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1  |   INTRODUCTION

Lung cancer (LC) is a common diagnosed disease in both 
women and men around the world, which has high‐mortality 
rate and is responsible for approximately 1.5 million deaths 
every year.1 According to the histological heterogeneity, LC 

is divided into two primary subtypes, non‐small cell lung 
cancer (NSCLC) and small cell lung cancer (SCLC), repre-
senting for 85% and 15% of all LC, respectively.2 NSCLC can 
be further subdivided into lung adenocarcinoma (LUAD), 
lung squamous cell carcinoma (LUSC) and lung large cell 
carcinomas (LULC). Among them, LUAD has increased up 

Received: 21 June 2018  |  Revised: 9 September 2018  |  Accepted: 24 September 2018

DOI: 10.1002/cam4.1834

O R I G I N A L  R E S E A R C H

Aberrant CpG‐methylation affects genes expression predicting 
survival in lung adenocarcinoma

Wei He1*   |  Dandan Ju2*   |  Zhijun Jie1   |  Ai Zhang3   |  Xin Xing4   |  Qin Yang5

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original 
work is properly cited.
© 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

*These authors contributed equally to this work 

1Department of Respiratory Medicine, The 
Fifth People’s Hospital of Shanghai, Fudan 
University, Shanghai, China
2Obstetrics and Gynecology Hospital of 
Fudan University, Shanghai, China
3The People's Hospital of Shanghai Pudong 
District, Shanghai, China
4Department of Obstetrics and 
Gynecology, Fengxian Hospital, Shanghai, 
China
5State Key Laboratory of Oncogenes and 
Related Genes, Shanghai Cancer Institute, 
Ren Ji Hospital, School of Medicine, 
Shanghai Jiao Tong University, Shanghai, 
China

Correspondence
Ai Zhang, The People's Hospital of 
Shanghai Pudong District, Shanghai, China.
Email: Zhangai1968@aliyun.com
and
Xin Xing, Department of Obstetrics and 
Gynecology, Fengxian Hospital, Shanghai, 
China.
Email: xingxin_01@live.cn
and
Qin Yang, State Key Laboratory of 
Oncogenes and Related Genes, Shanghai 
Cancer Institute, Ren Ji Hospital, School of 
Medicine, Shanghai Jiao Tong University, 
Shanghai, China.
Email: qyang@shsci.org

Abstract
Lung adenocarcinoma (LUAD) is a common diagnosed disease with high‐mortality 
rate, and its prognostic implications are under discovered. DNA methylation aberra-
tions are not only an important event for dysregulation of gene expression during 
tumorigenesis but also a revolution in epigenetics by identifying key prognostic bio-
markers for multiple cancers. In this study, we analyzed methylation status of 
485 578 CpG sites and RNA‐seq transcriptomes of 20 532 genes for 1095 LUAD 
samples in TCGA database. The association between DNA methylation and the 
prognostic value of the corresponding gene expression was identified as well. In 
total, ten aberrantly methylated and dysregulated genes (AURKA, BLK, CNTN2, 
HMGA1, PTTG1, TNS4, DAPK2, MFSD2A, THSD1, and WNT7A) were high-
lighted which were significantly correlated with overall survival of 492 LUAD pa-
tients, which were all reported as tumor‐associated genes in other various cancers 
and worthy of further investigated and might be used as therapeutic targets for 
LUAD. Together, methylation aberrances regulate gene expression level during tu-
morigenesis and influence prognosis of LUAD patients. Integrating knowledge of 
epigenetics and expression of genes can be useful for an in‐depth understanding of 
cancer mechanism and for the eventual purpose of precisely prognostic and thera-
peutic target verification.
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to 50% and becomes the biggest subgroup of LC since early 
2010s.3 Up to date, the overall 5‐year survival rate of LUAD 
patients is approximately 20%; however, it rises to 55% in 
the cases diagnosed with localized lung cancer. With the 
rapidly increasing morbidity and severe metastasis‐associ-
ated mortality, it is crucial to clarify the molecular mecha-
nisms and oncogenomic aberrations, which characterize the 
occurrence and metastatic process of LUAD.

It is well‐established that genetic dysregulation is the key part 
of cancer etiology.4 In addition, new emerging evidences have 
demonstrated the combined effect of both genetic and concomi-
tant epigenetic change must be considered during oncogenesis.5 
Oncogenomic aberrations are no longer to be taken not only as 
a genetic disorder exclusively, but also as epigenetic alterations. 
DNA methylation, an important form of epigenetic modifica-
tion, has significant functions on gene expression, genomic sta-
bility, and modification.6 Hypermethylation or hypomethylation 
of DNA was observed in variety of tumors but not in various 
normal tissues,7 which indicated that methylation aberration 
might be treated as a hallmark of a wide variety of cancers.

The advent of deep RNA‐Seq approach and wide DNA 
methylation arrays has significantly contributed to explore 
the interactive relationship between gene expression and 
methylation during tissue development and carcinogenesis. 
Xie et al8 investigated the significant importance of DNA 

methylation on modulating gene expression monitored by 
RNA‐Seq analysis during human heart, kidney and liver de-
velopment. An integrative analysis of DNA methylation and 
mRNA expression performed by Kim et al9 pointed out the 
key function of epigenetic alteration on human malignant 
mesothelioma cell heterogeneity. However, the methylation 
state of LUAD‐specific‐associated genes is still under inves-
tigation. In the present study, we analyzed large‐scale DNA 
methylation level and RNA‐seq transcriptomes of LUAD 
samples from 1095 cases in TCGA database. Together with 
the survival analysis of 492 LUAD patients, 10 potential di-
agnostic and prognostic biomarkers of LUAD were pointed 
out which were worthy of further investigated and might be 
used as therapeutic targets for LUAD.

2  |   METHODS

2.1  |  Patients and data processing
In this study, 1095 LUAD cases in total were downloaded 
from TCGA data portal (https://cancergenome.nih.gov/, 
level 3, normalized gene expression data [RSEM] and 
HumanMethylation450 data) accessed on 20171206. Of 
them, 636 LUAD patients had whole genomic DNA methyla-
tion data of 485 578 CpG sites, which was profiled by using 

F I G U R E  1   Flowchart representing the design of study. First, the methylation status of CpG sites and the mRNA expression level of 
transcripts in 18 paired LUAD and adjacent non‐LUAD tissues from 1095 cases of LUAD were compared. Then, 32 candidate genes were narrowed 
down by intersection of aberrant methylated genes and abnormal expressed transcripts, as well as tumor‐associated genes. Finally, together with 
survival rate analysis of 492 LUAD patients, we found out 10 prognostic‐related genes which were differentially expressed in LUAD tissues due to 
their aberrant methylation of CpG sites

https://cancergenome.nih.gov/
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Illumina Infinium HumanMethylation450 BeadChips assay. 
And 576 LUAD sufferers had transcriptomic data of 20 532 
genes, which was analyzed using Illumina HiSeq_RNASeq 

V2 platform. A total of 492 of these 576 LUAD suffers had 
recorded clinical annotation data and involved in further 
Kaplan‐Meier survival analysis.

F I G U R E  2   Aberrant methylation of genes in LUAD. A, Heatmap of 2087 hypermethylated genes in tumor tissue compared to adjacent normal 
tissue of 18 paired LUAD patients. B, Heatmap of 5416 hypomethylated genes in LUAD tissues compared to matched adjacent normal tissue
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F I G U R E  3   Differentially expressed mRNA in LUAD. A, Volcano plot displayed the situation of dysregulated mRNA for LUAD tumor 
and non‐tumor tissues. A total of 1829 mRNAs showed an absolute value of log fold change greater than 2 and FDR‐corrected values less than 
0.01 (Blue and red dots). B, Heatmap showed 696 down‐regulated mRNA in tumor tissue compared to adjacent normal tissue of 18 paired LUAD 
patients. C, Heatmap showed 1133 up‐regulated mRNA in tumor tissue compared to adjacent normal tissue of 18 paired LUAD patients
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To precisely discover the differential methylation CpG 
sites and transcripts, we only selected the cases which had 
data for both LUAD tumor and adjacent non‐LUAD normal 
tissues. Finally, 18‐paired cases were co‐existed in 29 coupled 
(tumor and adjacent tissue) methylation data and 57 coupled 
RNA‐seq data, which was used in the followed methylation 
and expression analysis (Figure 1).

2.2  |  DNA methylation analysis
We computed the difference at the probe level between the 
tumor and normal groups in LUAD by using R Bioconductor 
minfi package with version 1.24.0.10 According to the anno-
tations provided by Illumina for the HumanMethylation450 
platform (IlluminaHumanMethylation450kanno.ilmn12.
hg19), only probes mapped uniquely to the human refer-
ence genome (hg19) were kept for analysis in this study. 
The methylated genes, which have significant differences 
termed biologically meaningful for an FDR q‐value below 
0.01, were further categorized into hypermethylation and 
hypomethylation subgroups, according to their mean value 
for the 18 LUAD patients higher than 0.7 or less than 0.3, 
respectively. The Methylation_450 value of hypermethylated 
and hypomethylated genes was used for heatmap figure with 
one additional scale normalization step, which subtracted 
the mean value from Methylation_450 then dividing by the 
standard deviation of Methylation_450 value.

2.3  |  Differential expression analysis of 
transcripts
All the normalized gene expression RSEM data was trans-
formed into RNA‐seq read counts by tximport method.11 
Next, an existing method called DESeq2 was used to de-
termine the transcripts that were differentially expressed 
between LUAD and adjacent normal tissues. We pre-
pared an input matrix of RNA‐seq read counts where rows 
were transcripts and columns were paired tumor‐normal 
samples. The transcripts with absolute log fold changes 
(logFC) greater than 2 and FDR‐corrected values less than 
0.01 were termed to be differentially expressed. Similar 
to making the heatmap of methylation analysis, the heat-
map of differentially expressed genes also utilized normal-
ized scale value, which removing the mean value from 
normTransform (log2) DESeq2 followed with dividing by 
the standard deviation of normTransform (log2) DESeq2 
value.12

2.4  |  Estimation of survival value
Kaplan‐Meier curves, with P‐values calculated via log‐rank 
test was used to represent the survival distributions between 
“high” and “low” expression groups (defined by median 
value of each gene expression). Two‐sided P values, which 
calculated by R survival package13,14 lower or equal than 
0.05 were considered statistically significant.

3  |   RESULTS

3.1  |  Identifying CpG based on genomewide 
profiling
Given that methylation of CpG dinucleotides represents 
more than 98% of DNA methylation in mammalian somatic 
cells,15 we focused on comparison of CpG sites methylation 
across the genome of LUAD tumors and normal tissue. From 
636 patients in TCGA, a total of 18 pairs of LUAD tissues 
and matched healthy tissues were picked up and involved 
in present DNA methylation study (Figure 1). The methyla-
tion distribution for all paired patients abides by a bimodal 
distribution, with peaks around 0 (un‐methylated) and 1 
(methylated). The heat maps showed that hypermethylation 
of 2087 genes (Figure 2A) and hypomethylation of 5416 
genes (Figure 2B) were identified for 18 pairs of tumor and 
adjacent normal tissue, based on the genomewide analysis of 
CpG methylation (P‐value <0.01).

3.2  |  Differentially expressed mRNAs 
in LUAD
RNA‐seq data of the same 18 matched LUAD tumors and ad-
jacent normal tissues were involved in the differential expres-
sion analysis. According to the cutoff criteria (|logFC|≥2, Padj 
<0.01), 1829 mRNAs were differentially expressed between 
LUAD and matched healthy tissues (Figures 1 and 3A). Among 
them, 696 genes were down‐regulated and 1133 genes were up‐
regulated. The results of expression analysis were presented as 
heat maps to demonstrate that the down‐regulated (Figure 3B) 
and up‐regulated (Figure 3C) genes in all 18 pair of patients.

3.3  |  Selection of candidate genes for LUAD 
prognostic biomarkers
Up to date, 803 oncogenes and 1217 tumor suppressor 
genes were currently defined by human cancer studies 

F I G U R E  4   32 known tumor‐associated genes were identified as methylation‐based abnormal expression in LUAD. A, Venn diagrams 
represented 20 hypomethylation‐up‐regulated‐oncogenes and 12 hypermethylation‐down‐regulated‐tumor suppressor genes in tumor tissue 
compared to adjacent normal tissue of 18 paired LUAD patients. B, Heatmaps of 20 hypomethylation‐up‐regulated‐oncogenes in LUAD tissues 
compared to matched adjacent normal tissue. C, Heatmaps of 12 hypermethylation‐down‐regulated‐tumor suppressor genes in LUAD tissues 
compared to matched adjacent normal tissue
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F I G U R E  5   Differential expression 
and prognostic signature of six candidate 
oncogenes in LUAD patients. A‐F, Left 
panels indicated the overexpression of six 
candidates in LUAD tissues compared 
to matched adjacent normal tissue. Right 
panels showed Kaplan‐Meier curves of 
492 LUAD patients, who were separated 
into high‐expressed and low‐expressed 
groups using a cutoff of median value of 
different genes. All the values were reached 
significance (P < 0.05)



      |  5723HE et al.

(https://ongene.bioinfo-minzhao.org/ and https://bioinfo.
uth.edu/TSGene). Together with aberrant methylation sites 
and differential expression genes as well as the known on-
cogenes or tumor suppressor genes, 32 genes were identi-
fied and classified into two groups, 20/32 genes in group 
I (hypomethylation‐up‐regulated‐oncogenes), and 12/32 
genes in group II (hypermethylation‐down‐regulated‐
tumor suppressor genes) (Figures 1 and 4A). The heat-
maps of all 32 genes in paired tumor and normal tissues 
indicated that the negative association between aberrant 
situation of DNA methylation and mRNA expression level 
(Figure 4B and C).

Furthermore, Kaplan‐Meier plotter analysis was per-
formed on these 32 genes for verifying the genes, which 

correlated with prognosis of LUAD. A total of 492 LUAD 
patients were stratify into two groups according to the median 
expression level were involved in this study. A univariate Cox 
proportional hazards regression analysis showed six genes 
(AURKA, BLK, CNTN2, HMGA1, PTTG1, and TNS4, 
Figure 5) from group I, four genes (DAPK2, MFSD2A, 
THSD1 and WNT7A, Figure 6) from group II were signifi-
cantly associated with the survival of 492 LUAD patients. 
Surprisingly, among these genes, BLK, CNTN2 (Figure 5E 
and F) and WNT7A (Figure 6D) displayed reversed relation-
ship between their expression level and survival rate of LUAD 
patients. Nevertheless, all these 10 candidate genes should be 
considered as notable prognostic biomarkers and promising 
therapeutic targets in further experimental research.

F I G U R E  6   Differential expression 
and prognostic signature of four candidate 
tumor suppressor genes in LUAD  
patients. A‐D, Left panels indicated the 
down‐regulated of four candidates in LUAD 
tissues compared to matched adjacent 
normal tissue. Right panels showed Kaplan‐
Meier curves of 492 LUAD patients, who 
were separated into high‐expressed and low‐
expressed groups using a cutoff of median 
value of different genes. All the values were 
reached significance (P < 0.05)

https://ongene.bioinfo-minzhao.org/
https://bioinfo.uth.edu/TSGene
https://bioinfo.uth.edu/TSGene


5724  |      HE et al.

4  |   DISCUSSION

With the high‐mortality rate, LUAD is responsible for the 
majority of tumor‐related deaths. However, increasing num-
bers of somatic mutations and genomic dysregulations have 
been discovered in LUAD, which makes the identification 
of the key driver gene alterations challenging. A number 
of studies have shown that DNA methylation is the second 
“motivation” of carcinogenesis after gene mutation and has 
become an important marker for early tumor diagnosis.16,17

Compared to gene mutations, abnormalities of DNA 
methylation are more common in tumor genomes and re-
versible according to various factors such as genetic back-
ground, age, environment, diet, and behavior. In addition, it 
can dynamically influence the gene status and eventually lead 
to tumorigenesis.18 With the advantages of new‐generation 
sequencing technologies, the methylation status has been de-
tected on the whole genome level. In this study, we identified 
2087 hypermethylated genes and 5416 hypomethylated genes 
from 18 pairs of LUAD and control tissues.

The occurrence of tumors is a complex process regulated 
by genetic, environmental, and epigenetic factors, which re-
sults in significant individual differences of cancer patients. 
In clinical practice, individualized diagnosis is an important 
prerequisite for appropriate treatment. Epigenetic markers 
based on DNA methylation and mRNA expression is indis-
pensable. Toyooka et al19 found DNA methylation was ubiq-
uitous in all stages of lung cancer development and negatively 
regulated the expression of oncogenes and tumor suppressor 
genes. Therefore, the combination of aberrant DNA methyl-
ation and abnormal mRNA expression as well as cancer‐as-
sociated gene expression is of great significance for selection 
of diagnostic and prognostic molecular marker of LUAD. As 
the results, we found 20 oncogenes and 12 tumor suppres-
sor genes were differentially expressed caused by abnormal 
DNA methylation in LUAD.

To further explore the correlation between expression of 
these 32 genes and survival rate of LUAD patients, we eval-
uated the prognostic values by univariable Cox regression 
analysis. Our study verified 10 significant prognostic genes 
at the epigenetic and transcriptomic levels. Among these 10 
candidates, six have been reported as Lung cancer‐related 
genes. It has been discovered AURKA was highly expressed 
in LUAD and played important roles in the cell cycle and 
apoptosis of human LUAD cells.20 Chen et al21 unraveled 
HMGA1, a NF‐κB signaling related factor, can be regulated 
by miR‐26 and associated with prognosis of LUAD patients. 
PTTG1, which regulates TGFβ1/SMAD3 signaling pathway, 
has been described a potential immunotherapeutic target 
for development and metastasis of LUAD.22 As lung tumor 
suppressor genes, MFSD2A could inhibit cell cycle and ma-
trix attachment of lung cancer cells,23 DAPK2 was found to 

induce oxidative stress in A549 cells by regulation of mito-
chondrial function,24 and overexpression of THSD1 could 
significantly reduce the colony‐forming ability of A549 
cells.25 However, none of these six genes was studied on their 
DNA methylation level in LUAD. The aberrant DNA methyl-
ation, which was indicated in present study, may explain their 
abnormal expression in LUAD and indicate a novel strategy 
for renovation their expression to normal level.

TNS4 is was speculated as an oncogene in digestive tract 
cancers via direct interaction with phosphorylated MET,26 
but the potential oncogenic activity of TNS4 in LUAD was 
firstly suggested in present study. In addition, there were 
three genes, BLK, CNTN2, and WNT7A displayed contra-
dictory association of their expression and survival rate of 
492 patients in our study. A variety of genes were expressed 
conversely in various tumors, even not unaltered during the 
development of individual cancer. Yan et al27 revealed the 
protein level of CNTN2 was higher in high‐grade glioma 
cells and tissues and lower in low‐grade glioma cells and 
tissues. Also, highly expressed genes in tumor tissue may 
play anti‐tumor functions through activation immune cells or 
pathways. Very recently, one study discovered overexpressed 
SPON2 in hepatocellular carcinoma could promote macro-
phages recruitment and prevent metastasis of hepatocellular 
carcinoma cells.28 Strikingly, WNT7A was down regulated, 
via promoter methylation, in many NSCLC cell lines and tis-
sues,29 which in accordance with the results of DNA meth-
ylation and mRNA expression analysis. However, higher 
expression level of WNT7A associated with worse prognosis 
was unexpected and needed to verify by further prognosis 
analysis or biological experiments, which may discover a 
new mechanism of how WNT7A affect the progression and 
prognosis of LUAD.

In present study, the DNA methylation and gene expres-
sion status between LUAD and normal tissues was identified 
for the first time. Together with the survival rate analysis, 10 
candidates were highlighted. Although the exact functions of 
these genes are still unknown. The majority of them could be 
treated as useful and practical biomarkers to improve prog-
nostic value and survival prediction of LUAD, as well as 
novel applications for appropriate clinical adjuvant testing.

However, there are some limitations may cause few po-
tential genes undiscovered in 803 known oncogenes. In the 
Tables S1 and S2 listed additional 13 genes’ expression were 
nicely correlated with the prognosis of 492 LUAD patients 
(P < 0.001). And most of them had already reported as po-
tential oncogenes, which may contribute the development of 
LUAD or LUSC. The first limitation is the research literatures 
about some potential oncogenes were published later than 
25th December 2015, which is the deadline of 803 known 
oncogene collected from the systematic search in PubMed. 
For example, ARNTL2 could enable LUAD self‐sufficient 
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metastasis,30 PRC1 via Wnt/β‐catenin signaling pathway to 
contribute tumorigenesis of LUAD31 and GJB3 was overex-
pressed in LUSC tumors,32 as well as ceRNA FAM83A‐AS1 
was reported as part of a possible competitive endogenous 
RNA network of LUSC,33 which all published after that 
deadline. The second limitation is the keywords, that onco-
gene or oncogenic or oncoprotein or proto‐oncogene which 
used in the searching method of 803 known oncogenes study, 
were not existing in the title or abstract of previous publi-
cations. SERPINB5, SLC2A1, MS4A1, SPRR1B, and GJB2 
were all dysregulated in LUSC or LUAD and may treat as 
diagnosis biomarkers or molecular targets of initiation and 
progression of lung carcinogenesis.34-38 The last limitation 
is low quality of genes were not assigned in 803 known on-
cogenes study, which may cause some potential oncogenes 
missed. Such as PFKP, which has already identified as a lung 
cancer oncogene based on its SNP and mRNA expression 
profile data.39 However, among these ten genes described 
above, only SERPINB5 was reported its abnormal expression 
in lung cancer due to aberrant DNA methylation and none of 
them were studied the correlation between their expression 
level and prognosis of LUAD patients.

Beyond that, although the expression level of three other 
genes, NUP62CL, NUP210L, and DPEP2, quite significantly 
correlated with the survival of 492 LUAD patients, no liter-
atures were found in PubMed to demonstrate the situation of 
these three genes in any lung cancers, which may point out 
a novel connection between nucleoporins and lung cancers. 
Nevertheless, the potential function and meaning all these 
genes on LUAD need to be verified by further experimental 
studies.
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