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Abstract

Pseudostellaria heterophylla (Miq.) Pax is a mild tonic herb widely cultivated in the South-

ern part of China. The tuberous roots of P. heterophylla accumulate high levels of second-

ary metabolism products of medicinal value such as saponins, flavonoids, and isoquinoline

alkaloids. Despite numerous studies on the pharmacological importance and purification of

these compounds in P. heterophylla, their biosynthesis is not well understood. In the pres-

ent study, we used Illumina HiSeq 4000 sequencing platform to sequence the RNA from

flowers, leaves, stem, root cortex and xylem tissues of P. heterophylla. We obtained

616,413,316 clean reads that we assembled into 127, 334 unique sequences with an N50

length of 951 bp. Among these unigenes, 53,184 unigenes (41.76%) were annotated in a

public database and 39, 795 unigenes were assigned to 356 KEGG pathways; 23,714 uni-

genes (8.82%) had high homology with the genes from Beta vulgaris. We discovered 32,

095 DEGs in different tissues and performed GO and KEGG enrichment analysis. The

most enriched KEGG pathway of secondary metabolism showed up-regulated expression

in tuberous roots as compared with the ground parts of P. heterophylla. Moreover, we iden-

tified 72 candidate genes involved in triterpenoids saponins biosynthesis in P. heterophylla.

The expression profiles of 11 candidate unigenes were analyzed by quantitative real-time

PCR (RT-qPCR). Our study established a global transcriptome database of P. heterophylla

for gene identification and regulation. We also identified the candidate unigenes involved in

triterpenoids saponins biosynthesis. Our results provide an invaluable resource for the sec-

ondary metabolites and physiological processes in different tissues of P. heterophylla.

Introduction

Pseudostellaria heterophylla (Miq.) Pax, known as Hai Er Shen (HES) and false starwort
belongs to the Caryophyllaceae family. The Chung Yao Chi New Chinese Materia Medica
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records the collection of HES plants since 1959 because of its local and ethnic use. P. hetero-
phylla are distributed widely in the southern parts of China including Fujing, Jiangsu, Anhui,
Shandong, Shanxi, Zhejiang, Jiangxi, Hubei, Shanxi, and Guangzhou provinces. The P. hetero-
phylla is a mild tonic herb, weaker than Panax ginseng and popularly used in Traditional Chi-
nese Medicines (TCM) products such as Jiangzhong Jianweixiaoshi Tablets, Composite
Pseudostellaria granule. The mitogenic fraction (PH-I) from the hot water extract of P. hetero-
phylla has significant potent anti-tumor activities against Ehrlich ascites tumor (EAT) cells in
mice in vivo but not in vitro by releasing the tumor necrosis factor (TNF) [1]. The ethyl acetate
fraction extracted from the roots of P. heterophylla markedly reduced the number of coughs
and prolonged the latent cough period in rat model of stable phase chronic obstructive pulmo-
nary disease induced by cigarette smoke exposure [2].

Saponins in P. heterophylla (PHS) are primary bioactive compounds and consist of Pseu-
dostellarinosideA and A-cutifolisde D, both of which are oleanyl-type saponins [3]. PHS
extracts have significant anti-fatigue, anti-anoxia activities [4] and prevent cell membrane of
H9c2 cell from oxidative injury via preventing increased oxidative stress [5]. The precursor for
the biosynthesis triterpenoid saponins is 2,3-oxidosqualene, which is synthesized via the MVA
pathway [6]. Oxidosqualene cyclase (OSC) catalyzes the cyclization of 2.3-oxidosqualene to
produce various triterpene skeletons. Some of candidate genes involved in triterpene saponin
biosynthesis were isolated from P. quinquefolium [7], P. ginseng [8], and P. notoginseng [9], but
none were identified from P. heterophylla.

Tuberous roots or stem, are the primarymedicinal plant organs of TCM plants such as P.
heterophylla [10], Fallopia multiflora [11], Panax notoginseng [12], Salvia miltiorrhiza [13].
Chemical technology has helped identify the secondarymetabolites including flavonoids, an
isoquinoline alkaloid, terpenoids, and phenylpropanoid in these plants [3]; however, there
have been no molecular studies on secondarymetabolism pathways involved in their biosyn-
thesis and degradation. Hua et al.[14] (2016) performed de novo sequencing and transcriptome
analysis of P. heterophylla tuberous roots, but no transcriptomic and genomic information
from the aboveground parts (leaf, stem, and flower) is available in the nucleotide databases of
National Centre for Biotechnology Information (NCBI). Study of the molecular basis of traits
related to saponin biosynthesis and secondarymetabolism in P. heterophylla will facilitate its
breeding and improvement. RNA-seq is a useful tool for studying the expressed transcripts in
different tissues and stages [15]. In this study, we used Illumina HiSeq 4000 sequencing plat-
form to sequence the mRNA of P. heterophylla from various tissues (flowers, leaves, stem, root
cortex and xylem). A global transcriptome database of P. Heterophylla was constructed to iden-
tify the differentially expressed genes (DEGs) in different tissues and putative genes encoding
the enzymes involved in the biosynthesis of triterpene saponins.

Methods

Plant materials and RNA extraction

P. heterophylla cultivar ‘Shitai 1’ was selected and grown in a commercial planting base in Sib-
ing County, Guizhou Province, China. Five tissues (S1 Fig) were collected separately from
three randomly selected individuals. After cleaning, all samples were cut into small pieces for
RNA isolation, and partial materials were used for gene cloning and RT-qPCR. Total RNA
was extracted following the instructions of the Transzol Plant RNA ExtractionKit (TransGen
Biotech, Beijing, China). DNA contamination was removed using DNase I (Takara, Tokyo,
Japan).
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cDNA library preparation and transcriptome sequencing

The construction of the cDNA libraries and the RNASeq was performed by Shanghai Majorbio
Bio-pharm Technology Co., Ltd. (Shanghai, China). Firstly, mRNA were purified from 12 μg
of total RNA from five tissues (flowers, leaves, stem, root cortex and xylem) by using Oligo(dT)
magnetic beads, respectively. Then, the mRNA was disrupted into small fragments (200 ± 25
bp), which were used for the second-strand cDNA synthesis. These cDNA fragments were
ligated with the Illumina paired-end sequencing adaptors. Finally, these libraries were
sequenced on a paired-end flow cell using Illumina Hiseq 4000 platform. We obtained 5–8 GB
of reads from each sample for de novo assembly.

De novo assembly and Gene annotation

Before assembly, the adaptors and unknown nucleotides in raw reads were filtered with Seq-
Prep (https://github.com/jstjohn/SeqPrep) and Sickle software (https://github.com/najoshi/
sickle). Then the high-quality clean reads from 15 samples were used for de novo assembly by
Trinity software [16] (http://trinityrnaseq.sourceforge.net/). Finally, the redundant Trinity
generated contigs were clustered to remove using TIGR Gene Indices Clustering Tools
(TGICL) (http://www.tigr.org/tdb/tgi/software/).

ORF prediction was performed using the Markov model as describedon http://
trinityrnaseq.sourceforge.net/analysis/extract_proteins_from_trinity_transcripts.html). Then,
the results were determined by Pfam database (http://pfam.xfam.org/). All unigenes were
annotated using BLASTx by sequence comparison with various protein databases [i.e., Nr,
Swissprot, Cluster of OrthologousGroups of proteins (COG), Kyoto Encyclopedia of Genes
and Genomes (KEGG)], with an e-value cutoff of 1e-5. Function analysis of all unigenes was
performed by subjecting to Gene Ontology (GO). Blast2GO program (https://www.blast2go.
com/) was used to identify the GO term from all assembled unigenes. Finally, we used the
WEGO software (http://wego.genomics.org.cn/) to performGO function classification and
determine the distribution of gene functions in P. heterophylla at the macromolecular level.

Digital gene expression profiling

Gene expression profiles were performed using RSEM (http://deweylab.biostat.wisc.edu/rsem/
). The reads per kb per million reads (RPKM) were used to normalize the expression levels for
each gene in each tissue of P. heterophylla. The RPKM from all isoforms of the same gene were
summed as the RPKM of that gene. Cluster 3.0 software (http://bonsai.hgc.jp/~mdehoon/
software/cluster/) was used to normalize the expression level of triterpene saponins. Samples
names are shown on the heat maps.

Identification of the unigenes involved in triterpene saponins

The amino acid sequences of triterpene saponins were downloaded from NCBI and used for
searching the P. heterophylla transcriptomic database. Putative genes of saponin biosynthesis
in P. heterophylla were identified using the BlastP program with an e-value of 1e-10. The
default hits were removed manually.

Real-Time PCR verification

Total RNA was extracted from different tissues of P. heterophylla and first-strand cDNA syn-
thesis was performed by the Reverse Transcriptional M-MLV (Takara, Japan). We used ABI
7500 real-time PCR system (Life Technologies, Carlsbad, CA, USA) to determine the expres-
sion by real time PCR. All reactions were performed using SYBR1 Premix Ex Taq™ II (Takara
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Biotechnology, China) according to the procedure with ten-fold diluted cDNA as templates.
Reactions were first incubated at 95°C for 30 s, followed by 40 cycles of amplification at 95°C
for 5 s and then 60°C for 34 s, after a final cycle of amplification at 95°C for 15 s, 60°C for 1
min and 95°C for 15 s. The raw data were analyzed using ABI 7500 software, and expression
levels were normalized to PhACT2 gene (gi: KT363848) to minimize the variation of cDNA
template contents. The expression level was shown using 2−ΔCt method. The experiments were
performed in three individual biological replications.

Results

Illumina paired-end sequencing data and De novo assembly

We obtained 87 Gb of sequencing data including 645,961,688 raw reads and 616,413,316 clean
reads with the base average error rate below 0.02%. A brief overviewof the transcriptome
assembly statistics are shown in Table 1. We used the Trinity program for the de novo assem-
bling of the clean data because P. heterophylla reference genome was not available. After
removal of ambiguous reads and low-quality reads (Q20< 20), 127,334 unique sequences were
obtained from the cDNA library constructed from P. heterophylla flowers, stem, leaves, and
tuberous roots of (Table 1). The Q20 percentage (sequencing error rate< 1%) and Q30 per-
centage were 98% and 93.81%, respectively. The GC percentage in ground parts (leaves, stem,
and flowers) and underground parts (cortex and xylem of tuberous roots) were an average of
51.5% and 43.5%. The length of unigenes ranged from 201 to 82, 236 bp, with an N50 length of
951 bp. 48, 860 coding sequences were obtained from all P. heterophylla unigenes sequences,
and 30, 396 CDSs (62.21%) were longer than 1000 bp.

Functional annotation

Gene annotation showed that only a total of 52,937 unigenes (41.57%) had significantmatches
with the information from public databases. The annotation rate was much lower than those of
previous reports [17, 18]. However, there are about 74,150 unigenes (58.43%) without any

Table 1. Sequence Summary of P. heterophylla tissues.

Organs Samples clean reads Clean bases(Gb) Error (%) Q20 (%) Q30 (%) GC (%)

Flower 1_Z_H 32417586 4.6 0.0115 98.04 94 51.7

3_Z_H 38552446 5.4 0.0115 98.02 93.99 50.37

4_Z_H 30520166 4.3 0.0114 98.1 94.19 50.57

Stem 1_Z_J 42890328 6.1 0.0119 97.92 93.67 53.77

3_Z_J 29240052 4.1 0.0123 97.72 93.2 50.96

4_Z_J 40303560 5.7 0.0115 98.05 94.05 51.46

Leaf 1_Z_YD 33756994 4.8 0.0115 98.08 94.09 53.03

3_Z_YD 37921060 5.4 0.0113 98.13 94.24 50.89

4_Z_YD 35401430 5 0.0123 97.73 93.18 50.75

Root xylem 1_G_M 70142364 9.9 0.0119 98.01 93.73 43

3_G_M 46857578 6.7 0.0116 98.13 93.99 43.31

4_G_M 45086442 6.4 0.0115 98.16 94.06 43.11

Root cortex 1_G_P 39335332 5.6 0.012 97.99 93.62 43.69

3_G_P 44758244 6.3 0.0125 97.79 93.11 43.97

4_G_P 49229734 7 0.0116 98.18 94.08 43.93

(1) Reads sequencing from the left; (2) Reads sequencing from the right.

Q20: percentage of bases with a Phred value >20; Q30: percentage of bases with a Phred value >30.

doi:10.1371/journal.pone.0164235.t001
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matches to known genes, and these unaligned genes may be specific genes and novel transcripts
in P. heterophylla. Our results showed that 20,104 unigenes had high similarity (greater than
80%) in mapped sequences with Nr database and 20,497 unigenes (16.09%) had significant
homology (e-value< 10−30) (Fig 1A and 1B). The mapping rates of unigenes against the Pfam,
Swissprot, KEGG, String databases were 38.83%, 68.24%, 44.32% and 18.49%, respectively. The
number of unigenes that were annotated in the unique database were as follows: 101 unigenes
in the Pfam database, 90 unigenes in the SwissProt database, 36 unigenes in the KEGG database
and 11,213 unigenes in the Nr database (Table 2). Species distribution analysis showed that
only 23,711 unigenes (18.62%) had high homology with the genes from Beta vulgaris, followed
by Vitis vinifera (1,182, 0.93%), Theobroma cacao (380, 0.30%), while 17,126 unigenes had
high homology with sequences from other organisms (Fig 1C).

Unigenes showing high similarities with genes from Microbotryum violaceum (686 uni-
genes), Fusarium oxysporum (509 unigenes), Leptosphaeria maculans (321 unigenes), Pseudo-
monas fluorescens (272 unigenes), Rhodosporidium toruloides (255 unigenes) may belong to
endophytes surviving in different parts of P. heterophylla [19]. Three unigenes from each spe-
cies were validated by RT-PCR (S1 Table & S2 Fig).

Functional classification

We classified the functions of all unigenes using the Nr annotation and Gene Ontology (GO)
classification (Fig 2, S2 Table). Moreover, we assigned 28, 210 unigenes to one or more gene
ontology categories, 24,129 to molecular function, 15,544 unigenes to cellular component, and
23,751 unigenes to biological process. In the molecular function group, we found unigenes
related to “catalytic activity” (15, 220, 53.95%) and “binding” (14,909, 52.85%). For the cellular
component category, “cell” (7,660, 45.78%), “cell part” (7,659, 45.77%), “organelle” (5,601,
33.47%), “membrane” (4,380, 26.18%), “macromolecular complex” (3,485, 20.83%) repre-
sented the majority of unique sequences. Among molecular function category, unigenes
assigned to “metabolic process” (11,388, 68.06%), “cellular process” (10, 343, 61.81%), and
“single-organism process” (8,446, 50.47%) were the most abundant. A high percentage of
genes were grouped into the “biological regulation” (3,217, 19.22%), “response to stimulus”
(3,084, 18.43%), “regulation of biological process” (3,015, 18.02%), and “cellular component
organization or biogenesis” (2, 461, 14.71%) categories.

COGdatabase was used for the function prediction and classification of all unigenes(Fig 3).
In brief, 5,140 unigenes were grouped into 25 COG classifications. The largest group in the 25
COG categories was “translation, ribosomal structure and biogenesis” (803, 14.74%), followed
by “general function prediction” (631, 11.58%), “signal transductionmechanisms” (565,
10.37%), and “posttranslational modification, protein turnover, chaperones” (544, 9.99%).

KEGG classification

All unigenes were compared against KEGG for searching active biochemical pathways in P.
heterophylla using BLASTx, with an e-value< 1e-10. We assigned 39, 795 unigenes to 356
KEGG pathways (Fig 4). “Ribosome” had the largest number of unigenes (1,075 unigenes) fol-
lowed by “protein processing in endoplasmic reticulum” (404 unigenes), “oxidative phosphor-
ylation” (390 unigenes), “glycolysis/gluconeogenesis” (315 unigenes), “endocytosis” (309
unigenes), “spliceosome” (287 unigenes). The metabolic pathways in our study were: “carbohy-
drate metabolism” (1,398 unigenes), “amino acid metabolism” (1,193 unigenes), “energy
metabolism” (1,124 unigenes), “lipid metabolism” (653 unigenes), “metabolism of cofactors
and vitamins” (425 unigenes), “metabolism of other amino acids” (345 unigenes), “nucleotide
metabolism” (343 unigenes), “glycan of biosynthesis and metabolism” (306 unigenes),
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PLOS ONE | DOI:10.1371/journal.pone.0164235 October 20, 2016 5 / 19



A Global Transcriptome Database of P. heterophylla for Gene Identification and Regulation

PLOS ONE | DOI:10.1371/journal.pone.0164235 October 20, 2016 6 / 19



“metabolism of terpenoids and polyketides” (299 unigenes), and “biosynthesis of secondary
metabolites” (270 unigenes). KEGG genetic information processing included “folding, sorting
and degradation” (914 unigenes), followed by “replication” (413 unigenes) and “transcription”
(108 unigenes). In the environmental information processing category, the most abundant sub-
categories were “signal transduction” (1,215 unigenes), “signaling molecules” and “interaction”
(251 unigenes), and “membrane transport” (233 unigenes) (S3 Table).

Differential Expression Analysis of P. heterophylla

We used our assembled data as a reference and compared the unigenes from different tissues
of P. heterophylla (Fig 5A). A unigenes was regarded as a Differentially Expressed Gene (DEG)
when FDR< 0.05 and log2|FC|> = 1. There were 32,095 DEGs between root cortex and
xylem, of which 21,073 were down-regulated, and 11,022 were up-regulated (Fig 5B). There
were 30,070 DEGs between root cortex and leaf, in which 18,495 were down-regulated and
11,575 up-regulated. Moreover, we identified 31,555 DEGs between root cortex and stem,
18,212 of which were down-regulated and 13,343 of which were up-regulated. Between root
cortex and flower, 17,073 DEGs were down-regulated while 6,948 DEGs were up-regulated.
Overall, we identified 2,289 common DEGs from the four comparison groups. Root cortex
showed the highest number of upregulated unigenes among all tissues.

GO enrichment analysis and KEGG enrichment analysis of DEGs in P.

heterophylla

The GO enrichment analysis and KEGG enrichment analysis elucidated the functional differ-
ences of DEGs from different P. heterophylla samples (S3 Fig). In GO enrichment analysis, the
functionwas regarded as enriched if the corrected p-value of which was below 0.05. The result
showed that the unigenes involved in “response to fungus”, “oligosaccharide metabolic pro-
cess”, “defense response to other organism”, “chloroplast envelope”, “hydrolase activity, hydro-
lyzing O-glycosyl compounds”, “sucrose metabolic process” were enriched between root cortex
and flower (S4 Fig). Highly enrichedDEGs were involved in “response to auxin”, “root devel-
opment”, “plastid thylakoid”, “chloroplast thylakoid”, and “chloroplast stroma” between root
cortex and leaf (S5 Fig). The DEGs involved in “pollen development”, “gametophyte develop-
ment”, “response to auxin”, “response to external stimulus”, and “thylakoid” were enriched
between root cortex and stem (S6 Fig). Other highly enriched genes were related to “oxidation
−reduction process”, “naringenin−chalcone synthase activity”, “flavonoid metabolic process”,
“protein disulfide oxidoreductase activity” between root cortex and xylem (S7 Fig). Moreover,
we also analyzed 31 response categories related to DEGs using the heatmap according to the

Fig 1. Species distribution of unigenes from P. heterophylla. a: Similarity distribution of top BLAST hits

for each unigene; b: E-value distribution of BLAST hits with a cut off E-value of 1.0E−5; c: Species

distribution for top BLAST hits in the Nr database.

doi:10.1371/journal.pone.0164235.g001

Table 2. Blast results of the assembled unigenes.

Database Total unigenes Annotated unigene Percentage

Pfam 127334 20652 16.22%

Swissprot 127334 36291 28.50%

KEGG 127334 23572 18.51%

String 127334 16391 7.72%

Nr 127334 52937 41.57%

doi:10.1371/journal.pone.0164235.t002
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total RPKM values of all the DEGs in each pathway (Fig 6). Among these categories, most cate-
gories were up-regulated in underground parts (root cortex and xylem), including “response to
biotic stimulus”, “response to insect”, “response to carbohydrate”, “response to endogenous
stimulus”, “response to fungus”, “response to bacterium” and “response to wounding”. The
only categories active in leaf were “response to cytokinin”, “response to jasmonic acid”,
“response to light stimulus”, “response to cold”. Our results showed that 11 out of 31 response
pathways had up-regulated expression in both leaf and stem. These included “response to salt
stress”, “response to brassinosteroid”, “response to auxin”, “response to water deprivation”,
“response to gibberellin” and “response to salt stress”.

For a further study of DEGs, the KEGG database was used to search the significantly
enriched biochemical pathway. Between root cortex and flower, the most significant enriched
pathway was “plant hormone signal transduction”,which contained down-regulatedDEGs in
above-ground parts. Most of the DEGs that were involved in “plant-pathogen interaction”,
“starch and sucrose metabolism”, “phenylpropanoid biosynthesis”, “alpha-Linolenic acid
metabolism”, “circadian rhythm–plant”, “glycosylphosphatidylinositol (GPI)-anchor biosyn-
thesis”, and “N-Glycan biosynthesis” were down-regulated. On the other hand, the DEGs
involved in “diterpenoid biosynthesis”, “isoquinoline alkaloid biosynthesis”, “monoterpenoid
biosynthesis”, “stibenoid diarylhepatanoid and gingerol biosynthesis”, “ubiquinone and other
terpenoid-quinone biosynthesis”, “zeatin biosynthesis” were up-regulated (S8 Fig). We
observed similar results in each underground parts (root cortex and xylem) compared to either
aboveground parts (leaf, stem and xylem) in P. heterophylla (S9–S11 Figs).

Fig 2. Gene Ontology classification of assembled unigenes. The unigenes were categorized into three main categories: biological process, cellular

component, and molecular function.

doi:10.1371/journal.pone.0164235.g002
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We further used the heatmap to analyze 14 KEGG pathways involved in the biosynthesis of
secondarymetabolites in different tissues (Fig 7). Our analysis showed that 6 out of 14 path-
ways showed up-regulated expression in underground parts (root cortex and xylem) including
“monoterpenoid biosynthesis”, “zeatin biosynthesis”, “tropane, piperidine and pyridine alka-
loid biosynthesis”, “sesquiterpenoid and triterpenoid biosynthesis”, “ubiquinone and other
terpenoid−quinone biosynthesis” and “isoquinoline alkaloid biosynthesis.” These results
explain why tuberous root including root cortex and xylem is the principal medicinal part of
P. heterophylla.

Identification of genes involved in triterpenoids saponins biosynthesis of

P. heterophylla

We identified 70 candidate genes in P. heterophylla including AACT (acetyl-CoAacetyltrans-
ferase), HMGS (HMG-CoA synthase), HMGR (HMG-CoA reductase),MVK (mevalonate
kinase), PMK (phosphomevalonate kinase),MVD (mevalonate diphosphate decarboxylase),
GGPS (geranylgeranyl pyrophosphate synthase), FPS (farnesyl diphosphate synthase), IDI
(isopentenyl diphosphate isomerase), SS (squalene synthase), SE (squalene epoxidase), LuS
(lupeol synthase), β-A28O (β-amyrin 28-oxidase) (S4 Table). 2,3-oxidosqualene is the the key
enzyme at the first committed step and the skeleton of triterpenoids saponins in plants depends
on its activity. Notably, three unigenes (c24484_g1, c60124_g1, c27529_g1) encoding lupeol

Fig 3. COG functional categories of P. heterophylla.

doi:10.1371/journal.pone.0164235.g003
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synthase were identified from our transcriptome data, but none encoding β-amyrin synthase
and dammarenediol-II synthase were identified.

The heat map result showed that most unigenes encodingAACT, HMGS, MK, PMK,MDD
and IDI, had high expression levels in flowers, leaves, stem, root cortex, and xylem (Fig 8).
Somemembers of the gene family of HMGR, SE andβ-A28O were up-regulated in the root cor-
tex and xylem while others were down-regulated. The unigenes encodingGGPS (c12012_g1,
c99329_g1) and IDI (c1497_g1) were up-regulated specially in leaf and stem. Some investigated
genes showed high expression levels in the root cortex and xylem such as FPS (c51143_g1,
c54472_g1), SS (c65449_g2, c65449_g4, c66040_g4) and LuS (c60124_g1). The identification
of genes involved in triterpenoids saponins biosynthesis may help explain the accumulation of
saponins in different tissues of P. heterophylla. We validated the expression levels of 11 ran-
domly selected genes using real-time PCR. The expression profiles of these unigenes were con-
sistent with the transcriptomic data (Fig 9). Gene-specificprimers were designed based on the
gene sequences and are shown in S5 Table.

Fig 4. Pathway assignment based on the Kyoto Encyclopedia of Genes and Genomes (KEGG). (A) Classification based on metabolism

categories, (B) Classification based on genetic information processing categories, (C) Classification based on environmental information processing

categories, (D) Classification based on cellular processes categories, and (E) Classification based on organismal systems categories.

doi:10.1371/journal.pone.0164235.g004
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Discussion

High throughput transcriptome sequencing has become a popular tool for sequencing non-
model organisms such as Gingko kernels [20], Rehmannia glutinosa [21], Gossypium hirsutum
[22], Liriodendron chinense [23], Ramia [24], and Centella asiatica [25]. We used Illumina
HiSeq 4000 sequencing platform to sequence RNA from flowers, leaves, stem, root cortex, and
xylem of P. heterophylla. The number of unigenes (127,334) identified in our study was much
higher as compared with previous transcriptomic studies from Pseudostellariae redix [14]. Our
data provides a useful resource for gene identification and regulation in different tissues of P.
heterophylla.

Our transcriptomic data identified unigenes related to five endophytes. Three of these endo-
phytes (M. violaceum, L. maculans, and P. fluorescens) are harmful for the development of
plant organs [26–28]. F. oxysporum is an important replant disease pathogen in Pseudostellaria
heterophylla rhizospheric soil [29] and also isolated from Chamaecyparis lawsoniana [30],
Quercus variabilis [31] and Ephedra fasciculate [32]. Some active chemicals were previously
purified from F. oxysporum, such as oxysporidinone (pyridine, anti-fungus) and beauvericin
(cycle-peptide, anti-cancer) [33]. R. toruloides is an oleaginous yeast and used for lipid produc-
tion [34]. The results of transcriptome data and reverse transcript PCR indicated that the tran-
scripts of unigenes from M. violaceum, P. fluorescens and R. toruloides were detected in
aboveground parts (leaf, stem and flower), the expression profiles of unigenes from R. toru-
loides and L. maculans were determined in underground parts (root cortex and xylem).These
results suggest that endophytes may participate in the interaction between plants and microor-
ganisms; and thus, provide a novel guideline for the planting of P. heterophylla.

The transcriptomic data from different tissues showed that most DEGs were either up-regu-
lated in ground parts (leaf, stem, and flower) or underground parts (root cortex, and xylem)
while a few DEGs showed special expression in certain tissues. The tuberous roots of sweet
potato, cassava, and dahlia store nutrients, which permit survival from one year to the next.
The formation of an enlarged area and secondarymetabolic biosynthesis in the tuberous root
is influenced by environment factors including fungus, bacteria, and wounding [35, 36]. In this
study, these pathways were up-regulated both in root cortex and xylem. The pathways related
to response to cytokinin, jasmonic acid, light stimulus, and cold were specially activated in the

Fig 5. Venn diagrams of unigenes of three libraries and statistical analysis of the differentially expressed genes (DEGs). (A) Distribution of the

unigenes of the three libraries; (B) The red columns indicate the up-regulated DEGs and the green columns represent the down-regulated DEGs in three

pair-wise comparisons (FDR� 0.001 and an absolute value of log 2 Ratio� 1 was used as the significant threshold for DEGs).

doi:10.1371/journal.pone.0164235.g005
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Fig 6. GO annotation of DEGs. The heat map shows 31 categories of DEGs in different tissues, leaf, stem, flower, root cortex and xylem

included. Different colors indicated different expression levels. Green indicates down-regulated expression and red represents up-regulated

expression. The heat map of all genes involved in each category was constructed using the log10 values of RPKM.1_G_M, 3_G_M, 4_G_M

represents root xylem, 1_G_P, 3_G_P 4_G_P represents root cortex, 1_G_YD, 3_G_YD, 4_G_YD represents leaf, 1_G_J, 3_G_J, 4_G_J

represents stem, 1_G_H, 3_G_H, 4_G_H represents flower from three individual plants.

doi:10.1371/journal.pone.0164235.g006

Fig 7. KEGG annotation of DEGs. The heat map shows 31 pathways of secondary metabolism in different tissues, including leaf, stem, flower, root cortex

and xylem. Expression differences are shown in different colors. Red represents high expression and green represents the low expression. 1_G_M, 3_G_M,

4_G_M indicates root xylem, 1_G_P, 3_G_P 4_G_P indicates root cortex, 1_G_YD, 3_G_YD, 4_G_YD indicates leaf, 1_G_J, 3_G_J, 4_G_J indicates

stem, 1_G_H, 3_G_H, 4_G_H represents flower from three individual plants.

doi:10.1371/journal.pone.0164235.g007
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leaves. These results provided a better understanding of gene expression and regulation in dif-
ferent tissues of P. heterophylla.

The unigenes involved in triterpenoids saponins biosynthesis of P. heterophylla were identi-
fied. The cyclization of 2,3-oxidosqualene–catalyzed 2,3-oxidosqualene cyclases (OSCs)–is the
first committed step in the triterpenoid saponins, which provides potential products [37].
Although the structure of saponins in P. heterophylla was similar to that of P. vietnamensis and

Fig 8. The expression profiles of unigenes involved in triterpene saponin biosynthesis of P.

Heterophylla. Expression differences are shown in different colors. Red represents high expression and

green represents the low expression.

doi:10.1371/journal.pone.0164235.g008

Fig 9. The expression validation of candidate genes in triterpene saponin biosynthesis of P. heterophylla

by qRT-PCR. Error bars represent the mean (± SD) of three individual biologic experiments.

doi:10.1371/journal.pone.0164235.g009
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P. notoginseng, we did not identify any unigenes encoding β-amyrin synthase and dammarene-
diol-II synthase. The OSCs in plants contain four genes coding β-amyrin synthase, dammare-
nediol-II synthase, lupeol synthase and cycloartenol synthase, respectively. Because of high
similarities, these pentacyclic triterpene synthases may have evolved in a complicated order in
triterpenoid saponin biosynthesis and sterol biosynthesis with a common progenitor [38]. The
in vitro activities of OSCs were analyzed by expressing them in Saccharomyces cerevisiae,
strains carryingOSC2 accumulated α-, β-, and δ-amyrin and strains carrying LuS accumulated
α-amyrin and lupeol [39]. The above study suggested that 2,3-oxidosqualene in triterpenoids
saponins biosynthesis of P. heterophylla may mainly rely on the activity of lupeol synthase.
Moreover, the discovery of β-amyrin synthase requires a precise sequencing technology in the
future.

Our qRT-PCR results and transcriptome data showed that two unigenes (c65449_g2,
c65449_g4) encoding squalene synthase and two (c59462_g1, c55401_g1) encoding squalene
epoxidase in triterpenoids saponins biosynthesis were up-regulated in both root cortex and
xylem. Unigenes encodingGGPS (c99329_g1), IDI (c1497_g1), and MDD (c53051_g1)
enzymes showed a high expression in both ground parts (leaf and stem) and underground
parts (root cortex and xylem). Triterpene saponins can be extracted from underground parts
(tuber root) and aerial parts (leaf and stem) [40] of P. heterophylla; however, these triterpene
saponins may also accumulate in special tissues. Our study provides valuable information
about pathways for the synthesis of triterpenoid saponins. Future studies involving isolation of
key enzymes genes (OSCs) and their functional analysis are imperative for a complete under-
standing of the triperpenoidbiosynthetic pathways.
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