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Successful generation of virions from infected cells is a complex process

requiring orchestrated regulation of host and viral genes. Cells infected with

human cytomegalovirus (HCMV) undergo a dramatic reorganization of

membrane organelles resulting in the formation of the virion assembly com-

partment, a process that is not fully understood. Here we show that

acidification of vacuoles by the cellular v-ATPase is a crucial step in the for-

mation of the virion assembly compartment and disruption of acidification

results in mis-localization of virion components and a profound reduction in

infectious virus levels. In addition, knockdown of ATP6V0C blocks the

increase in nuclear size, normally associated with HCMV infection.

Inhibition of the v-ATPase does not affect intracellular levels of viral

DNA synthesis or gene expression, consistent with a defect in assembly

and egress. These studies identify a novel host factor involved in virion

production and a potential target for antiviral therapy.
1. Introduction
Herpesvirus assembly is a complex process involving viral and host factors

[1,2]. In brief, viral DNA is synthesized in the nucleus and packaged into

nucleocapsids. These particles then escape the nuclear lamina and bud through

the inner nuclear membrane into the perinuclear space, acquiring a primary

envelope in the process. This viral envelope then fuses with the outer nuclear

membrane, allowing egress of the nucleocapsid into the cytoplasm. Once in

the cytoplasm, tegument proteins assemble on the capsid, and secondary envel-

opment occurs as the virion buds into the virion assembly compartment (VAC)

that is derived from the trans-Golgi network (TGN) and/or endoplasmic reticu-

lum (ER) membranes containing the viral glycoproteins. The mature virions are

then trafficked within these vesicles to the cell surface where they are released

into the extracellular space.

The human cytomegalovirus lytic replication cycle is long, releasing very

few particles until approximately 72 h post-infection (hpi), during which time

dramatic morphological changes occur in the cell to facilitate viral assembly.

Specifically, at these late times post-infection the cytoskeleton remodels [3],

the nucleus increases in volume and changes in morphology (taking on a

kidney shape) [4], and secretory vacuoles reorganize [3,5]. These secretory

vacuoles redistribute to form a juxtanuclear cytoplasmic inclusion called the

viral assembly compartment (VAC). This is the site where the majority of

viral tegument proteins and host cellular proteins [6] assemble on the surface

of the nucleocapsid before final envelopment occurs [3,7].

The HCMV VAC is derived from trans-Golgi network derived vacuoles,

early endosomes, and vacuoles bearing markers of the ESCRT III machinery

[3,5,8,9]. Despite re-localizing to form the VAC, markers for these compartments
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remain distinct, which suggests that different compartments

may perform different roles [9]. However, the specific mech-

anics of assembly within these compartments is not well

understood.

Until recently, the viral and host cellular factors that are

involved in the biogenesis of the VAC have been poorly

defined. Work by Das et al. using siRNAs against key HCMV

early-late and late viral genes has identified several viral pro-

teins that are required for the proper development of the VAC

(UL48, UL94 and UL103) [10]. Bughio et al. have established

that the UL133-138 locus is required for VAC formation

specifically in endothelial cells [11]. In addition to these

viral factors, several critical host genes have been identified

that are essential in VAC biogenesis [12]. More recently mul-

tiple HCMV miRNAs have been shown to be important for

VAC formation and virion production. The secretory path-

way genes VAMP3, RAB5C, RAB11A, SNAP23 and CDC42

have been identified as targets of HCMV encoded micro-

RNAs. Downregulation of these secretory pathway genes

by miR-UL112-1, US5-1 and US5-2 facilitates the formation

of the VAC [13]. Together, the current evidence indicates that

the biogenesis of the VAC is an elaborate process regulated

by the complex interplay of host cellular compartments,

their associated proteins and viral gene products.

Previously we identified ATP6V0C, the enzymatic com-

ponent of the vacuolar ATPase (v-ATPase) as an important

host factor for HCMV replication [14]. Here, we show that the

v-ATPase is required forcorrect VAC formation, and knockdown

or inhibition of v-ATPase results in a profound and specific

assembly and egress phenotype during HCMV infection.
2. Material and methods
2.1. Cells and viruses
Normal human dermal fibroblast (NHDF) cells (Clonetics)

were cultured in Dulbecco’s modified Eagle’s medium

supplemented with 10% fetal bovine serum (FBS) and

penicillin-streptomycin-L-glutamine (PSG). HCMV strain

AD169 was obtained from the American Type Culture

Collection (Rockville, MD). TB40/E-GFP was obtained from

Dr Goodrum [15]. All HCMV strains were grown on primary

fibroblast cells following infection at low multiplicity of

infection (MOI). Virus stocks were isolated from cleared

supernatant over 10% sorbitol gradients as described

previously [16].

2.2. Small RNA transfections
Cells were transfected with small RNAs using RNAiMAX

lipofectamine reagent (Life Technologies) according to

manufacturer guidelines with the following modifications.

Fibroblast cells were double transfected with 20 pmol (40 nM

final concentration) of small RNA per 24 wells 8 h apart.

Control cells were transfected with a non-targeting negative

control siRNA (cat. 1027310, Life Technologies). ATP6V0C

(S80) and ATP6V1H (s28403) siRNA were purchased from

Life technologies. Confirmation of gene knockdown was

ascertained at an RNA level using qRT-PCR with specific

primer probe sets against ATP6V1H and ATP6V0C (Invitro-

gen). The efficacy of knockdown was in excess of 95% up

to 7 days post-transfection (data not shown). Cell viability
was established using CellTiter-Blue (Promega) according to

the manufacturer’s instruction.

2.3. Western blot analysis
Human primary fibroblast cells were grown in 10% FBS sup-

plemented DMEM before infection at a multiplicity of 3 with

AD169 or TB40/E-GFP. At 72 hpi, cells were harvested using

SDS sample loading buffer. 30 ml of protein sample were

loaded and proteins were probed using primary antibodies

to TGN46, (cat. PA5-23068, Pierce), EEA1 (cat. ab2900,

Abcam), pp28 (cat. CH19, Santa Cruz) and gB (cat. 2F12,

Abcam) according to the manufacturer’s guidelines. Protein

loading was normalized to GAPDH (Sigma). IR800 or

IR680 dye conjugated anti-rabbit IgG and anti-mouse IgG

secondary antibodies were purchased from LiCor. Blots

were imaged using infrared fluorescence of appropriately

tagged secondary antibodies and quantified using a LiCOR

Odyssey scanner and software.

2.4. Viral growth curve analysis
Viral growth curve analyses were performed as described in

[16]. NHDF cells were transfected as described above. At 72 h

post transfection with siRNAs, cells were infected at an MOI

of 1. At 24 hpi, cells were washed three times with PBS and

overlaid with fresh media. Infected cells were harvested,

scraped into media, at 24 hpi, and at every subsequent 24-h

time-point. Samples were snap frozen at 2808C to lyse the

cells. These lysates were then serially diluted, and used to

infect sub-confluent NHDFs. At 24 hpi, cells were overlaid

with 0.5% carboxymethyl-cellulose (CMC) diluted in

DMEM þ10% FBSþPSG. At 168 hpi, the CMC was removed,

monolayers were stained with toluidine blue and plaques

were counted.

2.5. Chloroquine treatment
NHDFs were seeded at 60–80% confluence in 24-well plates.

Twenty-four hours prior to infection, cells were overlaid with

DMEM þ10% FBS and PSG containing chloroquine to a final

concentration of 1.25, 2.5, 5, 10 and 25 mM. Cells were

infected with TB40/E-GFP at an MOI of 1. At 24 hpi, the

infectious inoculum was removed, and cells were washed

three times with PBS. Cells were then overlaid with media

containing chloroquine at the indicated concentrations. Cells

were harvested 7 days post-infection by scraping into the

media and frozen at 2808C. Virus levels were determined

by plaque assay as previously described. Cell viability was

established using CellTiter-Blue (Promega) according to the

manufacturer’s instruction.

2.6. RT-PCR analysis
Total RNA was harvested using Trizol with concentrations and

RNA quality determined by nano-drop spectrophotometer

analysis. 100 ng of total RNA was DNAse treated (Promega)

then reverse transcribed using high capacity cDNA reverse

transcription kit (ABI). Real time PCR was performed using

gene specific primer probe sets from ABI on a Rotor gene

3000 (Corbet Research). Specific primer probe sequences were

kindly provided by Lauren Hook. IE86, UL83 and gH

primer and probes were synthesized by Life Technologies.
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The sequences for the primers for these assays are as follows:

gH (UL75); TTGCTAGCTCATCCGCACC (primer 1), AAG

AGACGCGTAAGGCGTTC (primer 2), CAGCGACCTGTA

CACACCCTGTTCCAGTAG (probe), HCMV IE86; ATGTCC

TGGCAGAACTCGGT (primer 1), GCTGCAAGAGTGGGTT

GTCA (primer 2), CCAGTAGCACCGGCCCCACG (probe),

HCMV UL83; TGGAGAACGTGTCGGTCAAC (primer 1),

GGATGTTCAGCATCTTGAGCG (primer 2), AGCCAGGA

GCCCATGTCGATCTATGTGTAC (probe). Relative expression

levels were determined by delta delta Ct calculation with levels

corrected to GAPDH levels.

2.7. Viral genome copy analysis
Infected cells were harvested at designated time-points and

applied to DNEasy blood and tissue kit columns (Qiagen).

DNA was extracted following the manufacturer’s protocol.

IE86, UL83 and gH primer and probes were synthesized by

Life Technologies. A primer probe set against gB was used to

quantitate viral DNA genome levels. For supernatant viral

genomes, virus was isolated by ultracentrifugation over a

sorbitol cushion as previously described [16]. The viral pellet

was resupended in DNase buffer and split into two aliquots,

one of which was treated for 1 h at 378C with Turbo DNase

(Ambion). DNA was then isolated by phenol chloroform

purification and PCR analysis performed as above.

2.8. Immunofluorescence and confocal microscopy
NHDF’s were seeded for siRNA transfection, and double-

transfected as previously described. At 72 h post-transfection,

cells were infected with AD169 at an MOI of 1. At 144 hpi,

coverslips were washed with PBS, and fixed for 15 min

with freshly prepared 4% paraformaldehyde in Dulbecco’s

PBS then permeabilised for 5 min (DPBSþ3% FBSþ0.2%

TX100. Coverslips were then blocked for 1 h at room temp-

erature (DPBSþ3% FBSþ0.5% Tween 20), before the

addition of primary antibodies to TGN46, (cat. PA5-23068,

Pierce), EEA1 (cat. ab2900, Abcam), pp28 (cat. CH19, Santa

Cruz), gB (cat. 2F12, Abcam) according to manufacturers

guidelines. Coverslips were incubated with primary anti-

bodies overnight at 48C. Coverslips were washed 3 times

with DPBSþ3% FBS before the addition of secondary

fluorescent antibodies (AlexaFluor anti-mouse 647 and anti-

rabbit 488, Life Technologies). Coverslips were incubated

for 1 h at room temperature, and washed three times with

DPBSþ3% FBS. Finally, coverslips were nuclear stained

using 1 : 1000 DAPI before mounting to slides using 5 ml

Prolong Gold anti-fade reagent (Life Technologies).

Images were acquired using a Zeiss LSM 710 confocal

microscope in accordance with the manufacturer’s instruc-

tions. Images were compiled and analysed using FIJI open

source image processing software [17]. Parallel images were

generated using human serum as a blocking agent to rule

out possible cross reactivity with the viral Fc receptor that has

been reported for some Rabbit polyclonal antibodies. Day

four time point samples and cells treated with chloroquine

were blocked with human serum (1%) prior to staining.

2.9. Electron microscopy
Fibroblast cells were cultured, transfected with siRNA,

and infected as specified above, and were fixed in 3%
glutaraldehyde buffer at 120 hpi then washed in three 10 min

changes of 0.1 M sodium cacodylate. Specimens were then

post-fixed in 1% osmium tetroxide in 0.1 M sodium cacody-

late for 45 min, then washed in three 10 min changes of

0.1 M sodium cacodylate buffer. These samples were then

dehydrated in 50%, 70%, 90% and 100% ethanol (X3) for

15 min each, then in two 10 min changes in propylene

oxide. Samples were then embedded in TAAB 812 resin.

Sections 1 mm thick were cut on a Leica Ultracut ultramicro-

tome, stained with Toluidine Blue, and viewed in a light

microscope to select suitable areas for investigation. Ultrathin

sections 60 nm thick were cut from selected areas, stained in

uranyl acetate and lead citrate, then viewed in a JEOL JEM-

1400 Plus TEM. Representative images were collected on a

GATAN OneView camera.

2.10. Data presentation
Data are presented throughout as a mean of multiple biologi-

cal replicates (N ¼ x), and error is displayed as the standard

deviation from the mean. Student t-test was used to determine

significance where indicated. For nuclear area analysis, a

two-way ANOVA test with replication was used.
3. Results
3.1. Knockdown of ATP6V0C causes an assembly and

egress defect in HCMV infected cells
In a previous siRNA screening study we demonstrated that

knockdown of ATP6V0C prior to infection with GFP expressing

HCMV resulted in a modest reduction in reporter gene

expression compared with negative control transfected cells,

but a pronounced reduction in infectious virus production [14].

The differential effects on reporter gene expression and virus

production suggest a defect in virus assembly and egress. To

further investigate this phenomenon we measured the pro-

duction of infectious virus by plaque assays and compared this

to the levels of viral genome amplification in infected cells.

Production of infectious virus and viral genome copy number

was independently measured in cell lysates and virus from the

supernatant of infected cells, thereby independently measuring

intracellular versus secreted virus levels.

The titre of cell-associated virus from ATP6V0C siRNA

transfected fibroblasts was almost 2-log lower than that

observed in negative control cells 7 days post-infection

(figure 1a). However, in the supernatant virus from

ATP6V0C siRNA transfected cells, the titre was approxi-

mately 3-log lower than the negative control (figure 1a).

These data are consistent with previous results from plaque

assays on cell associated and supernatant virus combined,

which showed a 2–3-log decrease in viral titres [14]. How-

ever, the data shown in figure 1b demonstrate that there

was an approximately 80-fold reduction in virus titre in cell

associated virus and an approximately 700-fold reduction in

virus titre in supernatant in ATP6V0C siRNA transfected

fibroblast cells compared with the negative control cells, illus-

trating an order of magnitude difference when comparing

cell-associated with supernatant virus following ATP6V0C

knockdown. While infectious virus titres were substantially

reduced, viral genome levels were equivalent at 7 days

post-infection, suggesting the defect in virus production is
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Figure 1. Knockdown of ATP6V0C has greater effect on supernatant virus than cell associated virus. Fibroblast cells were transfected with siRNA against ATP6V0C or a
control siRNA and infected with TB40/E-GFP at an MOI of 1 and cells and supernatant collected 7 days post-infection. (a) Infectious cell associated and supernatant
virus levels were determined by dilution plaque assay following ATP6V0C knockdown. (b) Effects of ATP6V0C knockdown on infectious supernatant virus levels are
greater than effects on cell associated virus. (c) Cell associated viral genome levels were equivalent between control cells and ATP6V0C knockdown cells at 7 days
post-infection (d ) Supernatant virion genome levels were determined by qPCR. Supernatant was collected from cells 7 days post infection. Virions were isolated from
supernatant by ultracentrifugation then treated with DNase to degrade non-virion associated viral DNA. Primers against HCMV gB were used to determine viral
genome levels and primers to GAPDH (e) were used to confirm successful degradation of non-protected DNA (n ¼ 2).

rsob.royalsocietypublishing.org
Open

Biol.7:160298

4

downstream of virus genome amplification (figure 1c).

The reduction in infectious virus is not due to cytotoxic

effects as there was little difference in the viability of control

or ATP6V0C knockdown cells over the course of the 7-day

infection (electronic supplementary material, figure S1).

The dramatic loss in plaque forming units in the super-

natant could be due to a failure in production of cell free

infectious particles or a defect leading to the generation of

non-infectious particles. To investigate this, virion associated

genomes were measured in supernatant from infected control

or ATP6V0C knockdown cells. To differentiate between

virion genomes and free viral DNA released from lysed

cells, virions were isolated by ultracentrifugation then treated

with DNase. Virion-associated genomes would be protected

from DNase, whereas free viral DNA would be degraded.

While the majority of detectable viral DNA from control

cells was resistant to DNase treatment, indicating association

with virions, DNA detected from ATP6V0C knockdown cells

was sensitive to DNase treatment, suggesting that the

majority of viral DNA detected is not associated with virions

(figure 1d ). Cellular DNA, measured using GAPDH primers,

was not protected in supernatant from control or ATP6V0C

knockdown cells, confirming successful DNase treatment

(figure 1e). Higher levels of GAPDH DNA were detected in

the supernatant of infected cells compared with uninfected

cells, probably due to cytotoxic effects and cell death

caused by virus infection. Release of cellular DNA was
lower in ATP6V0C knockdown cells, possibly reflecting

higher levels of cell viability at late time points (electronic

supplementary material, figure S1). This suggests a loss of

supernatant viral particles when ATP6V0C is knocked

down, although the production of non-infectious particles

that lack viral DNA, or unstable particles that lose structural

integrity once released from the cell cannot be ruled out.

To determine whether knockdown of ATP6V0C causes a

defect in viral gene expression, quantitative RT-PCR was per-

formed on RNA extracted from infected cells transfected with

ATP6V0C siRNA or a negative control siRNA. Relative tran-

script levels were determined for the immediate early

transcript IE86 and two late transcripts UL83 (pp65) and

UL75 (gH) (figure 2a–c). Knockdown of ATP6V0C did not

result in a significant reduction in the expression of viral tran-

scripts. However, an increase in viral transcription was

observed at early time points in ATP6V0C knockdown

cells. A corresponding increase in viral protein expression

at early times in cells knocked down for ATP6V0C was also

observed (figure 2d ). It is currently unclear why knockdown

of ATP6V0C results in increased viral gene expression at

early time points. However viral gene expression from

120 hpi is similar in control and knockdown cells, suggesting

that the defect in virus replication caused by knockdown of

ATP6V0C occurs down stream of viral entry, DNA amplifica-

tion and viral gene expression, consistent with a defect in

assembly and egress.
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3.2. ATP6V0C is not required for generation of viral
capsids in the nucleus

To further define at which stage virus production is blocked

after ATP6V0C knockdown we analysed infected cells by

electron microscopy (EM). At 120 hpi, viral capsids can

clearly be observed within the nucleus of infected

ATP6V0C knockdown cells (figure 3a) and in control

siRNA transfected cells (figure 3b), suggesting no defect at

this stage of infection. Different stages of capsid formation

can also be discerned by EM analysis corresponding to

empty capsids, capsids containing scaffold proteins, and cap-

sids containing viral genomes (figure 3c) [12]. Manual

counting of 508 and 516 total individual capsids from nega-

tive control and ATP6V0C knockdown cells, respectively,

did not support statistically significant differences in the

numbers of each type of capsid between control cells and

ATP6V0C knockdown cells (figure 3d ). While EM analysis

can be a relatively insensitive method for characterizing

defects in virus replication due to sampling of thin subsec-

tions of the infected cell, these data suggest no gross defect

in virus capsid formation following ATP6V0C knockdown

and that the defect in virus production probably occurs

downstream of capsid assembly in the nucleus.
3.3. ATP6V0C is required for HCMV virion assembly
compartment biogenesis

Following infection with HCMV, host-cellular endocytic and

exocytic membrane compartments undergo dramatic reor-

ganization, with the formation of the VAC late in infection

[3]. Given the role of the cellular v-ATPase in organelle acid-

ification and trafficking, we asked whether knockdown

of ATP6V0C could be disrupting viral driven membrane

reorganization and VAC formation.

In order to visualize the HCMV VAC, immunofluores-

cence microscopy was performed to observe the host

cellular markers, trans-Golgi network 46 (TGN46) and early

endosome antigen 1 (EEA1) with the virion structural protein

pp28. These are well-characterised markers of the HCMV

VAC. TGN46 is a type I integral membrane protein that loca-

lizes to the trans-Golgi network and is thought to play a role

in exocytic vesicle formation. EEA1 localizes to the early

endosomal sorting compartment involved in endocytosis. In

control cells, host cellular proteins TGN46 and EEA1 coloca-

lize with the viral tegument protein pp28 in a region adjacent

to an enlarged, kidney shape nucleus (figure 4). This staining

is diffuse, lacking any obvious boundaries or puncta, and is

consistent in localization and appearance with previous
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and at 72 h post-transfection were infected with AD169. At 144 hpi cells were fixed, permeabilised and stained for early endosomes or trans-Golgi vacuoles, (EEA1:-
green), viral tegument protein ( pp28:red) and nuclei (DAPI:blue). Images represent single slices through the Z-axis. (b) Representative scatter-plot showing average
pixel signal intensity in red ( pp28) and green (EEA1) channels from multi-cell images (n ¼ 16 for ATP6V0C and n ¼ 9 for negative siRNA). Individual images in the
Z-field were analysed using Fiji image analysis software. (c) Pearson’s R-value for colocalization of TGN46 or EEA1 and pp28 in ATP6V0C or negative control siRNA
transfected fibroblast cells (n ¼ 20). *p-value , 0.05; **p-value , 0.01.
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reports of the HCMV VAC [3,5,8–11]. Staining of untrans-

fected cells also showed the same defined colocalization of

cellular and viral markers (data not shown).

In cells transfected with siRNA against ATP6V0C, there

were several observable morphogenic differences to control

cells. The nuclei were smaller and the typical kidney shape

of an HCMV infected cell was not apparent (figure 4). The

host cellular markers of the VAC appear to localize to a similar

position within the cell, but staining of TGN46 is less diffuse

than that observed within a typical VAC, and the staining of

EEA1 has clear boundaries, indicative of a large vesicular

compartment. Most strikingly, pp28 does not colocalize with

the host cellular markers of the VAC (figure 4).

Images from a wider field of view demonstrate that this

defect is representative (figure 5a). Importantly, these quali-

tative observations are quantifiable. Scatter plots of pixel

intensity from a multi-cell field demonstrated that staining

for TGN46 and pp28 overlapped extensively in negative con-

trol cells, but did not for cells transfected with an siRNA
against ATP6V0C (figure 5b). Colocalization analyses of

TGN46, EEA1 and pp28 were performed, with Pearson’s R

scores calculated (1 ¼ convergent 0 ¼ divergent). The fre-

quency of TGN46 and pp28 staining convergence was high

in negative control cells (R ¼ 0.58), and low in ATP6V0C

siRNA transfected cells (R ¼ 0.16). Similarly, EEA1 and

pp28 staining convergence was high in negative control

cells (R ¼ 0.41) and low in ATP6V0C siRNA transfected

cells (R ¼ 0.17) (figure 5c). Staining of earlier time points

(96 hpi) also showed distinct staining of TGN46 in

ATP6V0C knockdown cells, as did an additional cellular

marker associated with the VAC, GM130. In both cases a

loss of staining around the edge of central pp28 staining

was observed, indicating a defective organization of the

VAC (electronic supplementary material, figure S2a,b).

To examine whether the defect in VAC formation was due

to a possible gross disruption of the secretory apparatus as a

result of ATP6V0C knockdown, the distribution of TGN46

and EEA1 was analysed by immunofluorescence microscopy,
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and the abundance of these proteins was analysed by western

blot analysis in uninfected cells. The distribution of both

TGN46 and EEA1 was similar in uninfected fibroblast cells

transfected with ATP6V0C siRNA when compared with a

negative control (figure 6a,b). While this does not rule out

defects in organelle function it does suggest that the orga-

nelles are structurally intact prior to infection. By 6 days

post-transfection some differences were detectable in the

staining pattern of the cellular marker GM130, perhaps

unsurprisingly showing some defects following long-term

knockdown of ATP6V0C (electronic supplementary material,

figure S3). The protein abundance of TGN46 and EEA1 were

similar in uninfected ATP6V0C siRNA and negative control

siRNA transfected fibroblast cells 48 h post-transfection and

infected cells, 72 hpi (figure 6c,d ).

3.4. Knockdown of ATP6V0C blocks HCMV associated
increase in nuclear area

In addition to major reorganizations of cellular membranes,

infection with HCMV causes a substantial increase in nuclear

size [4]. However, an increase in nuclear area fails to

occur following infection of fibroblast cells transfected with

ATP6V0C siRNA. Using FIJI imaging software, the nuclear

area of cells transfected with ATP6V0C siRNA were quanti-

fied, and shown to be smaller than those transfected with

negative control siRNA (figure 7a,b). The mean nuclear area

of cells transfected with ATP6V0C siRNA and infected with
HCMV (AD169) was 55% smaller than negative control

siRNA transfected cells at 168 HPI (figure 7b). Previous

publications have observed a similar failure in nuclear enlar-

gement associated with loss in virion assembly compartment

formation and have suggested that the processes are inti-

mately involved [18–21]. This provides further evidence

that the cellular V-ATPase is required for the correct for-

mation of the human cytomegalovirus assembly and egress

cellular infrastructure.

3.5. v-ATPase acidification activity is required for
efficient virus production

The v-ATPase is a membrane-spanning, multi-domain ion

pump that is responsible for the regulation of pH in mem-

brane-bound organelles throughout the cell. These channels

consist of a luminal V1 domain, which is responsible for the

hydrolysis of ATP, and the trans-membrane VO domain,

which forms the proton channel. ATP6V0C is a critical com-

ponent of the VO domain [22]. The establishment of a low

intraluminal pH plays a crucial role within the endocytic

and secretory pathways. There have also been several obser-

vations in a variety of contexts that the VO domain of the

v-ATPase may have membrane fusion activity that is inde-

pendent of its role in the acidification of vacuoles. In mice,

C. elegans and Drosophila, the VO domain has been shown to

interact with VAMP-2, syntaxin-1 and Ca2þ release channels

to directly catalyse the mixing of two lipid bilayers [23–27].
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To determine whether the assembly and egress phenotype

caused by ATP6V0C knockdown was due to a block in

vesicle acidification and disruption of the v-ATPase complex,

another critical component of the v-ATPase, ATP6V1H,

was knocked down using siRNA. ATP6V1H is the regula-

tory H subunit of the V1 domain of v-ATPase required

for metabolism of ATP by the v-ATPase complex and there-

fore necessary for function, but it is distinct from the VO

domain. Figure 8 demonstrates that siRNA knockdown of

ATP6V1H results in the same failure of VAC formation as

observed following ATP6V0C knockdown. Therefore, disrup-

tion of the ATPase, rather than an independent function of

ATP6V0C, appears to be responsible for the assembly and

egress phenotype.

To confirm that inhibition of infectious virus production

is due to a block in vacuolar acidification, virus replication

was measured following treatment of cells with chloroquine.

Chloroquine indirectly blocks the acidification of vacuoles.

It freely diffuses through cells, but upon reaching an acidic

compartment it undergoes a change of conformation that

renders it impermeable, causing it to accumulate in these com-

partments [28]. This acts to buffer any further change in pH in

these vacuoles. Fibroblast cells were incubated in media con-

taining chloroquine 24 h prior to and during infection with

the TB40/E-GFP strain of HCMV [15]. Inhibition of acidifica-

tion of vacuoles within the cell with chloroquine had a dose
dependent inhibitory effect on the replication of TB40/E-GFP

(figure 9), and this was in the absence of any cytotoxic effects

(electronic supplementary material, figure S4). Similar to

ATP6V0C knockdown, viral transcription was relatively unaf-

fected by chloroquine treatment at 7 days post-infection

(figure 9b). Immunofluorescence staining of cells treated with

chloroquine also showed defective organization of the VAC

at 96 h post infection. Treatment with chloroquine resulted in

a loss of GM130 staining at the periphery of the VAC, with

GM130 staining showing a more compacted arrangement

(figure 9c). In addition the nuclei in chloroquine treated

infected cells are noticeably smaller (figure 9c).
4. Discussion
Here, we show that knockdown of ATP6V0C results in a

profound assembly and egress phenotype that corresponds

to a failure in VAC formation. The failure in VAC formation

and virion production is due to a block in acidification of

vacuoles linked to the role of ATP6V0C in the v-ATPase com-

plex. While infectious supernatant virus was substantially

reduced, viral DNA amplification and gene expression were

not significantly impacted, consistent with an assembly and

egress phenotype. Nuclear capsid formation was also not dis-

rupted, suggesting a downstream block in virus production.
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However, virion-associated DNA levels were substantially

reduced in the supernatant and there was a clear loss in cel-

lular membrane and nuclear reorganization required for the

formation of the virion assembly compartment.

The vATPases are multiprotein complexes that are

responsible for regulating vacuolar pH via the transport of

Hþ ions across membranes [22]. The establishment of pH

gradients between the cytosol and membrane bound orga-

nelles is fundamental to membrane trafficking pathways in

the cell. Acidification of early endosomes allows for the

release of ligand from internalized receptors, budding of mul-

tivesicular bodies is dependent on an acidic environment,

while lysosomal acidification is required for the activation

of degradative enzymes [29].

Within the context of VAC formation, the loss of function

phenotype that is observed when ATP6V0C is knocked down

is particularly intriguing. We observe that secretory and

endocytic markers that normally colocalize with the viral

assembly compartment fail to reorganize during infection

when ATP6V0C is knocked-down using siRNAs. It may be

that the failure of these compartments to reorganize results

in a failure in VAC formation or causes a critical and deleter-

ious change in VAC composition. We also observe that this

effect is dependent on infection, with secretory marker local-

ization and abundance not affected when ATP6V0C is

knocked down in uninfected cells.

Further characterization of the viral particles produced

may provide important clues as to the role of vacuolar acid-

ification in virion assembly and egress. If defects in

supernatant virions are subtle, for example, loss of specific

viral glycoproteins or tegument proteins, this may point to

a specific transport pathway associated with delivery of

viral proteins to the site of assembly. However if gross defects

are found, then failure of vacuole acidification may be linked

to a more general failure of virus assembly.
We previously demonstrated that ATP6V0C is a target of

the HCMV miRNA miR-US25-1 [14]. Given the effect

ATP6V0C knockdown has on virus production this seems

counterintuitive. It is possible that targeting ATP6V0C

could be a mechanism of restricting virus production

during latent infection. However, regulation of ATP6V0C

by miR-US25-1 may not restrict virus production, as signifi-

cant inhibition of ATP6V0C levels would not occur until

late in infection, whereas the phenotype observed here

was caused by knockdown of ATP6V0C before virus infec-

tion. Knockdown by miR-US25-1 may also be less robust

compared with siRNA knockdown, resulting in different

phenotypic outcomes. Irrespective of the role of miR-US25-

1 targeting, ATP6V0C and the v-ATPase complex is clearly

an important host factor in the assembly and egress of

HCMV.
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