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Variations in Antioxidant Genes and Male Infertility
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Oxidative stress and reactive oxygen species (ROS) are generated from both endogenous and environmental resources, which
in turn may cause defective spermatogenesis and male infertility. Antioxidant genes, which include catalase (CAT), glutathione
peroxidase (GPX), glutathione S-transferase (GST), nitric oxide synthase (NOS), nuclear factor erythroid 2-related factor 2
(NRF2), and superoxide dismutase (SOD), play important roles in spermatogenesis and normal sperm function. In this review,
we discuss the association between variations in major antioxidant genes and male infertility. Numerous studies have suggested
that genetic disruption or functional polymorphisms in these antioxidant genes are associated with a higher risk for male
infertility, which include low sperm quality, oligoasthenoteratozoospermia, oligozoospermia, and subfertility. The synergistic
effects of environmental ROS and functional polymorphisms on antioxidant genes that result in male infertility have also been
reported. Therefore, variants in antioxidant genes, which independently or synergistically occur with environmental ROS, affect
spermatogenesis and contribute to the occurrence of male infertility. Large cohort and multiple center-based population studies
to identify new antioxidant genetic variants that increase susceptibility to male infertility as well as validate its potential as genetic
markers for diagnosis and risk assessment for male infertility for precise clinical approaches are warranted.

1. Introduction

Reactive oxygen species (ROS), which are strongly linked
with oxidative stress, are oxygen-derived free radicals that
include superoxide anions, hydroxyl, peroxyl, alkoxyl radi-
cals, and hydrogen peroxide [1]. ROS can be generated either
from endogenous physical processes such as mitochondrial
respiration and seminal leukocytes [2] or from various envi-
ronmental factors, which include drugs, pollution, toxins,
smoking, radiation, and diet [3]. In sperm, ROS can cause
potential damage to plasma membrane and DNA integrity,
motility, and overall semen quality [2, 4, 5]; therefore, scav-
enging excess ROS is mandatory for normal spermatogenesis
and fertilization.

The nuclear factor erythroid 2-related factor 2/antioxi-
dant response element (NRF2/ARE) signaling pathway and
its regulated antioxidant enzymes have been shown to play
crucial roles in cellular oxidative stress defense during sper-
matogenesis and fertilization [6, 7]. Antioxidant enzymes
and molecules such as superoxide dismutases (SODs), glu-
tathione (GSH), and catalases (CATs) are largely abundant in
semen plasma or in sperm cells [8–10]. Most of these genes,
includingNRF2, SOD, CAT, glutathione S-transferase (GST),
glutathione peroxidase (GPX), and nitric oxide synthase
(NOS), harbor sequence variants in humans, which in turn
may cause male infertility in different ways. As genetic vari-
ations are an important etiological factor in male infertility,
these may significantly contribute to the incidence of male
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Figure 1: Major antioxidant gene products important for spermatogenesis. NRF2 regulates the expression of many antioxidant enzymes
including peroxiredoxin (PRX), thioredoxin (TRX), glutathione peroxidase (GPX), glutathione S-transferase (GST), superoxide dismutases
(SODs), and catalase (CAT).The principal form of ROS is anion superoxide (O

2

−), which can be converted into hydrogen peroxide (H
2
O
2
) by

SODs. H
2
O
2
can be catalyzed to H

2
O by CAT, TPX, or PRX. GST catalyzes the conjugation of the reduced glutathione (GSH) to xenobiotic

substrates. Nitric oxide synthases (NOSs) catalyze the production of nitric oxide (NO) from L-arginine. GS-R, GSH-xenobiotics adducts;
GSSG, oxidized glutathione.

infertility, especially under environmental ROS stress [11]. To
date, functional polymorphisms of antioxidant genes NRF2,
SOD, GST, NOS, CAT, and GPX have been reported to be
associated with male infertility in humans.

This review discusses the recent progress in the study of
genetic variations in antioxidant genes that have associated
with male infertility. The findings of these studies indicate
that functional polymorphisms in the NRF2, SOD, GST,
NOS, CAT, and GPX genes may potentially contribute to
genetic causes of male infertility. As the incidence of male
infertility continues to increase, the analysis of its association
with sequence variants in antioxidant gene may not only
help understand the roles of antioxidant signaling network
in ROS-related male infertility but also facilitate validating
its potential as genetic markers for the diagnosis and risk
assessment for male infertility in the clinic.

2. Antioxidant Enzymes in Spermatogenesis

A number of antioxidant genes involved in spermatogenesis
have been identified in mammals, which include NRF2,
SOD, CAT, GPX, peroxiredoxin (PRX), glutaredoxin (GRX),
thioredoxin (TRX), and NOS [6, 7, 55–57]. The enzymes
encoded by these genes are widely involved in the cellular
antioxidant response, GSH synthesis and reduction, and thiol
redox cycles during spermatogenesis or involving sperm
(Figure 1). Most of these genes also contain the ARE motif

in its promoter regions, which facilitates the regulation of the
oxidative stress-activated NRF2 transcription pathway [58].

NRF2 is the key gene in antioxidant defense, as it is the
nuclear transcriptional factor that can induce antioxidant
enzymes via ARE element [59]. In response to oxidative
stress, NRF2 binds to AREs, mediating transcriptional acti-
vation of its responsive genes and modulating in vivo defense
mechanisms against oxidative damage [60]. Kelch-like ECH-
associated protein 1 (KEAP1) is the cytosolic regulatory pro-
tein of NRF2 and the sulfhydryl-rich sensor that responds to
oxidants or electrophiles [61]. Under basal conditions, KEAP1
associates with NRF2 and targets it for degradation, and then
modified KEAP1 by oxidative reagents will dissociate with
NRF2 that could translocate into nucleus, bind to target gene
ARE element, and promote many antioxidant enzyme gene
expressions [62, 63].

Among the genes regulated by the NRF2-ARE signaling
pathway, SODs and CATs are important enzymes that protect
sperm from oxidative damage by superoxide and hydrogen
peroxide (H

2
O
2
). SODs catalyze the dismutation of the

superoxide radical into either ordinary molecular oxygen
or hydrogen peroxide. Three families of SOD isoenzymes
have been identified in humans: soluble SOD or CuZn
SOD (SOD1), mitochondrial SOD or Mn SOD (SOD2), and
extracellular SOD or EC SOD (SOD3) [13]. Among these,
isoenzyme SOD2 is highly expressed in human semen [8, 13].
Seminal CAT catalyzes the degradation of H

2
O
2
to oxygen
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Table 1: Major antioxidant enzymes in spermatogenesis.

Enzyme Name Isoforms in human Reference
NRF2 Nuclear factor erythroid 2-related factor 2 NRF2 [12]
SOD Superoxide dismutase SOD1, SOD2, SOD3 [13]
CAT Catalase CAT [9]
NOS Nitric oxide (NO) synthase NOS-1, NOS-2, NOS-3 [14]

GST Glutathione S-transferase GSTA1–GSTA5, GSTZ1, GSTM1–GSTM5,
GSTO1-GSTO2, GSTP1, GSTT1–GSTT4 [15]

PRX Peroxiredoxin PRX1–PRX6 [16, 17]
GPX Glutathione peroxidase GPX1–GPX8 [18]
TRX Thioredoxin TRX1, TXR2 [19]

and water [64], which are involved in the maintenance of
normal levels of ROS and protection of spermatozoa against
potentially toxic ROS [9].

NOSs are a family of enzymes that catalyze the pro-
duction of nitric oxide (NO) from L-arginine [65], which
is considered as an antioxidant that scavenges ROS at low
concentrations [66–68]. The role of NO in sperm motility
and its effect on fertility have been proven in penile erection,
sperm motility and viability, metabolism, and acrosomal
reaction [14]. Three NOS isoenzymes have been identified
in mammals, which include neuronal NOS (nNOS; NOS1),
inducible NOS (iNOS; NOS2), and endothelial NOS (eNOS;
NOS3) [69].

GSTs are abundant cytosolic proteins that catalyze the
conjugation of GSH to electrophilic xenobiotic substrates,
which usually form ROS in vivo [15].The GST family consists
of three superfamilies: the cytosolic, mitochondrial, and
microsomalGSTs [15, 70]. In humans,GSTsincludemitochon-
drial GSTK1, microsomal MGST1–MGST3, and cytosolic
GSTA1–GSTA5, GSTZ1, GSTM1–GSTM5, GSTO1–GSTO2,
GSTP1, and GSTT1–GSTT4 [71].

TPX, PRX, and GRX are enzymes involved in the redox
of thiols in cells. TRXs and GRX collaboratively catalyze
the reduction of protein mixed disulfides [72–74]. TRX
isoenzyme TRX1 is located in the cytosol and the nucleus,
and TRX2 is exclusively expressed in the mitochondria [75,
76]. PRX enzymes are a group of highly abundant perox-
idases that eliminate organic hydroperoxidase and H

2
O
2
.

The glutathione peroxidase (GPX) protein family catalyzes
thiol redox with glutathione [18]. Among its isoenzymes,
GPX4 is predominant in the testis and is currently considered
vital for spermatogenesis [52]. GPX5 is solely expressed in
the caput epididymis and possibly functions in maintaining
sperm DNA integrity [54].

Studies employing animalmodels have further confirmed
that mRNAs encoding several antioxidant genes can be
detected at steady-state levels in the mouse testis [77]. For
example, SOD2 mRNA levels are developmentally regulated
to reach maximal levels of expression in early post-meiotic
germ cells, whereas the levels of GPX and CAT mRNAs
are relatively constant [77]. TPX and PRX are extensively
expressed in testis, and their roles in spermatogenesis have
mainly been studied by gene disruption in mouse models
[16, 17, 19]. In summary, antioxidant genes, including NRF2,

SOD, CAT, GPX, PRX, GRX, TRX, and NOS, function at
different stages of spermatogenesis, and defects in their
expression may significantly contribute to the occurrence of
male infertility (Table 1).

3. Genetic Variations in Antioxidant Genes
Associated with Male Infertility

3.1. NRF2. Nrf2 disruption has been demonstrated to affect
spermatogenesis in an age-dependent manner in knockout
mice model [7]. A mechanism study has shown that aged
Nrf2 knockout mice have elevated levels of lipid peroxi-
dation in their testes and epididymis, as well as increased
rates of testicular germ cell apoptosis and decreased levels
of antioxidants compared to age-matched wild-type mice
[7]. In humans, two SNPs (rs6721961 and rs35652124) have
been associated with oligoasthenozoospermia, and individ-
uals with 617 TT and 653 TT genotypes have a higher
risk of oligoasthenozoospermia [20]. In addition, the NRF2
rs6721961 TT genotype occurs at a higher frequency in
heavy smokers with low semen quality than in those with
high semen quality, and heavy smokers with this genotype
have significantly lower sperm concentrations and counts
compared to other genotypes [12]. At the mRNA level, NRF2
expression was significantly lower in infertile patients than
in controls [78], and a significant correlation was observed
between the level of NRF2 mRNA expression and specific
sperm functional parameters such as concentration, pro-
gressive motility, immotility, and vitality [78]. Interestingly,
the DJ-1 protein, which stabilizes NRF2 by targeting 20S
proteasomes in cells, has also been associated with male
infertility [79–81].The concentration of spermDJ-1 was lower
in moderate asthenozoospermia patients than in the controls
[79]. Therefore, functional polymorphisms and expression
level of NRF2 as well as its regulators are associated with
defective spermatogenesis in humans.

3.2. GST. Three types of GST SNPs, namely, GSTT1-null,
GSTM1-null, and GSTP1 Ile105Val, have been extensively
demonstrated to be associated withmale infertility in various
ethnic populations [21–32, 34]. In a north Indian population,
theGSTT1-null genotype was associated with nonobstructive
azoospermia [21]. In Taiwanese patients with varicocele,
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subjects with GSTM1-null genotype had significantly higher
8-OHdG levels in sperm DNA and lower protein thiols
and ascorbic acid in seminal plasma than those with the
GSTM1+ genotype [22]. In a Turkish population, increased
oxidative damage of sperm was higher in patients with the
GSTM1-null genotype than in controls [23], and similar
results have also been reported in Egyptian, Iranian, and
Brazilian infertile patients [24–26]. In a Chinese population,
the null genotype of GSTM1 and GSTT1 is associated with an
increased susceptibility to impaired spermatogenesis such as
idiopathic azoospermia or oligospermia [27–30]. The associ-
ation of polymorphisms in GSTM1, GSTT1, and GSTP1 with
idiopathic azoospermia or oligospermia was also observed in
a southwest Chinese population [31]. Moreover, genetic poly-
morphisms in GSTT1 may also affect the surgical outcome
of varicocelectomies, and the GSTT1 genotype can affect
surgical outcomes of Japanese patients such as improvement
of semen parameters after varicocelectomy [32].

Meta-analysis further confirmed that GSTM1-null and
GSTT1-null polymorphisms are associated withmale infertil-
ity risk [82–85]. A recent analysis encompassing 6934 subjects
indicated that the GSTM1-null genotype was significantly
associated with idiopathic oligozoospermia, while the null
genotype of GSTT1 was significantly associated with normo-
zoospermia and azoospermia, and the association between
GSTM1 polymorphism and male infertility was observed in
cohorts of both Asian and Caucasian groups [84].

GST enzymes are also important in protecting sperm
from cryopreservation of semen, as this process can produce
large amounts of ROS. In freeze-thawed bull semen, a C/G
missense mutation in rs135955605 within the GSTM1 gene
is associated with cellular ATP content and total sperm
motility [33]; therefore, genetic variations in GSTs may affect
male fecundity, including sperm quality and the outcomes of
semen cryopreservation.

3.3. SOD. It has long been known that seminal SOD activity
is positively associated with sperm concentration and overall
motility, whereas it is inversely associated with sperm DNA
fragmentation [8, 38]. Genetic variations in SOD may also
be related to reproductive outcomes. The Ala16Val polymor-
phism in the SOD2 gene is associated with infertility and
pregnancy rate in IVF cycles [39]. In a case-control study, the
presence of the Ala-MnSOD allele (rs4880) was associated
with a significant increase in the risk of infertility in male
subjects [40]. Infertile men with SOD2 rs4880 CC variants
showed a low level of SOD activity [38]. In a Chinese
population, the SOD2 Val16Ala (rs4880) variant is associated
with a significantly higher risk for male infertility, higher
levels of sperm DNA fragmentation and 8-OHdG, and a low
level of SOD activity [38, 41]. When multiple antioxidant
gene variations were analyzed, the PON1 Arg192Glu (rs662)
and SOD2 Val16Ala (rs4880) variants were associated with a
significantly higher risk of male infertility and levels of sperm
DNA fragmentation and 8-OHdG [41].

In rat models, it has been shown that SODs may play an
important role in testicular development and spermatogene-
sis [86]. SOD mRNA transcripts were identified in rat testes
and their highest level was detected in tubules just prior to

spermiation [86]. In a Drosophila model, null mutants for
CuZn-Sod (SOD1) are male sterile, and the transgene of a
bovineCuZn-Sod can rescue itsmale infertile phenotype [42].
In addition, an accelerated impairment of spermatogenic cells
was observed in Sod1-knockout mice under heat stress [43].
Therefore, genetic disruption or functional polymorphisms
in both SOD1 and SOD2 can lead to defective spermatogen-
esis.

3.4. NOS. In the testis, eNOS is responsible for NO syn-
thesis during spermatogenesis, and genetic variants of eNOS
may be potential risk factors for impaired spermatogenesis
[45]. Several eNOS alleles have been associated with sperm
defects in various ethnic populations. In Egyptian infertile
oligoasthenoteratozoospermicmen, a significant relationship
between eNOS polymorphisms T786C and G894T with
decreased sperm parameters and increased seminal oxidative
stress was observed [46]. In an Italian population, the eNOS
894G>T variant was associated with asthenozoospermia and
sperm motility [48]. Similar results were reported in a
Chinese cohort [49]. In Korean infertile men, sperm mor-
phology was associated with the 4a4b eNOS polymorphism,
a sequence variant with variable number of tandem 4a4b
repeats in intron 4 [51]. In Iranian males, eNOS “-786C,”
“894T,” and “a” alleles were associated with an increased risk
for poor semen parameters [47]. In a Chinese case-control
study, the eNOS rs1799983 polymorphism was positively
associated with higher levels of sperm DNA fragmentation
and an increased risk for male infertility [50]. Another study
involving a Chinese population showed that four common
polymorphism loci, namely, eNOS alleles -786C of T-786C
and 4A of 4A4B, as well as genotype TC of T-786C and AB
of 4A4B, were significantly associated with idiopathic male
infertility [45]. Taken together, these studies demonstrate that
genetic variations in eNOS are a risk factor for decreased
spermquality, includingDNA fragmentation, spermmotility,
and seminal ROS.

3.5. GPX. There are three isoforms of GPX, namely, cytoso-
lic, mitochondrial, and nuclear GPX [87]. In a mouse model,
cytosolic GPX4 was essential for embryonic development
and spermatogenesis [53], and the deletion of mitochondrial
GPX4 (mGPX4) also causedmale infertility, which in turn led
to impaired sperm quality and severe structural abnormali-
ties, reduced sperm motility, and mitochondrial membrane
potential [52, 88]. In bulls, subjects with the ETFA TT geno-
type presented the highest GPX activity in cryopreserved
sperm [89]. In humans, GPX-defective spermatozoa were
observed in 26% of infertile men diagnosed with oligoas-
thenozoospermia [90]. Another study has suggested that
the expression of phospholipid hydroperoxide glutathione
peroxidase (PHGPx) protein, a selenoprotein belonging to
the family of glutathione peroxidases, may be associated with
oligoasthenozoospermia; however, no GPX polymorphism
has been associated with male infertility to date [91]. Further
examination of GPX4 polymorphisms as a potential cause of
infertility is thus warranted.

3.6. CAT. Catalase enzyme activity (CAT)was demonstrated
to be associated with low sperm quality [44, 92], and one
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study reported that CAT-262T/T genotype was negatively
associated with infertility in idiopathic infertile males [44].

4. Interaction of Antioxidant Genetic
Variations and the Environment in
relation to Male Infertility

Environment and genetic variation could synergistically
affect male fertility. In a Danish twin study, both genetic
background and environmental factors were associated with
sperm quality, sex hormone levels, and sperm chromatin
stability, in which heritability accounted for ≥20% of the
observed variations in sperm density, hormone level, sperm
morphology, and sperm chromatin parameters, whereas the
rest of the variations in sperm quality were likely due to
environmental factors [93].

Several studies have demonstrated that environment and
antioxidant genes can affect male infertility. In terms of occu-
pational exposure to PAHs, subjects harboring the GSTM1-
null genotype showed significantly higher levels of PAH-
DNAadducts in sperm [35]. InRussianmen, the combination
of GSTM1, GSTT1, and GSTP1 gene polymorphisms and
cigarette smoking was associated with a higher risk for
idiopathic infertility [36]. Our study also demonstrated that
heavy smokers with NRF2 genetic variants had a higher
risk of developing low semen quality compared to other
genotypes [12].

Cytochrome P450 (CYP) families may contribute to the
occurrence of endogenous oxidative stress in vivo because
these are detoxification enzymes that interact with a wide
range of environmental toxins and carcinogens that can form
ROS. A previous study has shown a significant synergism
betweenGSTM1 andCYP1A1 genotypes and infertility among
human subjects [37]. A subject carrying the variants CYP1A1
Val/Val or CYP1A1 Ile/Val in association with GSTM-null
genotype has a 6.90-fold higher risk for infertility than a
subject carrying CYP1A1 Ile/Ile in association with a GSTM1
wild-type genotype [37]. Therefore, genetic polymorphisms
of xenobiotic-metabolizing enzymes may also interact with
antioxidant genes for environment-induced infertility [37].

5. GWAS Study in Male Infertility

With the development of new genetic analysis approaches,
genome-wide association study (GWAS) has been utilized
for male infertility recently, and new loci for male infertility
have been identified using GWAS. In a large cohort of
men of European descent, 172 candidate polymorphisms
for association with oligozoospermia or azoospermia were
evaluated and several SNPs were identified or confirmed
to be significantly associated with oligozoospermia and/or
azoospermia [94]. Another GWAS report identified candi-
date genes for male fertility traits and 9 SNPs found to be
associated with reduced fertility [95]. In 2011 and 2014, two
large scale GWAS in Chinese populations first discovered
some new loci for the risk of nonobstructive azoospermia
(NOA). A three-stage GWAS of 2,927 individuals with NOA
and 5,734 controls identified significant associations between

NOA risk and common variants near PRMT6 (rs12097821),
PEX10 (rs2477686), and SOX5 (rs10842262) [96]. A later
extended three-stage validation study using 3,608 NOA
cases and 5,909 controls further identified additional risk
loci, including a new related gene GEK (Genghis Khan,
orthologous to human CDC42BPA) which can cause severe
male fertility in a Drosophila model [97].

A detailed summary of GWAS in infertile men has been
described by Aston [98], which is not the focus of this
review. However, except for the identification of new loci for
male infertility, GWAS do confirm the association between
previously identified SNPs in antioxidant genes and male
infertility. For instance, in recent GWAS on genetic makers
for sperm quality in bulls [99–101], the antioxidant genes
GSTT1, GSTM1, and NOS3 were identified as significant
markers or suspected of being significantly associated with
bull sperm concentration [100].

However, antioxidant signaling pathways involved in
male infertility have not been analyzed at the genome-wide
level to date. In addition, only a fewdiseases such as azoosper-
mia or oligozoospermia have been studied at the genome-
wide level. The most common male infertility disorders such
as asthenozoospermia and oligoasthenozoospermia have not
been extensively studied to date. Therefore, using advanced
genetic analysis technologies to study antioxidant genetic
variations in relation to male infertility at a genome-wide
level is imperative.

6. Conclusions

As environmental pollution and lifestyle changes are preva-
lent in the current society, ROS from pollution, radiation,
high-fat diets, and sedentary, physically inactive lifestyles
will likely contribute to the increase in incidence of male
infertility. The antioxidant enzyme system, which is largely
regulated by the NRF2-ARE system, may be one of the key
components that play a protective role against ROS damage
during spermatogenesis and for sperm function (Figure 1).
Therefore, it is expected that genetic variations in major
antioxidant genes will alter the susceptibility of a male to
infertility and defective spermatogenesis.

In the past two decades, numerous studies have demon-
strated that functional polymorphisms or the genetic disrup-
tion of the CAT, GPX, GST, NOS, NRF2, and SOD genes
was associated with male infertility (Table 2). In animal
models, knocking out Nrf2, Sod, and Gpx all leads to mild
or severe male infertility. Previous studies involving various
ethnicities in different geographical regions and countries
have described the association between SNPs in the CAT,
GPX, GST, NOS, NRF2, and SOD genes and infertility.
Several studies have also reported the synergistic effects of
antioxidant gene polymorphisms and environmental ROS
such as smoking and PAH exposure. Therefore, antioxidant-
related genes may play a crucial role in spermatogenesis and
sperm function, and their genetic variations may modify the
antioxidant capability of the human reproductive system and
increase the risk for male infertility.

However,most studies of the association between antioxi-
dant gene variations andmale infertility have been conducted
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in animal models or in a specific geographical population.
In addition, systematic studies of the complete antioxidant
signaling pathways in spermatogenesis and studies in mul-
tiple centers or large cohort studies are limited. Furthermore,
epigenetic alterations in antioxidant genes, whichmay change
their transcriptional activity in vivo, have not been examined
to date. New technologies such as next-generation sequenc-
ing can yield large amounts of information at the genome-
level. Therefore, the discovery and validation of antioxidant
genetic variants as genetic markers for the diagnosis and risk
estimation formale infertilitymay facilitate the improvement
of clinical approaches for this particular disorder.
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