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Cortical Folding Pattern and its 
Consistency Induced by Biological 
Growth
Mir Jalil Razavi1, Tuo Zhang2,3, Tianming Liu2 & Xianqiao Wang1

Cortical folding, characterized by convex gyri and concave sulci, has an intrinsic relationship to the 
brain’s functional organization. Understanding the mechanism of the brain’s convoluted patterns 
can provide useful clues into normal and pathological brain function. In this paper, the cortical 
folding phenomenon is interpreted both analytically and computationally, and, in some cases, the 
findings are validated with experimental observations. The living human brain is modeled as a soft 
structure with a growing outer cortex and inner core to investigate its developmental mechanism. 
Analytical interpretations of differential growth of the brain model provide preliminary insight into 
critical growth ratios for instability and crease formation of the developing brain. Since the analytical 
approach cannot predict the evolution of cortical complex convolution after instability, non-linear 
finite element models are employed to study the crease formation and secondary morphological 
folds of the developing brain. Results demonstrate that the growth ratio of the cortex to core of the 
brain, the initial thickness, and material properties of both cortex and core have great impacts on 
the morphological patterns of the developing brain. Lastly, we discuss why cortical folding is highly 
correlated and consistent by presenting an intriguing gyri-sulci formation comparison.

Brain development and related cerebral convolution have been fascinating research topics for more than 
a century1–5. The grooves in the convoluted brain are called sulci and the ridges between them are called 
gyri. The outer layer of the brain is composed of folded gray matter, called the cortex, which is made 
up of cell bodies and capillaries. The subcortex, or inner core, consists mostly of the white myelinated 
sheaths of neuronal axons. Human brain development involves a series of intricate and overlying pro-
cesses, including neuronal precursor proliferation at the ventricular zone, neuroblast exodus from the 
ventricular zone, neuroblast migration, migration arrest, and neuronal organization6,7. During the devel-
opment, the cerebral cortex experiences a noticeable expansion in volume and surface area accompanied 
by tremendous tissue folding8,9, which may be attributed to many possible factors, such as cranial con-
straint2, differential growth on the cellular base10, and axon maturation11. Despite decades of endeavors, 
the fundamental mechanism and key regulators of this crucial process remain incompletely understood12.

The most famous hypotheses in this area are related to the roles of internal tension in neuronal fibers 
(axons), differential expansion of the cortex, and radial growth12,13. In the internal tension hypothesis, 
axons exert a pulling force among cortical regions and thus induce folding11; however, there are many 
evidences against this hypothesis14. In the differential growth hypothesis, the outer layer of the brain 
grows at a faster rate than the inner layer, acting as the driving mechanism for cortical folding15–17. In 
most previous studies related to the elastic buckling models of the brain, the elastic modulus of the outer 
layer was higher than that of the core in order to produce buckling patterns which was not consistent 
with experimental observations15,16. In fact, the elastic modulus of the outer layer is not significantly 
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different than that of the inner layer of the brain18–20. A computational model of cortical convolution21 
suggested that without any additional assumption, the simple mechanical property of the cortex and 
differential growth are sufficient to produce cortical folding, which has been proven by other studies13,17.

Since cortical folding is a complicated phenomenon, computational modeling has begun to emerge 
as a powerful tool to validate or verify the results from experiments in addition to analytical models. 
For example, finite element (FE) analysis has offered valuable insight into the growth, morphology, and 
function of the brain. With FE models, it has been shown that a faster tangential cortical expansion leads 
to a shorter gyral wavelength, and that neither inner nor outer constraint (skull) is needed to produce 
folding14. Recently more 2D and 3D brain models have been implemented to clarify the role of mechan-
ics during the brain development, and their results show that morphological abnormalities related to the 
developing brain can be presented by the mechanical models22–24.

Although significant progress has been made in recent years with respect to the modeling of the mor-
phological evolution of the developing brain, there still remain many open questions which require addi-
tional experimental and analytical investigation. For example, why is the primary cortical convolution 
organization across subjects within each species highly correlated and consistent rather than random, 
and what factors count for this consistency as regulators? What is the contribution of glial cells and axons 
in the convolution process, and how can their roles be considered in the mechanical models? The aim of 
this paper is to develop an integrated analytical and computational tool to better model the growth and 
instability of the developing (cortex and core) brain, to investigate the criteria for instability and crease 
formation of the brain, and to link the instability to the geometrical and material properties of the brain. 
Finite element analyses are performed in order to leverage the results from the analytical approach and to 
predict the secondary morphological patterns of the developing brain. Finally, we will offer clues into the 
regulating mechanism of cortical folding by presenting an intriguing gyri-sulci formation comparison.

Results
Residual stress and instability induced by growth. For the proposed 2D cortex-core model, 
deformation and stress fields of a growing model can be derived (see details in the Methods section) 
based on the differential growth theory, incompressibility constraint, and the deformation gradient in the 
cylindrical coordinate system. Here, two cases of the growing brain model are considered: the first case 
is the isotropic growth for both cortex and core, and the second one is the tangential growth of the cortex 
but the isotropic growth for core. In the first case, we define = =θg g gr ss s

 and = =θg g gr cc c
 as the 

isotropic growth rate for the cortex and core, respectively. Here, g r s
 is the growth rate of the cortex in 

the radial direction, 
θg

s
 is the growth rate of the cortex in the circumferential direction, g rc

 is the growth 
rate of the core in the radial direction, and 

θg
c
 is the growth rate of the core in the circumferential direc-

tion. In the second case, the cortex of the brain model grows at a faster rate tangentially than the inner 
core. Here, the growth ratio of the cortex in the radial direction is considered as a unit, and the core 
experiences an isotropic growth with the growth rate gc. The growth rate of the cortex in the circumfer-
ential direction is assumed to be gθ. After a lengthy derivation, the radial and circumferential stress 
distribution in the cortex and core can be obtained.

Figure 1 depicts the normalized radial ( )σ = σ
μrr
rr  and circumferential ( )σ =θθ

σ
μ
θθ  Cauchy stresses for 

both cases of the growing brain model. Here, it is considered that the shear moduli (μ) of the cortex and 
core of the brain are the same24. The ratio of the initial inner to outer radius of the cortex is A/B =  0.95, 
for the definition of A, B and R please see the Methods section. In both cases, the cortex grows three 
times faster than the core, which means gs/gc =  3 or gθ/gc =  3 (the number 3 is chosen here to show the 

Figure 1. Normalized stress distribution in the radial and circumferential directions for the growing 
cortex-core model; (a) isotropic growth of the cortex and core, gs/gc = 3 and A/B = 0.95; (b) circumferential 
growth of the cortex and isotropic growth of the core, gθ/gc = 3 and A/B = 0.95. 
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stress distribution pattern, more discussion about the growth ratio will be presented in the following 
section).

Figure 1 also shows that, in both cases, the mismatch between the growth rates of the cortex and core 
leads to the appearance of residual stresses in the structure. It is noticed that both radial and circumfer-
ential stresses in the core are tensile. However, the radial stress in the cortex is tensile but the circumfer-
ential stress is compressive, which is consistent with experimental observations14,25. Also, the core of the 
brain model is under a homogeneous stress state, and its magnitude is equal to that of the radial stress 
of the cortex at the interface, σ σ σ= = |θθ =rr rr R Ac c s

. For the purpose of illustration, here only the range 
of the core from R/B =  0.9 to R/B =  0.95 is shown in the plot. The compressive stress in the cortex may 
have an important effect on the onset of instability. The stress state of the core is independent of its shear 
modulus and is homogenous in all growth ratios. Interestingly, for the case of isotropic growth (Fig. 1a), 
the magnitude of the normalized stresses is just a function of the growth ratio of the cortex to core and 
is not related to the individual growth rates of the cortex and core. For the case of tangential differential 
growth (Fig. 1b), the growth rate of the cortex in the radial direction is considered as a unit. In contrast 
to the isotropic growth of the cortex, the change of the growth rate of the core modifies the stress distri-
bution of the brain model while keeping the growth ratio of the cortex to core unchanged. The magni-
tude of the radial stress in the case of the tangential growth is lower than the one in the isotropic case 
in general, but the magnitude of the circumferential stress is higher. For both isotropic and tangential 
growth cases, when the cortex grows faster than the core, larger compressive stresses always occur in the 
outer layer of the cortex. These kinds of compressive stresses in the surface of soft materials engenders 
instability and leads to the formation of creases24,26.

Hence, in order to find the critical growth ratio which makes the brain model lose stability, we follow 
Suo’s work26 to derive the formula for both cases below (for more details please see instability analysis 
subsection in the Methods section)
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From the equations, it clearly shows that the critical growth ratio depends on the initial configuration of 
the model. Similar to the stress distribution in the isotropic growth case, here the critical growth ratio 
( /g gs c) is not related to the absolute value of the individual growth rates for either the cortex or the core. 
For the case of the tangential growth, it can be observed from Eq. (2) that the critical growth ratio, as 
defined by /θg g c, is not just a function of geometric parameters, but also depends on the absolute value 
of the cortex or core growth rate. Figure 2 plots the critical growth ratio for the onset of creases in the 
brain model as a function of geometric parameters and growth rates of the core for both cases.

Figure 2a shows that below a critical value of / = /A B 7 12 , instability will not occur no matter what 
the growth ratio of the cortex to core is. In other words, a brain model with a thick cortex is more stable 
than one with a thin cortex during the growing process. With the decrease of the cortex thickness, the 
critical growth ratio for instability or creasing decreases and ≥ .1 55

g

g
s

c

 is required to start instability for 

Figure 2. Critical growth ratio of the brain model to trigger instability: (a) Isotropic growth of both the 
cortex and core; (b) Tangential growth of the cortex and isotropic growth of the core. In both cases, the 
cortex and core have the same material properties.
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a model with very thin cortex. Here, the geometry of the cortex as A/B =  0.95 in the brain model is 
considered27. Based on Fig.  2a, the critical growth ratio of the cortex to core for crease formation is 
around 1.68, which means from the analytical viewpoint, the cortex should grow 1.68 times faster than 
the core to generate cortical folding. In Fig.  2b for the tangential growth of the cortex, the instability 
always happens in the brain model once it reaches the critical growth ratio irrespective of the thickness 
ratio of the cortex to core. The general trend is that by decreasing the thickness of the cortex in the 
model, the critical growth ratio for instability also decreases. On the other hand, by increasing the growth 
rate of the core, the critical growth ratio of the cortex to core for instability will decrease, indicating that 
a brain model with a fast growth in the core easily loses stability. This trend is more pronounced when 
a brain model with a thick cortex is considered. The solid line in Fig. 2b refers to a situation where the 
core does not grow (gc =  1) and it acts as a rigid substrate. In the model with a thin cortex, as indicated 
in the subplot of the Fig. 2b, the critical growth ratios are quite close to each other regardless of the core 
growth rate. The critical growth ratio of instability for the model with a very thin cortex is close to 1.55, 
which is the same as the value from the case with the isotropic growth. By comparing both isotropic and 
tangential growth cases under the same thickness of the cortex, it is found that the critical growth ratio 
of instability for the isotropic growth case is higher than that of the tangential growth case. This can be 
attributed to the increase in the thickness of the cortex due to the growth in the radial direction, which 
exerts a positive effect on the stability of the brain model.

Crease formation and post-perturbation. When the growth ratio of the cortex to core in the brain 
model is beyond the critical value, the system starts to lose stability and form creases in the outer surface 
of the model. This happens in order to release the elastic energy in the brain model partly and therefore 
reach another stable configuration. Since the analytical solution cannot predict crease formation after the 
critical growth ratio, FE models are implemented to predict folding patterns after instability. Figure  3 
shows a morphogenesis evolution of a growing brain model under a series of growth ratios. At the 
beginning, the number of the creases in the model is few and the depth of the creases is shallow. With 
the continuing growth, more creases occur on the surface of the outer cortex. It is clearly noticed that the 
cortical layer in the gyri region is significantly thicker than the one in the sulci region, which is highly 
consistent with experimental observations28. Analytical and computational results for the critical growth 
ratio for instability and crease formation are also in good agreement as shown in Fig. 2a.

Therefore, these preliminary findings may offer clues to characterize and evaluate some specifications 
of a developing brain. For instance, one remarkably distinctive feature of the mammalian brain is the 
unique relationship between the cortical surface area and the brain volume during the morphologi-
cal evolution process. If the cortical surface area were to increase in a purely geometric fashion, then 
its increase would follow the two-thirds power relationship of the brain volume29,30. During the actual 
brain development, however, gyrification allows for an increasingly large cortical surface. Therefore, the 
surface area of the cerebral cortex increases almost as the first power (α =  0.90) of the brain volume29. 
Figure 4a shows the variation of the perimeter of the cortical layer as a function of the total area of the 
model. In the plane-strain 2D model, the perimeter of the cortical layer represents the cortical surface 
area, and the area of the model represents the total brain volume as a 3D model does. Cortical folding 
maximizes the surface-to-volume ratio of the brain to increase the number of nuclei and decrease the 
relative distance between them.

Before instability and crease formation, the perimeter of the cortical layer is expected to vary as the 
square root of the area of the model, as indicated in Fig. 4a with blue, because the growing brain model 
keeps a circular shape. However, when the brain model develops convolutions, the change of the perim-
eter of the cortical layer deviates from the previous trend related to the growth of the total area, and the 
perimeter of the cortical layer grows faster than expected. Figure 4b shows the relationship between the 
surface area and volume of a real developing brain during the gestation period. It is clear that there is a 
good agreement between the computational and experimental results. For the real brain, during the first 
stage before crease, the slope is somehow greater than the one from computational results. This can be 
explained that in the simulation the brain is modeled as a 2D circle while in reality this is not the case.

Figure 3. Evolution of crease formation in a growing brain model with A/B = 0.95 and gs/gc = 3; (a) 
gt = 1; (b) gt = 1.408; (c) gt = 1.462; (d) gt = 1.509; (e) gt = 1.691. Figures are not in the same scale. For the 
definition of gt please see the Methods section.
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Effect of cortex thickness and material property. It was found in Fig. 2 that the thickness of the 
cortex is a crucial parameter in determining the critical growth ratio for instability in a growing brain 
model. Therefore, it is worthwhile to investigate the effect of the cortex thickness on the morphological 
pattern of the brain after instability. Here, several models with different thickness for the cortex have been 
carried out as depicted in Fig. 5. As observed in the analytical section, a large critical growth ratio for 
starting instability in the model with a thick cortex is needed. As shown in the first column (A/B =  0.85) 

Figure 4. (a) Variation of the cortical perimeter versus area in the brain model with A/B = 0.95 and 
gs/gc = 3 before and after developing convolutions (b) Cortical surface area versus volume of a spatio-
temporal atlas of developing brains ranging from 23 to 37 weeks gestational age (GA)63. Brain volume was 
measured directly on the volumetric atlas. Cortical area was measured on triangular mesh cortical surfaces 
reconstructed from the volumetric atlas via marching cube based methods64. The age range of the blue dots 
is 22 weeks to 27 weeks while that of the scarlet dots is 28 weeks to 37 weeks.

Figure 5. Morphological evolution of a growing model with different cortex thickness under μs/μc = 1 
and gs/gc = 3; time step from 1 to 4 shows the evolution of morphology of the models (figures are not in 
the same scale). 
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of Fig. 5, the number of creases is only four and the evolution of the creases is very stable without any 
increase in the number of creases. This phenomenon is experimentally observed in Lissencephaly, a 
malformation of the brain with a thick cortex and fewer gyri and sulci6,31, see Fig. 1 of the reference32. 
For the purpose of comparison, we consider a brain model with a thin cortex (A/B =  0.975) to illustrate 
the change of brain morphology due to the change of the thickness of the cortex.

The last column of Fig. 5 shows the formation of numerous small gyri and sulci in the brain model 
after instability compared with a normal one in Fig. 3. The morphological pattern has been experimen-
tally observed in polymicrogyria malformation, where the surface of the brain normally has many folds 
and the cortex thickness is smaller than the one in a healthy brain. Either the whole surface (general) or 
parts of the surface (local) can be affected6,33, see Fig. 2 in the reference34.

In addition to the geometrical parameters, the material property of the brain model may also play a 
vital role in the convolution pattern of the brain. Hence, in what follows, the effect of material property 
of the brain will be investigated. Before that, however, it is noteworthy to mention that it is still very 
difficult to characterize the brain mechanical property accurately because characterization of the brain 
tissue highly depends on the definitions, tools and procedures used18. For example, it has been shown 
that the brain exhibits an anisotropic behavior; additionally, the white matter has more heterogeneity 
than the gray matter19,35,36. The shear moduli of the grey and white matter have been reported differently 
in various studies22,23,37,38. Therefore, there is no firm and proven data for the material properties of the 
grey and white matter. Here, the focus is on the morphological evolution of the brain with respect to the 
shear moduli ratio of the cortex to core rather than the absolute magnitudes for both parts.

Figure 6 shows the morphological evolution of a growing brain model with different material prop-
erties of the cortex and the core under the same geometric configuration, A/B =  0.95, in which the shear 
moduli ratio of the cortex to core (μ s/μ c) varies from 1 to 4. The brain model with a small shear moduli 
ratio prefers to develop creases first after instability; however, when the shear moduli ratio is large, the 
brain model prefers to wrinkle first and then develop creases. This finding reveals that, for the forma-
tion of creases in the brain, the shear moduli of the cortex and the core should be close to each other, 
which has been experimentally validated in the recent work39. It also reveals that the number of wrinkles 
depends on both the shear moduli ratio and the thickness of the cortex in the brain model40. These 
findings demonstrate that the shear moduli ratio of the cortex and the core exerts a great impact on the 
morphological pattern of the growing brain model after instability. It also implies that a change of the 

Figure 6. Morphological evolution of a growing brain model with different shear modulus ratios of the 
cortex and core under A/B = 0.95 and gs/gc = 3; time step from 1 to 4 shows the evolution of morphology 
of the model (figures are not in the same scale). 
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stiffness in the cortex or core of the brain caused by abnormalities or disorders may lead to a change in 
the pattern of the formation of gyri and sulci.

Discussions
After instability occurs in a growing brain model, a thick cortex leads to the formation of fewer gyri 
and sulci (low gyrification index). This is consistent with Lissencephaly malformation in the developing 
brain. In contrast, a thin cortex leads to a high number of shallow gyri which is an abnormality referred 
to as Polymicrogyria23.

Evidence which may prove that a thinner cortex leads to more creases in a brain is the central sulcus, 
a primary somatosensory cortex which roughly consists of Brodmann areas #1, 2 and 341. The central 
sulcus and the primary visual cortex are among the thinnest parts in the cortical region of the human 
brain28. From the imaging data, it can be observed that the central sulcus is one of the deepest sulci in 
the brain and that the primary visual cortex has the most complicated folding patterns among all cortical 
cortex regions5,42,43 as shown in Fig.  7. This lends compelling credence to the statement that a thinner 
cortex leads to more creases in cerebral cortex.

In addition to the quantitative analysis of the surface-to-volume ratio of a developing brain, there is 
another quantitative index crucial to interpreting the formation of creases in brain: the cortical thickness. 
Figure  8a shows the linear relationship between the thickness of gyri and the cortical thickness in the 
brain model. This dependency and relationship can also be observed in the different parts of a real brain 
as indicated in Fig. 8b.

From Fig.  8a, it can be inferred that the thickness of gyri is closely related to the thickness of the 
cortex. Given that gyri thickness in the FE brain model is roughly calculated and compared with the 
wave length of a buckling stiff layer on a soft substrate, a similar trend is observable from an analytical 
viewpoint. The wavelength λ of a wrinkling pattern in the film-substrate model predicted by the linear 

Figure 7. The thickness of an adult cerebral cortex mapped onto its white matter triangular mesh 
surface. White arrows highlight locations of central sulcus and primary visual cortex where thinner cortices 
are found. Figures are constructed based on the data from the Human Connectome Project (http://www.
humanconnectome.org/)65 and by using the FreeSurfer toolkit28,66.

Figure 8. (a) Dependency of gyri thickness on the thickness of the cortex. Gyral thickness is measured 
on gray matter (cortex) surfaces. (b) Gyri annotation on adult brain gray matter surfaces, PreCG: pre-
central gyrus; PostCG: post-central gyrus. Picture (b) is constructed based on the data from the Human 
Connectome Project (http://www.humanconnectome.org/)65. The HCP MRI data pre-processing pipelines are 
primarily built by using tools from FSL and FreeSurfer67–69.

http://www.humanconnectome.org/
http://www.humanconnectome.org/
http://www.humanconnectome.org/
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buckling theory is λ = π μ /μ /2 t[ ]f s
1 3, where t is the thickness of the film and μ f and μ s are the shear 

moduli of the film and substrate respectively44. Here, as mentioned before, the shear moduli for the 
cortex and the core are the same. From the analytical formulation, it can be seen that there is a linear 
relationship between wavelength (in the FE models referred as gyri thickness) and the thickness of the 
film, which is the same as the result from the FE simulations in this study45.

As mentioned in the introduction section, there is an intriguing question to answer: why is the pri-
mary cortical convolution organization across subjects within each species highly correlated and consist-
ent rather than random? Here, we would like to offer some preliminary data to initiate the discussion as 
to what factors determine these correlated patterns in the brain. It was reported that radial glial cells 
(RGCs) with lower levels of Trnp1 could generate basal progenitors (BPs), also known as intermediate 
progenitors (IPCs), and basal radial glial cells (bRGCs), which eventually contribute to generate neu-
rons46–48. More interestingly, Trnp1 levels exhibit regional differences in the cerebral cortex of human 
fetuses47. Therefore, here we hypothesize that convolution patterns might stem from the heterogeneous 
regional growth rates. Convex patterns may be produced in locations where the cortical plate grows faster 
because more neurons migrate towards those regions. It had been reported that radial/tangential heter-
ogeneous growth rate among laminas might be a critical factor in generating convolution10,16,49. Therefore, 
we reproduce this factor in our model by setting the growth speed of the cortex (gs) faster than that of 
the core (gc). The upper row of Fig. 9 shows the results with a variety of growth ratios (gs/gc) between the 
cortex and core of the brain model. Comparing with previous results, it is observed that convolution 
becomes more elaborate with the increasing growth ratio (gs/gc), but the growth ratio does not regulate 
the convolution patterns. For example, 10 corresponding locations have been highlighted by numbered 
arrows on the cortex. With different growth ratios for the cortex and core of the model, consistent folding 
patterns are not always reproduced. To be more specific, the positions on the cortex are blue if they are 
located near the ‘sulcal roots’ and black otherwise. In Fig. 9b,c, arrow #2 appears in gyral regions; while 
it is in the sulcal root in Fig. 9d. Another example is the location of arrow #8, which appeared on gyral 
wall in Fig. 9c, and on the gyri in Fig. 9d. In contrast, based on the same model, we introduce a regional 
growth speed difference within the cortex (the second row of Fig. 9. Under the assumption that regions 
with more RGCs accumulate more migration neurons to the cortical plate, we initialize the cortex by 
assigning certain periodic cortex regions (s1, highlighted by black arrows) higher growth speeds than the 
others (s2, highlighted by blue arrows), i.e., >g gs s1 2

. In order to simplify the analysis, the growth speed 
of the s2 region is set as twice that of the core, i.e., > =g g g2s s c1 2

. It is interesting to see that convex 
and concave patterns are consistently formed in s1 and s2 regions, respectively. These simulation results 
suggest that the cortex-core differential growth assumption may only produce unregulated convolution 
while consistent and reproducible convolution patterns on the cerebral cortex are regulated by regional 
growth heterogeneity. This is controlled by regional differentiation of RGCs in the early stage of devel-
opment in the fetal brain.

Last but not the least, it is worthwhile to mention that in the application of analytical and computa-
tional models there are some simplifications and assumptions which impose limitations to the results. 

Figure 9. Cortical convolution patterns with different growth speeds (gs/gc). Numbered arrows indicate 
the corresponding locations on the cortex. In the first row (a–d), no growth difference is set to the cortex 
while in the second row (e–h) the cortex regions highlighted by the even numbered arrows grow faster than 
those highlighted by the odd numbered arrows ( > = )g g g2s s c1 2 . Based on observation, blue arrows are 
used to suggest sulcal regions and black arrows to suggest gyral ones. The simulation results shown in each 
sub-figure occur at the same simulation time.
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In our model, the cortex and the core of the brain are assumed to be isotropic while in the real brain 
both grey and white matter show anisotropic properties35,36. For example, the anisotropy of the core 
(white matter) has been modeled by a stretch driven property to mimic the axons contribution to the 
deformation of the developing brain17,23, while the assumption cannot exactly cover the role of the axons 
and glial cells on the regulation of convolution patterns in a developing cerebral cortex46,47,50,51. This 
still requires extensive research in order to consider appropriate glial and axonal contributions in the 
mechanical models. In this paper and other studies, smooth circular or elliptical initial shapes have been 
considered as the initial geometry of a developing brain17,22, while a real developing brain at the early 
stage is not in a regular shape52. Therefore, modeling the brain with a proper initial geometry may lead to 
a better interpretation of the convolution pattern of the brain. Finally, most current models for cerebral 
convolution in either human or other animals, e.g. ferret, are two dimensional models. A 3D model is 
obviously more realistic since brain convolution is a three dimensional dynamic process. Also, the gyri-
fication index from the 2D model is less accurate than what it is in the real brain, where it can be up to 
33. Therefore, the usage of a 3D brain model will find a promising way to present the spatial convolution 
pattern of the developing brain; this view will be explored in our future work.

Conclusions
In this paper, we have explored the morphological evolution and malformation mechanism of a develop-
ing brain in the fetal stage due to the biological growth from a mechanical viewpoint. An integrated ana-
lytical and computational tool is implemented to determine both the stress distribution and the critical 
growth ratio for instability of the brain model. Results show that in both isotropic and tangential growth 
of the cortex, after a critical point, the model prefers to destabilize and releases the potential energy 
partly via crease formation to reach another stable configuration53. Both analytical and computational 
findings are in good agreement with previous results for the differential growth hypothesis12.

After instability, a thick cortex in the brain model leads to the formation of fewer gyri and sulci 
(low gyrification index). This is consistent with Lissencephaly malformation in a developing brain. In 
contrast, a thin cortex leads to a high number of shallow gyri which is referred to as Polymicrogyria 
abnormality23. With respect to the effect of material property of the brain model, results demonstrate 
that the shear moduli ratio of the cortex to the core plays a crucial role on the morphological evolution 
of a developing brain21,22. High cortex stiffness causes the growing brain model to preferentially wrinkle 
instead of creasing. However, in reality the brain develops creases; this insinuates that there is no big 
difference in material property between the cortex and the core of the brain. It was also found that the 
cortex-core differential growth assumption may only produce unregulated convolution while consistent 
and reproducible convolution pattern on cerebral cortex is regulated by regional growth heterogeneity. 
Finally we hope that our study can stimulate more interests in this field, therefore opening new windows 
towards a better understanding of brain disorders and malformations.

Methods
Generally, to determine the critical growth ratio for the onset of folding in a developing brain model, we 
need to analyze the stability of a mathematical model. However, analytical method cannot predict the 
evolution of complex cortical convolution after the critical point. Therefore, following the critical growth 
ratio of the brain model, non-linear finite element models with finite growth assumption are employed to 
present crease formation and the secondary morphological folds of the growing brain. Here, the concepts 
of each approach adopted in this paper are briefly introduced.

Analytical Method. A two-dimensional (2D) circular model consisting of two-layer soft tissue 
(Fig.  10) is constructed to investigate the mechanism of cortical folding in the first stage. The shell of 

Figure 10. (a) An idealized 2D model of the brain; (b,c) biological basis of neurogenesis that is of interest; 
(d) flow chart of how Trnp1 regulates the cortical folding patterns. The dashed line arrows suggest macro-
scale features of the cortex. Abbreviations: aRGC, apical RGC; bRGC, basal RGC; BP, basal progenitor; CP, 
cortical plate; VZ, ventricular zone; SVZ, subventricular zone; SP, subplate; IZ, intermediate zone.



www.nature.com/scientificreports/

1 0Scientific RepoRts | 5:14477 | DOi: 10.1038/srep14477

the model (cortex) represents the developing cortical plate while the core is a simple organization of the 
subplate, intermediate zone and ventricular zone. The cerebral cortex is a thin (2–4 mm)12 layer in con-
trast to the inner core which, here, is modeled with a radius of 50 mm. As mentioned in the introduction, 
for the differential growth hypothesis, the outer layer grows at a faster rate than the inner layer of the 
brain, which is considered as the driving mechanism of cortical folding. Therefore, we consider the outer 
layer of our model (cortex) grows faster than the inner layer (core).

Figure  10 represents the biological foundation of our brain model. We use a flowchart in Fig.  10d 
to summarize the model. Generally, RGCs with lower levels of Trnp1 could generate basal progenitors 
(BPs), also known as intermediate progenitors (IPCs), and basal radial glial cells (bRGCs). BPs will pro-
duce neurons while bRGCs provide additional guiding structures inducing faster neuron migration and 
finally resulting in considerable radial and lateral expansion, i.e. the convex folding pattern suggested in 
refs 47, 48. Therefore, at the cellular level, the distribution difference of RGC regulates radial expansion 
of the cortical plate by controlling the amount of migrating neurons. Interestingly, this regional difference 
can be found in the cerebral cortex of human fetuses47.

Basic equations for a growth model. Here we consider the human brain as a living system with a grow-
ing outer cortex and inner core as shown in Fig.  11. Any point Θ= ( , , )X R Z  ≤ ≤R B[0 , 
Θ π≤ ≤ , ≤ ≤Z L0 2 0 ] in the reference state and before growth is mapped by transformation to the 

final state while after growth, θ= ( , , )x r l  θ π≤ ≤ , ≤ ≤ , ≤ ≤r b z l[0 0 2 0 ], is mapped in the cur-
rent state. Following the theory of multiplicative decomposition, the deformation gradient, F(X), is 
decomposed to a growth tensor, G(X), indicating the addition of materials and an elastic deformation 
tensor, A(X), which describes pure deformation resulting from stress54.

The growth tensor maps the stress-free reference configuration to a grown stress-free state, and then 
the elastic deformation tensor maps the grown state to a stressed and final current state. Deformation 
gradient F maps the tissue from the stress free state before the growth to the stressed state after the 
growth.

= . ( )F A G 3

where = /∂ ∂F x X . While both G and A tensors may be incompatible deformations, their multiplica-
tion, F, should be a compatible deformation. In general, the elastic deformation of living soft tissues 
yields little volume change; therefore, the nonlinear response of these materials can be described by an 
isotropic incompressible hyperelastic material. The incompressibility implies that the determinant of the 
elastic deformation tensor should be equal to unit, i.e. det A =  1. Generally, the growth tensor depends 
on the stress state and deformation, as well as other factors. For simplicity, it is assumed that the growth 
process with a known spatial distribution, insinuating that all of the biological information is independ-
ent of stresses55. Due to the growth, this cortex-core structure deforms axisymmetrically; therefore, the 
deformation field after growth is just a function of the radius, r =  r(R). Also, in order to eliminate longi-
tudinal effects and focus on the study of in-plane bifurcation, the plane-strain assumption is considered 

Figure 11. Initial and current states of a growing brain (cortex-core) model. 
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here17,23. Many biological soft tissues can be modeled by a hyperelastic material with a strain energy 
function W(A). Therefore, the Cauchy stress σ is related to the strain energy function by55

σ =
∂
∂
− ( )A

A
IW p 4

where p is the hydrostatic pressure and I is a second-order unit vector. In the absence of any body force, 
mechanical equilibrium imposes

σ = ( )div 0 5

where “div” stands for the divergence operator in the current configuration. There are several proposed 
material behaviors for hyperelastic material; here a simple and common model, isotropic nonlinear 
neo-Hookean, is implemented.

μ
λ λ λ= ( + + − ) ( )θW

2
3 6r z

2 2 2

where μ is the shear modulus and λr, λθ and λz are the radial, circumferential and axial principal 
stretches, respectively.

Instability analysis. Creases usually occur at the surface of soft materials without hard skins when an 
initially smooth surface forms a self-contacting shape with a sharp ridge or sulci56 as shown in Fig. 12.

According to Fig.  12, the critical condition for the onset of crease formation for a compressed 
neo-Hookean soft material in the circumferential direction (normal to radial direction) is that the ratio 
of the principal stretch in the radial direction to the circumferential direction in the outer layer should 
be more than 2.4, λr/λθ ≥  2.4. This relation was derived by comparing the elastic energy in a creased 
body with that in a smooth body26 and has been used to predict the critical growth ratios for instability 
in a growing soft matter with a confined boundary57,58. The compressive strain can be generated either 
by the external stimuli or growth in the confined boundary. In this model, since the cortex grows faster 
than the core, the core acts as a confinement to the cortex. Due to growth mismatch between the cortex 
and the core, compressive strain is induced on the free surface of the cortex (see Results section). When 
it exceeds the critical value, creases are developed on the surface of the cortex. Following this critical 
value of the onset of crease formation in soft materials and the assumption of the plane-strain condition 
(λz =  1 and gz =  1), the critical growth ratios for triggering instability and generating creasing in our 
model are determined.

Numerical Method. To predict realistic cortical morphologies after the onset of instability in the 
growing brain model, a computational model based on non-linear finite element with isotropic growth 
in both the cortex and core of the brain model is carried out. The plane-strain models with neo-Hookean 
material behavior for both the cortex and core are performed, and brain growth is simulated via thermal 
expansion57,59. The outer cortex of the brain model is allowed to be self-contact. In order to apply a fixed 
boundary in the model, a small hole around the center of the core is placed. This consideration makes 
it easy to adjust structured (mapped) mesh to the model. Since this fixed boundary is far enough from 
the crease formation sites, its effect on the deformation patterns can be negligible. Dynamic-Explicit 
solver in the commercial software Abaqus (version 6.13-4)60, which is suitable for large deformation, 
nonlinear and quasi-static problems, is implemented to perform the secondary morphological changes 
in the brain model. Both the cortex and core sections of the brain model are meshed by a plain-strain, 
linear CPER4 element type with linear and quadratic viscosity of 0.06 and 1.2, respectively. To ensure the 
robustness of the simulation results, a variety of different meshes have been employed to investigate the 

Figure 12. Crease formation on the surface of a soft material under compressive strain, ε. For the 
formation of a crease, applied compressive strain should be beyond the critical strain.
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folding patterns. For simplicity, we do not include the mesh-independent results here. In our dynamic 
model, the inertial force acts as the perturbation trigger for instability. Deformation patterns after insta-
bility are not guaranteed to be exactly symmetric although the initial model is symmetric61,62. Robustness 
studies conclude that as long as the mesh size is small enough, the qualitative features of our model do 
not depend on mesh size. The patterns of the brain model after growth do not depend on the absolute 
amount of shear modulus of the cortex and core and they just depend on their modulus ratio. With the 
condition of incompressibility and isotropic growth in the brain model, the overall growth ratio of the 
brain model (gt) can be defined as the surface ratio of the deformed area S to the initial area S0 of the 
2D brain model, = /g S St

2
0.

Figure 13 shows a growing cortex-core model at two different growth ratios before the initiation of 
instability. After a small amount of growth, the von Mises stress distribution is uniform in both the cor-
tex and the core, Fig. 13(a); however, with the increase of the growth ratio, this uniformity breaks and 
causes the initiation of instability.
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