphthalein via multidrug resistance-associated 

protein 2 (MRP2). Cells were pretreated with the transport 
media (control, n = 3), 0.5% DMSO ( n = 3), 1 mM probenecid 

( n = 3), 10 μM quercetin ( n = 6), or 5 μM quercetin ( n = 6) for 
15 min followed by incubation in 1 mM 

phenolsulfonphthalein for 90 min. The transport media 
and 0.5% DMSO were used as vehicle controls for 
probenecid and quercetin treatment groups, respectively. 
Data are expressed as the mean ± SD for the ratio of 
phenolsulfonphthalein amount in MDCKII-WT to that in 

MDCKII-MRP2; ∗∗∗P < 0.001 vs. control (transport media 
only), ## P < 0.01 vs. control (0.5% DMSO). 

r
t
e
s
M
e
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t

Fig. 3 – Media-to-cell (M/C) ratio of calcein amount in 

LS174T cells. Data are expressed as the mean ± SD; ∗∗∗P < 

0.001 vs. control; # P < 0.05, ### P < 0.001 vs. 0.5% DMSO 

( n = 6). 
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atio of the intracellular concentration of PSP in MDCKII-WT 

o that in MDCKII-MRP2 cells was significantly decreased upon 

xposure to the typical MRP2 inhibitor, probenecid. These re- 
ults confirmed that PSP is a substrate of MRP2 [23] . In this 
RP2 assay system, quercetin showed a significant inhibitory 

ffect on MRP2 at a concentration of 10 μM, which was lower 
oncentration compared to the previous results ( Fig. 1 ) [24] . 

LS174T, human colon carcinoma cell line, has been used 

o evaluate the induction of drug transporters by xenobiotics 
ig. 2 – (A) and (B) mRNA expression of multidrug resistance-ass
reatment with (A) and (C) known inducers and (B) and (D) querce
ositive controls and 0.5% DMSO was used as the vehicle for que
ompared to the vehicle-treated group; ∗P < 0.05, ∗∗P < 0.01, ∗∗∗
25] . In this study, we investigated the effect of quercetin on 

he expression of MRP2 and P-gp (MDR1). Vincristine (10 nM) 
nd rifampicin (10 μM) were used as known inducers of MRP2 
nd MDR1, respectively ( Fig. 2 A and C) [25] . Quercetin (50 μM)
ncreased MRP2 mRNA expression by 3.0-fold compared to 
ontrol, and this increase was larger than that caused by vin- 
ristine ( Fig. 2 B). Quercetin (50 μM) also increased MDR1 mRNA 

xpression ( Fig. 2 D). 
The calcein-AM assay was performed to investigate 

hether the increase in MRP2 mRNA expression resulted 

n a change in transport activity. Calcein-AM is an ace- 
oxymethylester derivative of calcein, which itself does not 
uoresce, but is converted to fluorescent calcein, an MRP2 
ubstrate, by intracellular esterase after cellular uptake [26] .
s with the positive control, vincristine, quercetin (50 μM) 

ncreased the ratio of excreted calcein to extracellular cal- 
ein (media-to-cell ratio, a marker of MRP2 activity) ( Fig. 3 ).
tatistically different media-to-cell ratio was observed in 

uercetin (10 μM) treatment group, but absolute differ- 
nce was small (10.7% of control). These results on mRNA 
ociated protein 2 and (C) and (D) MDR1 in LS174T cells after 
tin for 48 h. Rifampicin and vincristine were used as 
rcetin. Data are expressed as the mean ± SD for percentage 
P < 0.001 vs. control or 0.5% DMSO ( n = 3). 
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Fig. 4 – (LIV; A–E) mRNA expression of drug transporters in the liver, (KID; F–I) kidney, and (SI; J–L) small intestine. Rats were 
orally administered 50 (Q50), 100 (Q100), or 250 mg/kg (Q250) of quercetin in 0.5% Na-carboxymethyl cellulose for seven 

consecutive days and mRNA was isolated on the 8 d. Data are expressed as the mean ± SD for percentage compared to the 
vehicle-treated group (control); ∗P < 0.05 vs. control ( n = 3–6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

expression and membrane transport suggest that long-term
exposure to quercetin modulates the gene expression and
function of MRP2 at the cellular level. Although the con-
centrations used in vitro models could be considered as rel-
atively high considering the in vivo plasma concentration
of quercetin, luminal quercetin concentration will be much
higher than its plasma concentration. The concentration of
xenobiotics in enterocytes could depend on the luminal con-
centration, not on the systemic concentration. This could be
the reason for the significant induction in the intestine in vivo ,
which is described below. 

Multiple-dose quercetin administration (50, 100, and
250 mg/kg) for seven days did not alter the mRNA expression
of rat Mrp2 and rat Mdr1a, the ortholog of human MDR1, in
the liver and kidney ( Fig. 4 A, 4B, 4F, and 4G). However, it in-
creased the intestinal mRNA expression of rat Mrp2 and rat
Mdr1a ( Fig. 4 J and 4K). The most dramatic change in mRNA
expression was observed at the dose of 100 mg/kg; Mrp2 and
Mdr1a expression was increased by 15.4- and 5.8-fold, respec-
tively. It would be interesting to investigate whether intesti-
nal drug absorption or secretion via Mrp2 or P-gp is affected
by multiple-dose quercetin administration. Because quercetin
dramatically altered Mrp2 level, intestinal drug secretion via
Mrp2 was evaluated indirectly by evaluating PSP pharma-
cokinetics after multiple-dose quercetin administration in
rats. 

Quercetin can be taken up to 2000 mg/d as a health supple-
ment. Considering body surface area, the human equivalent
dose for a rat dose of 100 mg/kg corresponds to 1129 mg/70 kg
[27] ; therefore, it is difficult to say that the 100 mg/kg is ex-
tremely high dose. 

When exposed to quercetin for seven days, the mRNA
expression of Mrp2 and Mdr1a in tissues showed different
patterns depending on the dose and tissue. There was no
apparent change in their expression in the liver and kidney.
This could be because the intestines were exposed to high
concentrations of quercetin in the intestinal lumen, whereas
the direct exposure of liver or kidney to quercetin was limited
by first pass effect. 

The induction effect on transporters was most pronounced
at the middle dose of 100 mg/kg. A similar biphasic biological
effect of quercetin has been reported previously, in which the
effect of quercetin on the ATP hydrolysis of MRP1 and MRP4
was bilateral. Quercetin promoted ATPase activity at a low
concentration and inhibited the activity at a high concentra-
tion [28] . At a low concentration, quercetin and kaempferol in-
hibited the uptake of vincristine by P-gp, but an increased up-
take of vincristine was observed at a high concentration [29] . 
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Fig. 5 – (A) Plasma concentration-time profile, (B) cumulative biliary excretion after 2 h, and (C) urinary excretion after 2 h of 
phenolsulfonphthalein administration in rats. Rats were intravenously injected 0.8 mg/kg of phenolsulfonphthalein after 
1 h of the oral administration of 50, 100, and 250 mg/kg of quercetin in 0.5% Na-carboxymethyl cellulose. ●, �, � , and � 

indicate vehicle- (control, n = 7), 50 (Q50, n = 6), 100 (Q100, n = 6), and 250 mg/kg (Q250, n = 5) quercetin-treated groups, 
respectively. Data are expressed as the mean ± SD; no statistical differences were observed. 

Table 1 – Pharmacokinetic parameters of phenolsulfonphthalein in rats after the single oral administration of quercetin. 
Data are expressed as the mean ± SD; no statistical differences were observed. 

Control ( n = 7) Quercetin 

50 mg/kg ( n = 6) 100 mg/kg ( n = 6) 250 mg/kg ( n = 5) 

AUC inf (μg ·min/ml) 175 ± 42 166 ± 44 143 ± 25 207 ± 109 
CL (ml/min/kg) 4.83 ± 1.30 5.15 ± 1.47 5.76 ± 1.10 4.55 ± 1.70 
V dss (ml/kg) 422 ± 140 611 ± 229 675 ± 291 509 ± 140 
MRT (min) 87.1 ± 13.0 117 ± 23 118 ± 49 136 ± 98 
CL bile (ml/min/kg) 2.03 ± 0.69 2.41 ± 0.78 2.40 ± 0.43 2.20 ± 0.71 
CL urine (ml/min/kg) 1.64 ± 0.81 1.60 ± 1.31 1.72 ± 0.91 1.26 ± 0.89 

a
a  

t
p
e
t
o  

r
(
q
O
5
w

 

4
q

s
e
d
f
s

e  

I
t
q
a
o  

a
s
o
e
n
q
5
w  

C
m
s  

t
c
q
h
o
h

o
g

The organic anion transporting polypeptide (OATP) family 
re mainly distributed in the liver and contribute to the hep- 
tic uptake of various types of organic anions [30] . Similarly,
he organic anion transporter (OAT) family of transporters 
resent in the kidney. Although the fold increase in the 
xpression of Oatp1a4 and Oatp2b1 was lower than that in 

he expression of Mrp2 in the intestinal tissue, the expression 

f Oatp1a4 and Oatp2b1 was increased by 2.1- and 2.2-fold,
espectively, in the liver after exposure to 50 mg/kg quercetin 

 Fig. 4 C and 4E). This finding suggests that continuous 
uercetin administration may increase the hepatic uptake of 
ATP substrates. However, mRNA levels at doses higher than 

0 mg/kg were similar to control, and Oatp1b2 mRNA level 
as not changed in all three dosing groups ( Fig. 4 D). 

The expression of Oat1 and Oat3 in the kidney ( Fig. 4 H and
I) and Oatp2b1 in the intestine ( Fig. 4 L) was not affected by 
uercetin. 

To support results of mRNA induction, the protein expres- 
ion of these transporters was not checked in this study. We 
xpected that an in vivo pharmacokinetic study after multiple- 
ose quercetin administration in rats can be used to detect 
unctional changes in these transporters because PSP is a co- 
ubstrate of MRP2/Mrp2, Oatp1B1, Oat1, and Oat3 [31,32] . 

The inhibitory effect of quercetin on Mrp2 in vitro was also 
valuated by an in vivo pharmacokinetic study of PSP in rats.
nterestingly, the plasma concentration profile, biliary excre- 
ion, and urinary excretion of PSP when co-administered with 

uercetin (50, 100, and 250 mg/kg) were similar to those in the 
bsence of quercetin ( Fig. 5 ), and pharmacokinetic parameters 
f PSP were not affected by quercetin ( Table 1 ). Because Mrp2
ctivity is known to affect the biliary, urinary, and intestinal 
ecretion of PSP [20,33] , these results suggest that the effect 
f quercetin absorbed after single oral administration on the 
xcretion of Mrp2-mediated drugs would be small due to sig- 
ificant first pass effect. More than 90% of orally administered 

uercetin is metabolized during absorption, and only about 
.3% is observed in the systemic circulation [34] . Although 

e did not measure the plasma concentration of quercetin,
 max after the oral dosing of quercetin at 250 mg/kg is esti- 
ated at 1.8 μg/ml (6.0 μM) from a previous pharmacokinetic 

tudy [35] . Because quercetin metabolites also inhibited MRP2,
he interpretation of results of this study became more diffi- 
ult. For example, 3 ′ - O -methylquercetin and 7- O -glucuronosyl 
uercetin, phase II metabolites of quercetin, significantly in- 
ibit calcein uptake via MRP2 [36] , whereas total metabolites 
f quercetin after incubation with rat S9 fraction does not in- 
ibit P-gp function [37] . 

Generally, flavonoids predominantly exist in the form 

f glucuronidated and sulfated (mixed or multiple) conju- 
ates in the blood. Glucurono-sulfo-conjugated quercetin 
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Fig. 6 – (A) Plasma concentration-time profile, (B) cumulative biliary excretion after 2 h, and (C) urinary excretion after 2 h of 
phenolsulfonphthalein administration in rats. Rats were intravenously injected 0.8 mg/kg of phenolsulfonphthalein after 
the oral administration of 50, 100, and 250 mg/kg of quercetin in 0.5% Na-carboxymethyl cellulose for seven consecutive 
days. Pharmacokinetic experiments were performed on the 8th day. ◦, �, 

� 

, and � indicate vehicle- (control, n = 4), 50 (Q50, 
n = 3), 100 (Q100, n = 3), and 250 mg/kg (Q250, n = 3) quercetin-treated groups, respectively. Data are expressed as mean ±
SD; no statistical differences were observed. 

Table 2 – Pharmacokinetic parameters of phenolsulfonphthalein in rats after the multiple oral administration of quercetin 

for seven days. Data are expressed as the mean ± SD; no statistical differences were observed. 

Control ( n = 4) Quercetin 

50 mg/kg ( n = 3) 100 mg/kg ( n = 3) 250 mg/kg ( n = 3) 

AUC inf (μg ·min/ml) 186 ± 52 171 ± 39 167 ± 35 158 ± 20 
CL (ml/min/kg) 4.61 ± 1.51 4.83 ± 0.98 4.94 ± 1.13 5.11 ± 0.67 
V dss (ml/kg) 644 ± 366 445 ± 82 531 ± 289 511 ± 205 
MRT (min) 132 ± 38 92.5 ± 4.4 103 ± 32 97.8 ± 25.6 
CL bile (ml/min/kg) 2.31 ± 0.78 2.54 ± 1.07 2.28 ± 0.63 2.53 ± 0.51 
CL urine (ml/min/kg) 1.36 ± 0.58 1.54 ± 0.04 1.59 ± 1.52 1.14 ± 0.67 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and glucurono-sulfo-conjugated isorhamnetin (3 ′ - O -
methylquercetin) are the dominant forms (more than 90%)
found in rats [38,39] . 

The reported plasma concentration of quercetin in
humans after the administration of quercetin, rutin, or
quercetin-containing diet varies substantially among stud-
ies. Because quercetin is extensively metabolized to glu-
curonide and sulfate conjugates, quercetin-3-glucuronide, 3 ′ -
methylquercetin-3-glucuronide, and quercetin-3 ′ -sulfate are
majorly present in human plasma [40] . The C max of quercetin
and its conjugates was 15.4 ng/ml (0.0509 μM) and 448 ng/ml
(1.48 μM), respectively, after multiple-dose oral quercetin
administration (500 mg t.i.d for seven days) [41] . In addition,
the plasma concentration of total quercetin (quercetin plus
conjugated forms) after multiple-dose quercetin adminis-
tration reached up 418 and 605 μg/l for 500 and 1000 mg/kg
doses, respectively [42] . Thus, it is important to identify the
effect of quercetin metabolites in humans on MRP2 to relate
this non-clinical data with the clinical situation. In addition,
the high protein binding of quercetin should be consid-
ered [43] because it may decrease the free concentration of
quercetin at the binding site of transporters. 
To investigate the effect of quercetin on the hypothetical
induction of transporters, quercetin (50, 100, and 250 mg/kg)
was administered as multiple doses for seven days, and
changes in PSP pharmacokinetics were observed. The plasma
concentration-time profile, biliary excretion, and urinary ex-
cretion of PSP when co-administered with quercetin were
similar to those in the absence of quercetin ( Fig. 6 ), and phar-
macokinetic parameters of PSP were not affected ( Table 2 ).
The expression of Mrp2 in the liver and Oat1 and Oat3 in the
kidneys did not change after the administration of quercetin.
Consequently, the in vivo pharmacokinetics of PSP were not af-
fected by quercetin. The two-fold increase in Oatp mRNA ex-
pression, which was observed in the 50 mg/kg quercetin group,
did not affect PSP pharmacokinetics. Additionally, the plasma
concentration-time profile of PSP did not change by multiple-
dose quercetin administration, despite Mrp2 being involved in
the intestinal secretion of PSP. This may be explained by infer-
ence that Oatps and Mrp2 were not induced at protein level.
Otherwise, fold differences of induction were not great, and
fail to affect plasma concentration profile of PSP. 

Meanwhile, plasma concentrations of docetaxel, a sub-
strate for P-gp and CYP3A4 [44] , increased significantly by
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Fig. 7 – Plasma concentration-time profiles of docetaxel in 

rats. Rats were orally administered 40 mg/kg of docetaxel 
with or without 100 mg/kg of quercetin. � and � indicate 
control ( n = 4) and 100 mg/kg quercetin-treated group 

( n = 3), respectively. Data are expressed as mean ± SD. 

Table 3 – Pharmacokinetic parameters of docetaxel in rats 
after oral administration at the dose of 40 mg/kg of doc- 
etaxel with or without 100 mg/kg of quercetin. Data are 
expressed as the mean ± SD; ∗P < 0.05 vs. control. 

Control ( n = 4) Quercetin ( n = 3) 

AUC inf (ng ·h/ml) 141 ± 35 251 ± 65 ∗

C max (ng/ml) 39.3 ± 24.0 97.8 ± 32.7 ∗

T max (h) 1.21 ± 1.87 0.417 ± 0.144 
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oncomitant oral administration of quercetin, whereas 
uercetin administered orally did not affect the pharma- 
okinetics of PSP ( Fig. 7 ). AUC inf and C max of docetaxel in the
uercetin-treated group were 1.8- and 2.5-fold higher than 

hose in the control group, respectively ( Table 3 ). The intesti- 
al concentration of quercetin in this study was assumed to 
e about 18.1 mM, considering intestinal volume. Because it 
ould be higher than IC 50 values of quercetin for P-gp and 

YP3A4, both P-gp and Cyp inhibition could contribute to the 
ncreased the absorption of docetaxel [45–47] . These results 
howed again that at least quercetin could affect pharma- 
okinetics of drugs when quercetin encounters victim drugs 
n the intestinal lumen. 

Dosing formulation is another important factor influenc- 
ng the plasma concentration of quercetin after its absorption 

48] . When quercetin-containing diet was fed to sponta- 
eously hypertensive rats for 5 or 11 weeks (approximately 
quivalent to 20–40 mg/kg/d of quercetin), there was no 
elay in the development of hypertension compared with the 
ontrol group. Whereas, rats administered quercetin orally 
10 mg/kg) once a day for four days had lower blood pressures 
han control rats, suggesting that the effect of quercetin may 
epend on the dosage form [49] . However, although we also 
valuated PSP pharmacokinetics after an intravenous infusion 

f quercetin (147 mg/h/kg; maximum soluble dose) to exclude 
he absorption problem, there was no significant change in the 
rp2-mediated pharmacokinetics of PSP (data not shown). In 

his experiment, the total plasma concentration of quercetin 

t the steady-state was 23.6 μg/ml (equivalent to 78.1 μM).
ecause quercetin was reported to bind to plasma protein 

xtensively, about 99%, its free plasma concentration was 
redicted to be much lower than the IC 50 value against MRP2 
hich was known to be higher than 50 μM [43] . This might be

he reason of inconsistent results between in vitro inhibition 

tudy and in vivo study. In conclusion, considering the dose 
imitation due to low solubility, high protein binding, and the 
igh IC 50 value of quercetin, a pharmacokinetic interaction 

etween quercetin and MRP2 substrates should be negligible 
rrespective of the route of administration of quercetin. 

. Conclusion 

n this study, we investigated the interaction between 

uercetin and Mrp2 through in vitro experiments and in 
ivo pharmacokinetic studies. In conclusion, quercetin 

ignificantly interacts with Mrp2 at the cellular level. However,
his result was not associated with in vivo PSP pharmacoki- 
etics. Multiple-dose quercetin administration resulted in an 

ncrease in the mRNA expression of transporters, including 
rp2 in the small intestine and Oatp in the liver. However,
o changes in PSP pharmacokinetics in vivo were observed 

robably because quercetin existed mainly in its conjugated 

orms in the body. These results suggest that quercetin may 
e relatively safe in terms of Mrp2-mediated interaction.
nother important lesson of this study is that bioavailabil- 

ty should be considered when we discuss flavonoid-drug 
nteraction using in vitro results. Thus, the effects of metabo- 
ites present in the body should also be tested using in vitro 
xperiments. 
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