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Abstract

The underlying molecular mechanisms of programmed cell death associated with fungal allorecognition, a form of innate immunity, re-
main largely unknown. In this study, transcriptome analysis was used to infer mechanisms activated during barrage formation in vic3-in-
compatible strains of Cryphonectria parasitica, the chestnut blight fungus. Pronounced differential expression occurred in barraging
strains of genes involved in mating pheromone (mf2-1, mf2-2), secondary metabolite production, detoxification (including oxidative
stress), apoptosis-related, RNA interference, and HET-domain genes. Evidence for secondary metabolite production and reactive oxygen
species (ROS) accumulation is supported through UPLC-HRMS analysis and cytological staining, respectively. Differential expression of
mating-related genes and HET-domain genes was further examined by RT-qPCR of incompatible interactions involving each of the six
vegetative incompatibility (vic) loci in C. parasitica and revealed distinct recognition process networks. We infer that vegetative incompati-
bility in C. parasitica activates defence reactions that involve secondary metabolism, resulting in increased toxicity of the extra- and intra-
cellular environment. Accumulation of ROS (and other potential toxins) may result in detoxification failure and activation of apoptosis,
sporulation, and the expression of associated pheromone genes. The incompatible reaction leaves abundant traces of a process-specific
metabolome as conidiation is initiated.

Keywords: allorecognition; transcriptomics; programmed cell death; heterokaryon incompatibility; secondary metabolites; RNA-seq

Introduction
Programmed Cell Death (PCD) in filamentous fungi is involved in
a variety of processes including intraspecific mycelial incompati-
bility, aging, and spore formation (Raju and Perkins 2000;
Barhoom and Sharon 2007) and demonstrates morphological fea-
tures of apoptotic death (Glass and Kaneko 2003; Dementhon
et al. 2006). The pathways that lead to PCD in fungi are not clearly
identified (Shlezinger et al. 2012) but may be unraveled through
studies on mycelial incompatibility systems that are referred
to as heterokaryon incompatibility (HI) in Podospora anserina
and Neurospora crassa and vegetative incompatibility (VI) in
Cryphonectria parasitica. In these ascomycete species, HI and VI are
genetically determined by 6–12 incompatibility loci and polymor-
phisms at these loci create the basis for conspecific nonself rec-
ognition (Glass and Dementhon 2006; Paoletti and Saupe 2009;
Smith and Lafontaine 2013). Hyphal fusion of two members of
the same species that possess different alleles at one or more vic
or het loci results in an incompatibility reaction in the fusion cells
and subtending cells that progresses from cytoplasmic granula-
tion and vacuolization to plasmolysis and cell death. In most
cases, known vic (and het) loci contain two or more tightly linked
genes, at least one of which encodes an HET domain (IPR010730)

(Glass et al. 2000; Smith et al. 2000; Paoletti and Clavé 2007; Smith
and Lafontaine 2013). Although the molecular function of the
HET domain remains unclear, an association exists between the
HET domain and fungal nonself recognition, where transcrip-
tional activation of HET-domain genes correlates with activation
of PCD (Paoletti et al. 2007). Fungal genomes can carry over 50
HET-domain genes. However, in any given genome, only a small
subset of the genes containing HET domains have been associ-
ated with conspecific incompatibility and general allorecognition
(Paoletti and Clavé 2007).

There are six characterized vic loci associated with VI in
C. parasitica and each locus comprises at least two linked genes
that interact to modulate nonself recognition (Choi et al. 2012;
Zhang et al. 2014). Molecular genetic analyses indicate that the
vic1, vic6, and vic7 loci all possess genes with a HET domain
whereas vic2, vic3, and vic4 do not (Zhang et al. 2014). Therefore, it
may appear that an HET domain is not a necessary component
for VI reaction, at least in C. parasitica. However, in some systems,
incompatibility loci are known to interact with unlinked HET-
domain genes. For example, in N. crassa, HI is triggered by differ-
ences at the mat locus only when the unlinked tol gene (contains
HET and leucine-rich repeat domains) is expressed (Shiu and
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Glass 1999). When tol is deleted, strains of opposite mating types
are able to form viable heterokaryons during the vegetative phase
of the life cycle. When tol is present, cells containing mat-A and
mat-a exhibit HI during vegetative growth. Thus, incompatibility
loci that do not contain genes with an HET domain may be func-
tionally coupled with unlinked genes that do have the HET do-
main that do not necessarily show genetic polymorphism in
incompatible strains.

In this study, we analyze transcription profiles to identify
genes that are differentially expressed (DE) during vic3-associated
nonself recognition in C. parasitica. We provide general observa-
tions on overall expression patterns, perform functional annota-
tions on DE genes using gene databases, and enrichment
analyses in order to understand the underlying mechanisms in-
volved in allorecognition in this fungus. The analysis of DE genes
showed activation of mating pheromone genes, apoptotic-like
factors, and indicate the involvement of reactive oxygen species
(ROS) and secondary metabolite biosynthesis pathways in allore-
cognition processes. These patterns were confirmed with second-
ary assays based on quantitative RT-PCR, microscopy using
redox-sensitive stains and metabolomic profiling by mass spec-
trometry.

Materials and methods
Strains and growth conditions
Cryphonectria parasitica strains P74-3, EP155, and DZ-66 were used
for transcriptome analysis in this study. Strains P74-3 and EP155
are of a distinct genetic background (Biella et al. 2002), but carry
identical alleles at all vic loci except for vic3. The EP155 strain car-
ries the vic3-1 haplotype and P74-3 carries the vic3-2 haplotype.
Strain DZ-66 is derived from EP155 where genes vic3a-1 and vic3b-
1 were knocked out (Zhang et al. 2014). Additional C. parasitica
strains used in this study are listed in Supplementary Table S1.

Strains were inoculated into 12-ml liquid of 2% potato dex-
trose broth (PDB, BD Difco Brand, NJ, USA) and incubated static
for 7 days at 30�C in the dark. They were then diluted 10 times
with fresh 2% PDB and blended at high speed. We reasoned the
maceration of mycelia into small fragments maximizes the num-
ber of contacts formed when strains are co-inoculated together,
thereby amplifying transcriptomic and metabolomic signals as-
sociated with incompatibility. The resulting cell suspensions had
approximately 2000 Colony Forming Units (CFUs) per ml. Three
strains (EP155, P74-3, DZ-66) were used as “monoculture” con-
trols. The mixed culture EP155þ P74-3 represented the vic3-in-
compatible (barraging) interaction while DZ-66þ P74-3 was used
as a vic-compatible control.

Cultures for RNA extraction were grown in 8.5-cm Petri plates
on potato dextrose agar (PDA, BD Difco Brand, NJ, USA) overlaid
with sterile semipermeable cellophane membranes.
Approximately 200 CFUs (100 ml) of each hyphal suspension was
evenly spread over the membrane. Cultures were incubated in
the dark at 30�C for 3 days, at which point all mycelium was re-
moved from the membrane (approximately 3 g per sample), fro-
zen with liquid nitrogen, and stored at �80�C. Three biological
replicates were plated for RNA extraction, and six biological repli-
cates were plated for metabolite extraction.

RNA preparation and analysis
Total RNA was extracted using the Qiagen RNeasy Plant RNA ex-
traction kit following the manufacturer manual (Qiagen,
Valencia, CA, USA) with a DNAse treatment step. RNA quality
was assessed with Agilent Bioanalyser (Santa Clara, CA, USA).

RNA sequencing was done on Illumina NovaSeq 6000 platform,
with paired-read length of 150 bp and 70 M read depth (Genome
Quebec, Montreal, Canada).

RNA-seq data analysis
Short reads quality was assessed with FastQC and reference-
based alignment was performed with STAR 2.7 (Dobin et al. 2013).
Reference genome and functional annotation and gene mapping
were acquired from the JGI C. parasitica genome portal (https://
mycocosm.jgi.doe.gov/Crypa2/Crypa2.home.html), which con-
tains information about 11,609 C. parasitica protein-coding areas
(Crouch et al. 2020). Additionally, novel transcripts from regions
of the genome that showed significant expression, but were not
previously annotated as genes were identified using StringTie
v.2.1.3 (Pertea et al. 2015). Transcripts were identified using align-
ment data obtained from STAR alignment. Identified transcripts
showing counts less than 10 were discarded. As a result, 84 novel
transcripts were identified, for a total of 11,693 genes. Differential
expression analysis was done with the R package DESeq2 (Love
et al. 2014) and further, data analysis and visualization were done
in the R environment. Gene Enrichment analysis was done using
DAVID v6.7 (Huang et al. 2009; Huang da et al. 2009). The signifi-
cance threshold for gene differential expression was set to LFC
(log2jfold changej) � j2j and FDR adjusted P-value <0.001.

Analysis of intracellular ROS
ROS production during vic3 barrage was assessed using the previ-
ously described microscopy protocol by Biella et al. (2002) coupled
with DCFDA (20,70-dihydrodichlorofluorescein diacetate, Sigma-
Aldrich, ON, Canada) staining. Inoculum blocks of 0.5 mm 3 were
taken from the edges of cultures grown for 7–10 days on PDA.
These agar cubes with mycelium were placed approximately
1 cm apart on microscope slides coated with PDA. Slides were in-
cubated in a damp chamber for 2 days in the dark at room tem-
perature, after which inoculum agar cubes were removed and a
stained with DCFDA (10 mM) (LeBel et al. 1992; Hutchison et al.
2009). ROS accumulation oxidizes DCFDA to fluorescent DCF and
barraging cells were observed with fluorescent microscopy (Carl
Zeiss, AxioVision).

RT-qPCR conditions
Reverse transcription from RNA template was performed using
M-MuLV Reverse Transcriptase (New England Biolabs, Whitby,
ON, Canada) according to manufacturer recommendations. Real-
time quantitative PCR analysis was performed using a CFX
Connect Real-Time PCR Detection System (BioRad, Mississauga,
ON, Canada) with KAPA SYBR FAST Universal 2� master mix
(KAPA, Wilmington, MA, USA). Gene expression values were nor-
malized against 18S rRNA. Relative abundance of normalized
transcripts was calculated using 2�DDCt method (Livak and
Schmittgen 2001). Real-time PCR primers used for measuring
transcript abundance of selected C. parasitica genes are given in
Supplementary Table S2.

Liquid chromatography-mass spectrometry
analysis
Mycelium and the agar directly underneath the membrane were har-
vested into glass scintillation vials as separate samples from each plate
after 5 days of incubation in the dark at 30�, in six replicates, along
with media controls (PDA with sterile membrane overlaid) and imme-
diately frozen at �20�. Thawed samples were extracted by immersion
in ethyl acetate (gently shaking for 1.5h), dried under vacuum, and
then reconstituted in MeOH to a concentration of 500mg/ml. The ultra-
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high performance liquid chromatography coupled high resolution

mass spectrometry (UPLC-HRMS) analysis was carried out on a

Thermo Ultimate 3000 UPLC coupled to a Thermo LTQ Orbitrap XL

high-resolution mass spectrometer, using a reverse-phase

Phenomenex C18 Kinetex column in ESIþ mode (with an m/z 100–

2000m/z range). Data preprocessing closely followed the methodology

of Overy et al. (2017), using MZMine v2.29 [Cell Unit, Okinawa Institute

of Science and Technology (OIST), Onna, Okinawa, Japan], with a mass

detection noise cutoff level set to 5:0� 105. Mass features (each repre-

senting an associated retention time and mass/charge ratio) from agar

and mycelium extracts were normalized to the total ion current

detected from each sample and then summed, scaled, and centered.

Data availability
Supplementary files are available at G3 FigShare. File

“Belov_etal_TableS1_2.pdf” contains information about C. para-

sitica strains used and qPCR primer sequence information.

Supplementary File “Belov_etal_TableS3.xlsx” contains data for

Figure 3 (heatmap). Table 1 and Supplementary Table S3 contain

data for gene differential expression with annotations.

Supplementary “Belov_etal_TableS4.xlsx” contains a list of ortho-

logs DE in C. parasitica during vic3 associated barrage and N. crassa

and P. anserina during HI. R scripts used in this work can be found

on https://github.com/anabeloff/vic3PCD.
Supplementary material is available at figshare DOI: https://

doi.org/10.25387/g3.8239778.

Results and discussion
Fungal anastomosis and cell death
Allorecognition following incompatible hyphal fusions is associ-

ated with rapid activation of PCD in C. parasitica and other

filamentous ascomycetes (Jacobson et al. 1998; Biella et al. 2002).
This process can be observed macroscopically when the vic3-incom-
patible strains (P74-3 vic3a-2 vic3b-2þEP155 vic3a-1 vic3b-1) are co-
inoculated on agar plates (Figure 1A). In these pairings, a barrage
zone appears where the two mycelia meet, characterized macro-
scopically by a clear line that is flanked by a region with pigment
production and active sporulation. We confirmed that barrage
zones do form with pairings of P74-3þEP155 but not in pairings of
P74-3þDZ66 (Dvic3a-1 Dvic3b-1). Hyphal anastomosis of VI strains
was observed microscopically with the Evans Blue assay, where hy-
phal fusion results in dead cells that are unable to actively trans-
port dye out of the cell and thus become brightly fluorescent
(Figure 1B). ROS accumulation was also observed at the site of
hyphal fusion only in pairings of P74-3 and EP155 (Figure 1C).

Hierarchical cluster and enrichment analyses
Principal component analysis (PCA) revealed differences in over-
all gene expression patterns between vic3-incompatible strain
pairings (P74-3þEP155), control pairing (P74-3þDZ66), and
monocultures (P74-3, EP155, or DZ66 alone) (Figure 2). Samples
formed two distinct clusters, one of monocultures grouped close
together with the control pairing (P74-3þDZ66) and a second of
vic3-incompatible strain pairings (P74-3þEP155). Separation be-
tween barraging and control samples accounted for 70% of vari-
ance in the sample set. Significant (over 50%) variance provided
evidence of differential gene expression between the two clusters.
Differential expression analysis was performed using the DESeq2
package to obtain a list of 531 (501 genes þ 30 novel transcripts)
most DE genes based on the set threshold (LFC � j2j;
P� value < 0:001). Using hierarchical clustering, we arranged
these 531 DE genes in clusters based on individual LFC values
(Figure 3, for detailed description of each cluster, see

Table 1 Notable genes and their differential expression during vic3-associated barrage formation (P-values > 0.001 shown grey)

Groups Cp IDa LFCb P-value UniProt ID Putative protein function

66954 6.1 2.52e�16 P55211 Weak similarity to human Caspase-9
75073 5.1 1.27e�69 Q9VFP2 Protein roadkill (rdx)

333952 3.4 4.22e�12 Q53FA7 Quinone oxidoreductase (QO)
Apoptosis 259069 3.3 9.58e�206 Q15392 3-beta-hydroxysterol delta-24-reductase (DHCR24)

258862 2.4 1.97e�20 Heterokaryon incompatibility (vic1a)
262887 2.3 1e�102 Q9UV10 Heterokaryon incompatibility (dev3-2)
261856 2 1.29e�14 Q9UV10 Heterokaryon incompatibility (dev3-1)

HET 67224 �1.1 3.08e�11 Q9C2N1 Transcription factor vib-1
85578 12.9 2.63e�116 O14431 Mating pheromone precursor mf2-1

CPNOV.6992c 10.4 8.88e�251 O14431 Mating pheromone precursor mf2-2
44005 7.1 1.01e�51 P35693 MAT-2
96416 5.6 0 P12866 Mating factor A secretion protein STE6

262923 3.9 5.21e�12 A9CPT4 Tudor domain-containing protein 1
351932 3.6 1.54e�272 P36631 Transcription factor ste11
285012 2.8 2.21e�109 P08965 Meiosis protein, mei2

Mating 66950 0 0.767 P23561 NRC1 ortholog
58765 6.9 0 Q9Y7Q2 Glutathione S-transferase

274617 4.6 3.49e�66 Q64505 Cytochrome P450
269746 4.6 4.14e�229 Q27712 Cytochrome P450

Oxidative stress 332509 �2.4 6.68e�06 Q4WY82 Psi-producing oxygenase A (ppoA)
Pigment 263100 8.9 2.67e�227 Q9F723 Hydroxyneurosporene dehydrogenase
RNAi 261854 2.8 9.98e�15 O74957 Argonaute-like protein 4 (agl4)

345802 4.4 1.33e�104 Q9Y8G7 Cytochrome P450
342071 4 1.75e�103 Q00714 P450 monooxygenase
339678 2.2 8.73e�14 Q12609 P450 monooxygenase
255335 �1.9 4.5e�09 Q4WAW6 O-methyltransferase

Sec. Metabolite
Biosynthesis

18749 �2.9 5.85e�11 Q00668 Peroxidase

a Proteins IDs of C. parasitica genome v2 from JGI.
b LFC—Log2jfold changej.
c CPNOV—Novel transcripts identified in this study and not annotated in C. parasitica genome v2.
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Supplementary Table S3). Six robust clusters were identified with
a majority of DE genes (70%) upregulated during allorecognition.
Downregulation was not a notable feature of barraging strains,
evident only in cluster 6 (Figure 3). Clusters 5 and 6 comprise
genes with mean LFC rates close to the threshold (LFC � j2j),
making interpretation of activation or deactivation of these genes
inconclusive. Thus, using clustering analysis, we narrowed down
the list of possible candidate genes involved in barrage formation
and associated PCD within clusters 1–4.

Gene enrichment analysis included two main elements: a list
of DE genes and a background list, against which enrichment of
Gene Ontology (GO) annotation terms and protein domains were
estimated (Figure 4). A total of 8031 C. parasitica gene IDs with
UniProt annotations were used as a background list. For this
analysis, we used annotation terms to form gene enrichment
groups. In Figure 4, GO terms and INTERPRO domains were
grouped together based on their functional similarity and then
an enrichment score was calculated as an average ratio of the
term among DE genes versus number of genes associated with
the term in the background list. Using the above techniques, we
distinguish five functional gene groups that represent processes
playing major roles during barrage formation. The groups are
designated as mating, apoptosis, HI, secondary metabolism, oxi-
dative stress and detoxification, and RNA interference.

Transcriptome analysis—mating
In C. parasitica, there are two mating types, MAT-1 and MAT-2.
Each haploid strain carries a single mating-type transcription

Figure 1. Cell death and ROS accumulation during vic3-associated
barrage formation. (A) Barrage formed at the confluence of the vic3-
incompatible C. parasitica strains EP155 (vic3-2) þ P74-3 (vic3-1) is
indicated by an arrow. No barrage is evident with self-pairings (e.g., P74-
3þ P74-3, arrowhead). (B) Micrographs show that hyphae undergoing
incompatible fusions fluoresce under UV light (arrowheads, top panel)
due to accumulation of Evan’s Blue in dying/dead cells. Incompatible
hyphae are compartmentalized by septa (narrow white arrows).
Morphological changes in cell structure can also be seen under bright
field illumination (bottom panel). The middle panel is an overlay of top
(UV) and bottom (bright field) panels. (C) Brightfield (inset) and
fluorescent micrographs show ROS production during vic3-incompatible
hyphal fusions. Strains EP155 and P74-3 were grown for 2 days on
microscope slide and stained with DCFDA. Fused cells from
incompatible strains produce bright fluorescence as a result of ROS
production. Self-pairings and P74-3þDZ66 pairings do not show ROS
signals (not shown).
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vic3a-2 vic3b-2þDZ66 Dvic3a-1 Dvic3b-1) cluster together with
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Supplementary Table S3.
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factor gene, mat-1 or mat-2, but carries all three mating phero-
mone genes (mf1-1, mf2-1, mf2-2) (Kazmierczak et al. 1996; Zhang
et al. 1998; Marra and Milgroom 2001). Expression of pheromones
depends on what mating type is present in the haploid mycelium.
Strains expressing MAT-2 activate mf2-1 and mf2-2 pheromone
precursor genes, while ones with MAT-1 activate mf1-1. Strains
used in our RNA-seq experiment, P74-3, EP155, and DZ66, are all
MAT-2. In the RNA-seq analysis, the mat-2 gene and associated
pheromone genes mf2-1 and mf2-2 show the most dramatic
change in expression of any genes during barrage (Figure 3,
Cluster 1, Table 1).

Involvement of mating genes in barrage processes was unex-
pected and merited closer examination. We identified additional
DE orthologs that were previously connected to mating in yeast.
In cluster 4, we find genes cpste6 and cpste11 (orthologs of Ste11
associated with reproduction) that were overexpressed in vic3-in-
compatible barraging cultures. There are two yeast genes identi-
fied as Ste11 in the literature. One encodes MAP kinase Ste11p, a
homolog of N. crassa NRC1 (cpnrc-1, Cp ID: 66950), which is a com-
ponent of the fusion oscillation complex (Pandey et al. 2004;
Dettmann et al. 2014). The second gene identified as Ste11 (Cp ID:
351932, cpste11) is an ortholog of the Schizosaccharomyces pombe
transcription factor Ste11p. cpste11 gene orthologs belong to a
family of high-mobility group transcription factors involved in
conjugation and activation of the meiotic cycle (Qin et al. 2003). In
S. pombe, Ste11p is activated in response to starvation or mating
pheromones. As a transcription factor, Ste11p regulates the ex-
pression of several genes related to yeast mating, which include
mating genes, pheromones, and meiosis regulatory factors
(Kjaerulff et al. 1997; Kitamura et al. 2001; Mata and Bähler 2006).
In our dataset, we identified two overexpressed orthologs of yeast

genes that are known to be regulated by Ste11p. The first of these
genes is a meiotic factor mei2 ortholog (ID: 285012) that was upre-
gulated during barrage. The second is Ste6 (cpste6, Cp ID: 96416)
that encodes an ABC-transporter responsible for secretion of a-
factor (Sugimoto et al. 1991; Kolling and Hollenberg 1994).
Overexpression of cpst6 and MAT-2 pheromones could indicate
that barraging cells increase pheromone production and pump
them out with cpst6, while other cells react to extracellular pher-
omone signal and activate the Ste11 system.

Transcriptome analysis—RNA interference
In analyzing enriched genes associated with sexual reproduction,
we identified a homolog of the fruitfly tud gene. TUD carries a
Tudor domain and works as an essential part of the nuage struc-
ture, activated during germline cell development. This structure
employs PIWI, an RNAi complex of proteins that prevents activa-
tion of retrotransposons (Kibanov et al. 2011). That cptud (ID:
262923) is overexpressed may indicate a role for RNAi during bar-
rage in C. parasitica.

According to our RNA-seq analysis, the Argonaute-4 ortholog
(previously identified in C. parasitica as agl4) (Sun et al. 2009) was
overexpressed during barrage (Cluster 5); the RNAi specialization
of agl4 has yet to be confirmed. Among four Argonautes (agl1,
agl2, agl3, and agl4) and two Dicer genes (dcl1 and dcl2) in C. para-
sitica, only the RISC complex formed by Dicer-2 and Argonaute-2
was found to function as an antiviral defence, where expression
of agl2 is important to activate expression of dcl2 (Zhang and
Nuss 2008; Sun et al. 2009). Others, Dicer-1 and Argonauts 1, 3,
and 4, were not found to be associated with known RNAi pro-
cesses. None of agl1, agl2, agl3, dcl1, nor dcl2 were DE during bar-
rage. An increase in Argonaute expression should be followed by
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an increase in Dicer expression (Sun et al. 2009); therefore, it is
possible that the observed overexpression of agl4 during the ini-
tial onset of barrage represents an early stage of RNAi activation
and that activation of Dicer will follow.

Transcriptome analysis—HI
There are 124 ORFs annotated with an HET domain in the C. para-
sitica genome v.2. Even though HET-domain genes are associated
with barrage formation, only three are linked to vic loci in C. para-
sitica. While genetic polymorphism in HET-domain genes is asso-
ciated with VI in fungi (Smith et al. 2000), the majority of
examined HET-containing ORFs lack genetic polymorphism
among C. parasitica strains (Choi et al. 2012; Zhang et al. 2014).

Our analysis demonstrates that vic3 incompatibility triggers
upregulation of three HET-domain genes (P-value < 0.001) that
are unlinked to the vic3 locus. Surprisingly, one of these HET-
domain genes, vic1a (Cp ID: 258862), is a component of the vic1 lo-
cus and is also associated with barrage formation when strains
carry different alleles at vic1 (Zhang et al. 2014). Since the vic3-in-
compatible strains used in this experiment are identical at the
vic1 locus, we infer that differences at vic3 act in trans to activate
vic1a. The other two upregulated HET-domain genes were not
previously associated with incompatibility and have not been
assigned genetic designations. We refer to these genes as dev3-1
(Cp ID: 261856) and dev3-2 (Cp ID: 262887).

Transcriptome analysis—apoptosis
Overall, the observation of enrichment in the “Apoptosis/Stress
response” GO group indicates that PCD processes involved in vic3
incompatibility are most likely activated by external signaling.
This group of transcripts comprises GO terms associated with
positive and negative regulation of apoptosis. In P74-3þEP155
mixed-culture plates, it is expected that both positive and nega-
tive regulation of apoptosis would be occurring simultaneously;
positive regulation in barraging cells as evidenced by cell death,
and negative regulation (likely related to defence mechanisms)
occurring in nearby cells that are not directly involved in incom-
patible cell fusions.

An example of an upregulated positive regulator of cell death
was gene Cp ID: 75073, an ortholog of Protein roadkill (rdx).
Similar to AIF (Apoptosis-inducing factor), rdx orthologs are in-
volved in the extrinsic cell death pathway, as they are known to
activate the JNK-dependent apoptotic cycle (Liu et al. 2009). As
demonstrated in animals, JNKs are part of an external stress-
activated kinase cascade, which leads to apoptosis through the
activation of PCD transcription factors like p53 (Davis 2000; Yin
et al. 2000). To activate the downstream PCD pathway, JNK must
be activated by other protein kinases (PKs). Studies showed that
an ortholog of yeast Ste20 in animals is responsible for activation
of JNK (Brown et al. 1996). Ste20 belongs to a group of PKs called
PAK (p21-activated serine/threonine kinases) that are upstream
activators of the MAPK cascade (Dan et al. 2001). Orthologs of
Ste20 were not among the differentially regulated genes observed
during vic3-associated incompatibility.

Of additional interest within the “Apoptosis/Stress response”
group was the upregulated Caspase-9 gene (Cp ID: 66954). It has
low identity to human Caspase-9 and prediction of gene function
in this case is difficult to interpret due to low sequence homology.
Furthermore, transcript upregulation of fungal metacaspases is
not necessarily an indicator of increased protein activity and apo-
ptosis (Tsiatsiani et al. 2011). As a hallmark of the classic apopto-
sis pathway, the caspase cascade is activated primarily by post-
translational modifications and increased accumulation of

transcripts is not an expected outcome (Riedl and Salvesen 2007).
Accordingly, previous studies on N. crassa showed no differential
caspase expression during HI (Hutchison et al. 2009). Similarly,
the other three predicted C. parasitica metacaspases show no sig-
nificant change in expression during vic3-associated incompati-
bility.

Lastly, the “Apoptosis/Stress response” group contains genes
that function to delay apoptosis onset. Gene 333952, an ortholog
of a negative regulator of apoptosis QO (Quinone Oxidoreductase)
was found to be differentially upregulated in incompatible mixed
cultures. The activation of QO may be a response by cells near
barraging cells in the mixed cultures. In animals, QOs are part of
the cell defence mechanism that is activated in response to abi-
otic stress factors to maintain the cell’s redox balance (Johnson
et al. 2008). Similarly, gene 259069, an ortholog of human DHCR24
(3b-hydroxysterol D24-reductase), was also upregulated during
incompatibility. In humans, this gene is part of the cholesterol
biosynthesis pathway and determines resistance to apoptosis
caused by abiotic stress, where increased expression of DHCR24
leads to more resistance to apoptosis caused by ROS and other
abiotic factors (Di Stasi et al. 2005; Kuehnle et al. 2008).

Transcriptome analysis—oxidative stress and
detoxification
The transcription of multiple genes relating to oxidative stress
and detoxification was found to be upregulated in barraging
strains (Table 1 and Supplementary Table S3) and corresponds
with ROS production and accumulation that is observed at the
site of incompatible hyphal fusions (Figure 1C). Three
Glutathione S-Transferase (GST) paralogs (where ID 58765 was
highly overexpressed) and an ortholog of QOs were activated dur-
ing barrage formation and relate to cellular detoxification; GST is
a member of the Phase II detoxification program and QOs are
part of the antioxidant response system in animal cells (Johnson
et al. 2008). GSTs and QOs are transcriptionally regulated by the
Nrf2 transcription factor that activates a battery of anti-stress
enzymes (including increases in QO and GST expression) in re-
sponse to ROS-induced redox imbalance and elevated toxicity
due to toxin exposure (Jaiswal 2000; Johnson et al. 2008; Ray et al.
2012; Tew and Townsend 2012). GSTs bind glutathione to toxic
molecules, making them more accessible for transport out of the
cell and QOs deactivate toxic quinone derivatives (Jaiswal 2000).
Glutathione balance within the cell is pertinent to survival and
dramatic reductions of glutathione levels due to high toxic expo-
sure may lead to apoptotic death (Circu and Aw 2012).

One of the highly enriched INTERPRO domain terms relates to
cytochrome P450 proteins responsible for phase I detoxification
(see Figure 4). Activation of these genes is strongly correlated
with toxic environmental stress and often used as a diagnostic
marker of oxidative stress (Uno et al. 2012). For example, we iden-
tified upregulation of the ortholog (Cp ID: 345802) of cytochrome
p450foxy from Fusarium oxysporum, an example of a self-
sufficient p450 monooxygenase that is capable of functioning
without the aid of an external p450 reductase (Kitazume et al.
2000). Cytochrome p450foxy and its analogs are believed to be re-
sponsible for denitrification performed by various fungi (Shoun
and Takaya 2002).

During allorecognition in C. parasitica, expression of a lipoxyge-
nase ortholog ppoA (Cp ID: 332509) was significantly decreased in
barraging strains. Downregulation of lipoxygenase orthologs (P.
anserina ID: Pa_5_1240) during HI in P. anserina has been previ-
ously reported (Bidard et al. 2013). Tsitsigiannis et al. (2005) sug-
gest that downregulation of ppoA leads to increased resistance to
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ROS and higher virulence by Aspergillus in animal models.
Similarly, this model may be applied to barraging cells in
C. parasitica, as both ROS and secondary metabolite production
evidently occur.

Transcriptome analysis—secondary metabolite
biosynthesis
GO terms associated with “Mycotoxin (secondary metabolite) bio-
synthesis” were also found to be highly enriched in DE genes (see
Figure 4). These DE genes included various “tailoring” enzymes
involved in adding functional groups and post-transcriptional
structural modification during secondary metabolite biosynthe-
sis (P450 monooxygenases, O-methyltransferases, and a peroxi-
dase) (Usui et al. 1998; Fujii et al. 2001; Qiao et al. 2011; Kato et al.
2013; Niehaus et al. 2013).

Mass spectrometry-based metabolomics was used to further
explore the involvement of secondary metabolite biosynthesis in
barraging cultures during allorecognition. PCA analysis of mass
features shows a clear separation of barraging P74-3þEP155 cul-
tures from control treatments along the x-axis or PC1, explaining
43.9% of the variation in the data set (Figure 5). Univariate analy-
sis comparing data from incompatible co-inoculation to mono-
culture controls and the P74-3þDZ66 co-inoculation was
performed using the R package “muma” (Edoardo et al. 2013),
which led to the creation of a list of 208 mass features signifi-
cantly (P-value < 0.05) associated with vic3 allorecognition. Each
mass feature represents a discrete m/z detected in the HRMS as-
sociated with a retention time derived from the chromatography.
Many of these mass features represent pseudomolecular ions
(protonated, salt adducts, neutral losses, and fragments) associ-
ated with a single metabolite and further analysis is required to
distill this list into representative or “parent ions.”

It should also be noted that GO term groups associated with
secondary metabolite production notably overlap in their gene
content with other categories such as “apoptosis,” “mycotoxin
biosynthesis,” and “oxidative stress.” Considering the above, acti-
vation of genes that have general involvement in secondary me-
tabolite production presents a challenge for further functional
analysis. Given a paucity of information in the literature

surrounding known secondary metabolites produced by C. para-
sitica, an in-depth metabolomic analysis of the data generated
here including annotation of mass feature groups and biosyn-
thetic gene clusters relating to vic3 incompatibility is beyond the
scope of this study.

Comparison of allorecognition across vic loci
Expression of the mating-type pheromone gene, mf2-1, drastically
increases as a result of vic3 incompatibility. This is surprising
since P74-3 and EP155-derived strains have the same mating
type, MAT-2, so a mating interaction is not expected, and yet mf2-
1 demonstrated the highest rate of differential expression in the
entire sample set (Figure 3, cluster 1). Upregulation of mf2-1 is
characterized by very low transcript abundance in controls in
comparison to very high abundance in barraging cultures. High
differential expression was confirmed by RT-qPCR tests with mf2-
1 and this can apparently be used as a marker of vic3-associated
barrage development (Figure 6B). We used RT-qPCR analysis to
further examine mf2-1 and mf1-1 mating pheromone expression
with each of vic1-, vic2-, vic3-, vic4-, vic6-, and vic7-incompatible
pairings using strain pairs that carry MAT-1 and MAT-2
(Supplementary Table S1). Here, vic1-, vic2-, and vic3-associated
barrages yielded dramatic increases in expression of mf2-1 and
mf1-1 (Figure 6B) whereas vic6- and vic7-associated barrages
showed only moderate increases in mf2-1 and mf1-1 gene expres-
sion. vic4-incompatible interaction appears to be uncoupled from
mating pheromone gene expression since, similar to monocul-
tures, mf2-1 and mf1-1 show almost no change in expression on
the 3rd day after co-inoculation of vic4-incompatible strains. This
may indicate that each type of vic incompatibility involves differ-
ent regulatory networks in C. parasitica.

There are six vic loci known to trigger incompatibility in C. par-
asitica and only three of these loci, vic1, vic6, and vic7, include
genes that encode an HET domain (Cortesi and Milgroom 1998;
Zhang et al. 2014). Other loci, including vic3, do not contain genes
encoding an HET domain, suggesting that not all VI responses re-
quire HET domain involvement. However, our transcriptome
analysis demonstrates that unlinked, nonpolymorphic HET genes
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can be activated during vic3-incompatible reactions and this may
be true for other vic loci as well. In particular, one HET-domain
gene identified as DE during vic3 allorecognition was vic1a, which
is part of the vic1 incompatibility locus (Zhang et al. 2014). vic3-in-
compatible strains paired in this experiment, P74-3 and EP155,
share the same vic1a allele. However, gene vic1a was overex-
pressed in vic3-associated barraging samples. In contrast, no
genes identified from the vic2, vic4, vic6, vic7 loci were DE during
vic3-associated incompatibility. The observed activation of the
vic1a gene and a subset of other HET domain-containing ORFs
present a possible explanation for the absence of a HET domain
ORF within the vic3 locus: it is possible that vic3 gene(s) function
as an upstream activator of vic1a and other genetically unlinked
HET-domain genes to elicit PCD. To examine the role of a subset
of HET-domain genes in other incompatibility settings, we per-
formed a series of RT-qPCR tests (Figure 7). In this experiment,
we used different strain pairs, each having different mating types
and a difference at one of the vic loci (Supplementary Table S1).
To our surprise, the vic1a gene appeared to be DE under all vic in-
compatibilities. In addition, dev3-1 showed significant overex-
pression in strain pairings that were incompatible by vic1, vic2,
vic3, or vic4, but not for vic6- or vic7-incompatible pairings. The
near-universal pattern of overexpression of vic1a and dev3-1 indi-
cates that there may be a redundancy among HET genes.
Furthermore, it is plausible that some HET-domain genes are
components that function in several incompatible reactions de-
spite not being genetically linked to the incompatibility locus,
and are also not required to be genetically polymorphic. This sit-
uation has precedent in the tol–mat incompatibility system in N.
crassa (Shiu and Glass 1999) as discussed above.

How HET-domain genes are controlled at the molecular level
is largely unknown aside from examples in N. crassa indicating
that at least some het incompatibility gene expression is modu-
lated by the Ndt80p-like transcription factor VIB-1 (Xiang and
Glass 2002). In yeast, the p53-like protein Ndt80p is a regulator of
meiosis and in N. crassa this transcription factor controls multiple
functions including female sexual development and formation of

ascospores (Hutchison and Glass 2010). Studies with N. crassa
strains in which vib-1 is deleted indicate that strains differing at
het-c are able to form viable heterokaryons (Dementhon et al.
2006). There are three paralogs of p53-like proteins in the C. para-
sitica genome and none have been previously studied in connec-
tion to incompatibility function. The ortholog with the highest
similarity to vib-1, identified as cpvib-1 (Cp ID: 67224), showed no
significant differential expression during vic3-associated barrage
(Figure 7). We used RT-qPCR to examine expression levels of
cpvib-1 during barrage in the previously mentioned pairings that
are incompatible by single vic loci. According to our data, cpvib-1
showed notable change in expression only in 6¼vic1, 6¼vic6, and
6¼vic7 pairings. There seems to be no correlation of cpvib-1 and
the expression of tested HET genes.

Comparison of VI in C. parasitica to HI
transcription profiles of N. crassa and P. anserina
Transcriptional response to HI was previously investigated by mi-
croarray analyses in N. crassa and P. anserina (Hutchison et al.
2009; Bidard et al. 2013). Both of these previous studies differed
from the present study by employing “induced incompatibility
techniques,” methods which activate HI factors at permissive
temperatures. In the case of N. crassa, strains incompatible at the
het-c locus can form heterokaryons in a temperature-dependent
manner if one of the strains carries the mutant allele pin-c2m
(Kaneko et al. 2006). This type of HI in N. crassa is referred as TSinc
(Temperature-Sensitive incompatibility). In this example, strains
with het-c1/pin-c1 can form a heterokaryon with het-c2/pin-c2m
strains at 34�, showing a low death rate. However, when trans-
ferred to a lower temperature (20�) HI is rapidly induced in these
heterokaryons. Similarly, in the P. anserina model, strains that are
incompatible due to nonallelic interactions involving het-R and
het-V present normal culture development at 32� whereas incom-
patibility reactions occur when these strains are transferred to
26�. One advantage of these systems is that they allow for syn-
chronous induction of alloreconition across the entire mycelium,
providing a means to study the precise timing of incompatibility
events. In the C. parasitica barraging experiment fusion time is
not synchronized and cells undergoing nonself fusion likely com-
prise a small fraction of total mass of mycelium at any given
time point. This makes it challenging to separate signals from
barraging and non-barraging cells. However, the induced incom-
patibility technique is restricted to temperature inducible HI sys-
tems and may not integrate processes such as cell contact and
fusion that occur during natural barrage formation.
Temperature-sensitive incompatibility systems are not available
for C. parasitica. Thus, we used a different technique to analyze
incompatibility processes in barraging cells and this should be
kept in mind when comparing our results to those from N. crassa
and P. anserina. We are also comparing incompatibility reactions
triggered by nonorthologous incompatibility genes in these three
species and processes may vary accordingly between these sys-
tems.

With the above differences in mind, we compared close gene
orthologs (BLASTþ e� value < 10�10) of N. crassa and P. anserina
from the C. parasitica genome (Figure 8). We used the reference
genome from N. crassa OR74a (Galagan et al. 2003) that includes
10,785 protein-coding genes, from which 3447 (32% of total genes
in genome) were significantly DE during het-c-associated HI
(Figure 8A) (Hutchison et al. 2009). However, in the C. parasitica
dataset, we defined DE genes as significant when the DE value
was above two (LFC > 2) and, in contrast, some DE values from
the N. crassa study were below this value. By applying our
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threshold, we came to use only 2000 (18% of total genes in ge-
nome) out of 3447 HI DE genes reported for N. crassa (Hutchison
et al. 2009). Finally, when we select N. crassa DE genes, we need to
identify how many of them show homology to C. parasitica genes
overall, and DE genes during vic3-incompatibility. As shown in
Figure 8B, we identified 6863 or 63% of C. parasitica genes that
show significant (BLAST threshold e� value < 10�10) homology
to N. crassa genes. Out of the 2000 N. crassa HI DE genes, only 1357
(68% of DE HI genes) show homology to C. parasitica genes.
Similarly, for the P. anserina comparison, we used the genome
from the S matþ strain (Espagne et al. 2008) that contains 10,588
protein-coding genes. Out of these genes, 4672 (44% of total) were
identified as significantly (LFC > 2, P-value < 0.001) DE as a result
of HI (Bidard et al. 2013). Among total P. anserina genes, 7170 (67%
of total) showed significant homology to C. parasitica. Among DE
genes during HI in P. anserina, 2672 (57% of DE HI genes) showed
significant homology to C. parasitica (Figure 8B). In comparison to
the other two species, C. parasitica vic3 incompatibility causes dif-
ferential expression of 531 (4.5% of total) genes. As we can see, in-
duced HI in P. anserina and N. crassa causes a larger change in
gene expression profiles than we observe in barraging C. para-
sitica. This may indicate that induced HI in N. crassa and P. anser-
ina result in a larger impact on fungal cells compared to strains
undergoing barrage or that differences in methodologies (dis-
cussed above) obscure some DE genes in C. parasitica.
Furthermore, pairwise correlation analyses among DE HI genes
between C. parasitica and N. crassa (P-value ¼ 0.1) or C. parasitica
and P. anserina (P-value ¼ 0.3) was not statistically significant.
However, there is a strong correlation between N. crassa and P.
anserina HI genes DE during HI [calculated P-value < 10�6 in this
study and P-value < 10�4 by Bidard et al. (2013)].

Even considering these differences, we can point out a few
similarities between C. parasitica and the other two HI responses

at the transcript level. There are five orthologs that are DE in all
three species during incompatibility reactions (Table 2). These
five genes represent some of the processes we already described:
secondary metabolism, cell death, and growth. One gene univer-
sally downregulated in all three species is an ortholog of the
Arabidopsis neutral ceramidase (see Table 2; IDs: 100328,
NCU04721, Pa_4_6950). This protein catalyzes degradation of cer-
amide to sphingosine. Various studies on tumor cells in animals
showed that ceramide promotes apoptotic signals coming from
tumor necrosis factor (TNF) receptors (Obeid et al. 1993).
Sphingosine, on the other hand, was shown to inhibit apoptosis
and promotes cell growth in animals (Ohta et al. 1994). Also, a
previous study indicated that activity of ceramidase in combina-
tion with growth factors promotes growth of human fibroblast
cell culture (Coroneos et al. 1995). Additionally, it was shown that
induction of ceramide can downregulate cytochrome p450 2C11
in mice, a process that mimics Interleukin-1 signaling (Nikolova-
Karakashian et al. 1997). Downregulation of cytochrome p450s by
Interleukin-1 activation is proposed to be part of the immune re-
sponse making rat cells more prone to death by decreasing de-
fence mechanisms (Chen et al. 1995). As we showed previously,
p450 proteins are enriched among DE genes and are mostly upre-
gulated during barrage (see Figure 4 and Supplementary Table
S1). Thus, we speculate that downregulation of ceramidase dur-
ing HI may inhibit growth processes and favor apoptosis-like re-
sponse in barraging cells.

Three out five genes in the list are associated with the modifi-
cation of secondary metabolite scaffolds (as tailoring enzymes) or
detoxification systems. An ortholog of cyanase from N. crassa
(Table 2) is upregulated during barrage in C. parasitica. Cyanase is
a detoxification enzyme that converts cyanate to NH3 and CO2

(Elleuche and Pöggeler 2008; Elmore et al. 2015). The other two
genes show homology to fungal festuclavine dehydrogenase (an
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oxidoreductase) (Coyle and Panaccione 2005) and cytochrome
p450, both possibly involved in secondary metabolite modifica-
tion. All three genes are upregulated in C. parasitica and DE (either
up or down) in P. anserina and N. crassa, which may indicate
strong activation of secondary metabolism during normal allore-
cognition reaction compared to temperature-induced HI.

Among upregulated genes, one functionally similar group
worth noting are the genes involved in detoxification. As a partic-
ular example, the ortholog of GST gene (Cp ID: 58765) is one
of the most highly upregulated genes during incompatibility in
P. anserina and C. parasitica. This detoxification protein plays an
anti-apoptotic function in neutralizing toxic compounds (Circu
and Aw 2012). Considering this, it is no surprise to see cyanase
and GST overexpressed during barrage, which may represent an
increased detoxification signal in the C. parasitica system that
originates in “non-barraging” cells exposed to the toxic environ-
ment produced by barraging hyphae. Such nonbarraging cells
are presumably not present in the N. crassa and P. anserina
temperature-induced systems.

Cell death mechanisms associated with HI seem to be distinct
from known yeast PCD processes (Madeo et al. 2002; Severin and
Hyman 2002; Wissing et al. 2004; Pozniakovsky et al. 2005; Zhang
et al. 2006; Carmona-Gutierrez et al. 2010). Previous analysis
showed that orthologs of 11 yeast apoptosis genes are not acti-
vated during HI-associated PCD in N. crassa (Hutchison et al.
2009). Disruption of similar genes in yeast leads to resistance to
apoptotic death (Khan et al. 2005; Guaragnella et al. 2006), but in
the case of N. crassa, disruption of two metacaspases (NCU09882,
NCU02400) and AIF (apoptosis-inducing factor, NCU05850) does
not impede HI-associated PCD (Hutchison et al. 2009). Eight of
these 11 N. crassa genes have identifiable orthologs in the
C. parasitica genome, but none are differentially regulated during
the barrage process (data not shown). These genes include ortho-
logs of two metacaspases (NCU09882, NCU02400), Cytochrome c
(NCU01808), Ste4p (Cp ID: 105373, Nc ID: NCU00440), G-protein
beta-subunit (NCU00440), Lag1 (NCU00008), Ppa1p (NCU09747),
and HSP70 (NCU09602) (Hutchison et al. 2009). Similarly, other
apoptotic genes identified in yeast do not show differential ex-
pression during barrage in C. parasitica.

A common feature in C. parasitica barrage and N. crassa
induced HI is the production of ROS. In N. crassa, genes involved
in ROS response, such as Cytochrome c, NADPH oxidase, and
glutaredoxin are overexpressed during HI (Hutchison et al. 2009).
In C. parasitica, none of these genes are DE in barraging strains.
However, this does not indicate a lack of ROS accumulation in
C. parasitica during barrage formation. On the contrary, stress re-
sponse proteins like GST and QO (PIG3, see Table 1, ID: 333952)
show increased expression during barrage and staining with
DCFDA, an ROS indicator, confirmed ROS production in barraging
cells, similar to observations from N. crassa (Hutchison et al. 2009)
(see Figure 1C). As far as we know, no comparable experiments
were performed for P. anserina. However, protein domains related
to GST, QO, Cytochrome p450 proteins were found to be

abundantly upregulated in P. anserina HI strains (Bidard et al.
2013). These data suggest that production of ROS and associated
PCD mechanisms present a common feature of nonself recogni-
tion among filamentous fungi.

Lastly, the upregulation of HET-domain genes was identified
in the transcriptome data sets for all three species. Cryphonectria
parasitica and N. crassa showed very similar proportions of acti-
vated HET-domain genes (Hutchison et al. 2009). There were only
five HET-domain genes DE in the N. crassa dataset, but surpris-
ingly, four of them were downregulated. The one upregulated
HET gene is a hypothetical protein (NCU03507) showing similarity
to het-6 (NCU03533) and appears as upregulated 1 h after HI in-
duction (temperature decrease). The remaining four downregu-
lated genes were het-6OR (NCU03533), het-c1 (NCU03125), het-c2
(NCU07947), and another uncharacterized HET-domain gene
(NCU09045). Both het-c1 and het-c2 are alternate alleles from the
het-c locus that are known triggers for HI (Kaneko et al. 2006;
Hutchison et al. 2009). In contrast, out of 130 predicted HET-
domain genes in the P. anserina genome, more than 50% are acti-
vated during induced HI. Even though C. parasitica and N. crassa
have a smaller number of DE HET-domain genes compared to
P. anserina, all three species demonstrate similarities in their in-
compatibility reactions. As described previously, HET-domain
genes are only known as activators of incompatibility reactions,
and activation of a single HET gene may be enough to produce
the entire spectrum of incompatibility symptoms (Paoletti and
Clavé 2007). Thus, in our analysis, we can additionally speculate
that the number of HET-domain genes activated during barrage
or HI may not influence the severity of an incompatibility
reaction.

Discussion
In this study, we performed a transcriptome analysis to identify
underlying molecular processes of vic3-associated incompatibil-
ity in C. parasitica. From the analysis of DE genes, we infer that
at least five major processes are activated during barrage forma-
tion: apoptosis, detoxification (against ROS and secondary
metabolites), pheromones synthesis, RNA interference, and allor-
ecognition (HET-domain genes).

Of these general processes, overexpression of pheromone
genes during barrage was surprising for at least two reasons.
First, previous studies with C. parasitica indicate that pheromone
genes are constitutively expressed (Kazmierczak et al. 1996;
Turina et al. 2003), whereas we provide evidence that pheromone
genes are upregulated during vic3-associated incompatibility.
Second, the drastic increase in expression of genes involved in
sexual reproduction during VI is unexpected given that VI is not
considered part of the sexual cycle. In addition, we would not ex-
pect sexual reproduction signaling during interaction between
EP155 (nor DZ-66) and P74-3 given that these strains are of the
same mating type (MAT-2). A connection between asexual sporu-
lation and activation of genes involved in sexual process has not

Table 2 Common orthologs DE in C. parasitica during vic3 associated barrage, and N. crassa and P. anserina during HI

Cp ID Cp LFC Pa ID Pa LFC Nc ID Nc LFC UniProt ID Putative protein Function

254007 5.4 Pa_0_160 3.79 NCU02031 �2.09 Q12587 Cytochrome P450
263261 3.9 Pa_1_6810 2.83 NCU07474 �2.69 Q4WZ69 Festuclavine dehydrogenase
337702 3.1 Pa_1_5200 �3.38 NCU00821 �2.17 P39932 Sugar transporter STL1
358581 1.9 Pa_2_2300 �2.69 NCU01258 �3.10 Q871Z4 Cyanate hydratase (Cyanase)
100328 �2.4 Pa_4_6950 �2.88 NCU04721 �2.28 Q304B9 Neutral ceramidase (N-CDase)
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been observed in filamentous fungi and it may be that any such
connection is genus or species specific. A closer look at the C. par-
asitica life cycle shows that it does not involve development of
specialized male sexual sporangia. Instead, C. parasitica uses
asexual conidia as male gametes (Marra and Milgroom 2001).
Thus, we can suggest inhibition of the sexual cycle happens
downstream of mating genes and pheromones. Interplay be-
tween sexual and asexual sporulation has been demonstrated to
involve ppoA from Aspergillus nidulans (Tsitsigiannis et al. 2004).
PpoA is a fatty acid dioxygenase that is involved in regulation of
balance between anamorph and teleomorph stages of develop-
ment. Deletion of ppoA causes a shift toward increased asexual
spore production. Downregulation of ppoA (ID: 332509) provides a
plausible mechanism by which the fungus is able to inhibit the
sexual cycle during barrage formation even while some mating
genes are activated.

Additional evidence of association of pheromone genes with
asexual sporulation comes from RT-qPCR data for other incom-
patibility types. In Figure 6, we can see that vic6-, vic7-, and espe-
cially vic4-associated barrages show moderate or complete lack
of pheromone gene differential expression. In the case of vic4, we
can suggest that barrage here is uncoupled from mating phero-
mones. Thus, considering our previous interpretation of the role
of pheromones in barrage, we suggest that a lack of pheromone
expression indicates low levels of conidiation and weak barrage
reaction. This is consistent with previous observations that, out
of the six characterized vic loci in C. parasitica, vic4 stands out as
having a “weak” barrage phenotype that allows 100% hypovirus
transmission (Cortesi et al. 2001) and does not prevent hetero-
karyon formation (Smith et al. 2006).

There is no known direct connection on a molecular level between
HET-domain genes and PCD. However, a plausible link of activation
of HET-domain genes and PCD could occur concomitantly with the
activation of genes involved with secondary metabolism as previous
observations suggested that HI-associated PCD in fungi resembles ba-
sic defence reactions in animals and plants (Lam et al. 2001). Our
transcriptome and metabolomics data indicate that rapid activation
of detoxification mechanisms coincide with overexpression of genes
involved in secondary metabolism. Our analyses indicated that sec-
ondary metabolism is triggered by incompatibility and we posit that
this is a probable cause of PCD in C. parasitica. A majority of stress
genes identified in this study are known to be activated in response
to high levels of ROS as a result of apoptosis (Ray et al. 2012). This
leads us to suggest that barrage formation may involve several PCD
pathways. Activation of secondary metabolite production, detoxifica-
tion pathways, and ROS levels point to heterogenic structure of bar-
rage. Hyphae that undergo incompatible fusion represent a small
minority and may in fact not undergo intrinsic PCD but produce sig-
nal molecules or toxins that trigger extrinsic PCD in neighboring cells.

Acknowledgments
We would like to thank our colleagues from Carleton University
and Agriculture and Agri-Food Canada for their support and in-
put.

Funding
This work was funded by Ontario Trillium Scholarship and
Natural Sciences and Engineering Research Council (NSERC).

Conflicts of interest: None declared.

Literature cited
Barhoom S, Sharon A. 2007. Bcl-2 proteins link programmed cell

death with growth and morphogenetic adaptations in the fungal

plant pathogen Colletotrichum gloeosporioides. Fungal Genet Biol.

44:32–43.
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