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Abstract
Echinacoside (ECH), a phenylethanoid glycoside, has protective activity in neurodegenerative disease, including anti-inflam-
mation and antioxidation. However, the effects of ECH in Alzheimer’s disease (AD) are not very clear. This present study 
investigates the role and mechanism of ECH in the pathological process of AD. APP/PS1 mice treated with ECH in 50 mg/
kg/day for 3 months. Morris water maze, nesting test, and immunofluorescence staining used to observe whether ECH could 
improve AD pathology. Western blot used to study the mechanism of ECH improving AD pathology. The results showed that 
ECH alleviated the memory impairment of APP/PS1 mice by reducing the time of escape latency as well as increasing the 
times of crossing the platform and rescued the impaired ability to construct nests. In addition, ECH significantly reduced the 
deposition of senile plaques in the brain and decreased the expression of BACE1 in APP/PS1 mice through activating PI3K/
AKT/Nrf2/PPARγ pathway. Furthermore, ECH decreased ROS formation, GP91 and 8-OHdG expression, upregulated the 
expression of SOD1 and SOD2 as well as activating the PI3K/AKT/Nrf2 signaling pathway. Moreover, ECH inhibited glia 
cells activation, pro-inflammatory cytokine IL-1β and TNF-α release, NLRP3 inflammasome formation through TXNIP/
Trx-1 signaling pathway. In conclusion, this paper reported that ECH improved cognitive function, inhibited oxidative stress, 
and inflammatory response in AD. Therefore, we suggest that ECH may considered as a potential drug for AD treatment.
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Introduction

Alzheimer’s disease (AD) is the most common progressive 
and devastating disease of the elderly that is related to cogni-
tion impairment [1]. The pathological features of AD include 
amyloid beta (Aβ) deposition and intracellular neurofibril-
lary tangles (NFT) containing hyperphosphorylated tau pro-
tein, as well as loss of synapses and neurons [2]. Aβ derived 
from amyloid precursor protein (APP) by sequential pro-
teolytic cleavages via β-secretase (BACE1) and γ-secretase 
[3]. BACE1 is a rate-limiting enzyme in the production of 
Aβ and inhibiting the activity of BACE1 appears to be a 
prime target for improving AD pathogenesis [4]. Peroxisome 

proliferator-activated receptor-γ (PPARγ) is a transcription 
factor that regulates the activity of the BACE1 promoter 
[4]. A previous study indicated that activating PPARγ could 
reduce the generation of Aβ and the mechanism related to 
inhibited BACE1expression [5]. These studies indicate that 
PPARγ may be involved in production of Aβ.

In addition, oxidative stress and inflammation play essen-
tial roles in AD pathogenesis [6, 7]. Oxidative stress partici-
pates in AD development by increasing Aβ generation and 
tau hyperphosphorylation [6], suggesting that antioxidants 
may be a potential therapy for AD. Nuclear factor erythroid 
2-related factor 2 (Nrf2), a transcription factor that regu-
lates the antioxidant and anti-inflammatory response [8], 
related to AD-mediated cognitive decline [8]. Previous study 
showed that the expression of Nrf2 was decreased in AD 
brains [9] and Nrf2 reduction exacerbated cognitive defi-
cits in a mouse model of AD [8]. Activating Nrf2 protects 
against detrimental stress by promoting the antioxidative 
defense pathway and ameliorates cognitive impairment in 
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the AD model mouse [10–12]. Therefore, Nrf2 has emerged 
as a new therapeutic target in AD.

Echinacoside (ECH) is a natural phenylethanoid glyco-
side that derived from Echinacea angustifolia DC [13]. It 
performs numerous pharmacological activities, including 
antioxidant and anti-inflammation, combined with neu-
roprotective effects [14]. Recent studies have shown that 
ECH has protective effects on MPTP/MPP+-induced neu-
rotoxicity in the mouse model of Parkinson’s disease (PD) 
by inhibiting inflammatory response and regulating the 
autophagy pathway [7, 15]. It also plays a protective role 
in other PD models [16]. Furthermore, ECH extends the 
lifespan of Caenorhabditis elegans by increasing resistance 
to oxidative stress and protecting from Aβ-induced toxic-
ity [17]. More importantly, ECH ameliorates the memory 
impairment and cholinergic deficit induced by Aβ [18]. 
These studies indicated that ECH had the potency to pre-
vent AD progression. However, the possible therapeutic 
target of ECH in AD is not clear. Thus, the aims of this 
study were to testify the effect of ECH on AD pathology in 
APP/PS1 mice. We demonstrated that long-term treatment 
with ECH improved the cognitive impairment of APP/PS1 
mice by decreasing Aβ production, oxidative stress, and 
inflammation responses.

Materials and Methods

Animals and Treatment

The APPswe/PSEN1dE9 (APP/PS1) transgenic mice, a 
C57BL6 strain of mice with human APPSwe and PS1-dE9 
mutations, were purchased from the Jackson Laboratory and 
maintained them under standard conditions (room tempera-
ture of 22–25 °C and 12 h light/dark cycle). Genotyping was 
performed by PCR analysis of tail DNA. Five-month-old 
male mice were randomly divided into two groups (n = 6 per 
group): vehicle and ECH group (50 mg/kg/day). All groups 
of mice were kept under the same conditions for 3 months 
before behavior tests were performed. All experimental 
procedures performed using animals were approved by the 
Laboratory of Animal Ethical Committee of China Medical 
University (CMU2020397).

Behavior Tests

After 3 months of treatment, behavior tests were per-
formed using the Morris water maze and nest building 
tests. Two days before the test, mice were trained three 
times per day for two consecutive days with a visible plat-
form. For the next 5 days, a navigation test was carried 
out. First, the platform was hidden, and both the latency 
time of mice finding the platform were recorded using the 

water maze system (ZH0065; Zhenghua Bioequipment, 
China). In the probe trial, the platform was removed, and 
the number of times that mice crossed the platform was 
recorded.

In the nest building test, mice were individually placed 
in a cage and randomly placed with eight square pieces of 
paper (5 × 5 cm). The change in the pieces of paper was 
observed for 7 days and photographically recorded. The 
nest-building abilities were assessed according to the scor-
ing criteria: 1 = no biting/tearing, with random dispersion of 
the paper; 2 = no biting/tearing of paper, with gathering in a 
corner/side of the cage; 3 = moderate biting/tearing of paper, 
with gathering in a corner/side of the cage; and 4 = extensive 
biting/tearing of paper, with gathering in a corner/side of 
the cage.

Tissue Preparation

At the end of the behavior tests, the mice were anesthetized 
and perfused with PBS. After that, the brains were quickly 
collected on ice, and one hemisphere was frozen and stored 
at − 80 °C, and the other was immersion-fixed in 4% para-
formaldehyde for the histological study.

Measurement of SOD Activity and ROS

The cerebral cortex was homogenized and centrifuged at 
4 °C. The supernatant was collected to assay for protein 
concentration by BCA protein assay kit. After the protein 
concentration was measured, the activity of superoxide dis-
mutase (SOD) was determined by SOD assay kit according 
to the manufacturer’s instructions (Najing Jiancheng A001-
3–2). Cell suspension of fresh tissues was incubated with 
DCFH-DA (Najing Jiancheng E004-1–1) for 30 min at 37 
℃, and the fluorescence intensity of reactive oxygen species 
(ROS) was detected by enzyme labeling instrument.

Immunofluorescence Staining

The frozen sections were blocked with 5% goat serum for 
30 min and incubated with anti-Aβ antibody (mouse mono-
clonal; 1:100, Santa Cruz) or anti-Aβ antibody/anti-GFAP 
antibody (rabbit polyclonal; 1:200, Cell signal)/anti-Iba-1 
(rabbit polyclonal; 1:200, Wako) overnight at 4 °C. The sec-
tions were washed with PBS and then incubated with Alexa 
Fluor 488- or Alex Fluor 594-conjugated secondary antibod-
ies for 2 h. Images were acquired using the laser scanning 
confocal microscope (TCS SP8, Leica, Germany).

Quantitative RT‑PCR

Total RNA of mouse tissues was extracted using Total 
RNA Kit according to the manufacturer’s instruction 
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and reverse transcribed into cDNA. The cDNA synthe-
sis conditions were 37 °C for 15 min and then 85 °C for 
5 s. Quantitative real-time PCR was performed in the 
7300 Sequence Detection System using the SYBR Green 
PCR Master mix (AG11702, Accurate Biology, China). 
At least three independent assays of each cDNA sample 
were conducted. The primers and probes used in PCR are 
listed as follows:

TNF-α:
F-AGC​CCC​CAG​TCT​GTA​TCC​TT
R-ACA​GTC​CAG​GTC​ACT​GTC​CC
IL-1β:
F-AGC​CAA​GCT​TCC​TTG​TGC​AAG​TGT​
R-GCT​CTC​ATC​AGG​ACA​GCC​CAGGT​
BACE1:
F-GGA​ACC​CAT​CTC​GGC​ATC​C
R-TCC​GAT​TCC​TCG​TCG​GTC​TC
SOD1:
F-AAC​CAG​TTG​TGT​TGT​CAG​GAC​
R-CCA​CCA​TGT​TTC​TTA​GAG​TGAGG​
GAPDH:
F-TGC​AGT​GGC​AAA​GTG​GAG​AT
R-TTT​GCC​GTG​AGT​GGA​GTC​ATA​
The gene expression values were normalized to those of 

GAPDH.

Western Blot

Mouse tissues were lysed in RIPA lysis buffer on ice for 
3 h and then were centrifuged at 12,000 g for 15 min at 
4 °C to collect the supernatant. The protein concentra-
tions were measured using the Bradford assay kit. Protein, 
30 μg per lane, was separated by 10% SDS-PAGE gel and 
then transferred to PVDF membranes. Membranes were 
blocked with 5% nonfat milk for 30 min and incubated 
with primary antibodies for oligomer (rabbit polyclonal; 
1:1000, Sigma), ADAM10 (rabbit polyclonal; 1:1000, 
Abcam), BACE1 (rabbit polyclonal; 1:1000, Abcam), PS1 
(rabbit polyclonal; 1:1000, Cell Signal), PEN2 (rabbit 
polyclonal; 1:1000, Cell Signal), Nicastrin (NCT) (rabbit 
polyclonal; 1:1000, Cell Signal), APH-1 (rabbit polyclonal; 
1:1000, Thermo), Nrf2 (rabbit polyclonal; 1:1000, Abcam), 
HO-1 (rabbit polyclonal; 1:1000, Abcam), GP91 (rabbit 
polyclonal; 1:1000, Abcam), SOD1 (rabbit polyclonal; 
1:1000, Proteintech), SOD2 (rabbit polyclonal; 1:1000, 
Proteintech), TXNIP (rabbit polyclonal; 1:1000, Abcam), 
NLRP3 (rabbit polyclonal; 1:1000, Abcam), Trx-1 (rabbit 
polyclonal; 1:1000, Abcam), p-AKT (rabbit polyclonal; 
1:1000, Cell Signal), AKT (rabbit polyclonal; 1:1000, Cell 
signal), p-PI3K (rabbit polyclonal; 1:1000, Cell Signal), 
PI3K (rabbit polyclonal; 1:1000, Cell Signal), GAPDH 
(rabbit polyclonal; 1:10,000, Cell Signal), p-PPARγ (rab-
bit polyclonal; 1:1000, Cell Signal), and PPARγ (rabbit 

polyclonal; 1:1000, Cell Signal) overnight at 4 °C. After 
washing three times for 15 min, the membranes were incu-
bated with HRP-conjugated secondary antibody for 1.5 h 
and detected using ECL.

Statistical Analysis

All data are represented as mean ± standard error of the 
mean (SEM). Statistical significances between the ECH 
treatment group and the vehicle control treatment group 
were determined by t-test. The difference was considered to 
be statistically significant when P < 0.05.

Results

ECH Improved Memory Deficits in APP/PS1 Mice

To address whether ECH could improve memory impair-
ments in APP/PS1 mice, we tested the mice using the 
Morris water maze and nest building tests (Fig. 1), which 
assessed spatial learning and memory function. The results 
showed that the latency time of mice finding the platform 
were significantly reduced in ECH treatment groups on 
the navigation test. The platform crossing times were 
significantly higher in the probe trial compared with the 
vehicle group (Fig. 1A–E). Moreover, ECH could improve 
the ability of nest construction compared with the vehi-
cle group (Fig. 1F, G). The results suggest that ECH can 
significantly improve learning and memory dysfunction 
in APP/PS1 mice.

ECH Inhibited the Production of Aβ1‑42 Production 
as Detected by Immunofluorescence Staining

To determine the mechanism of ECH to improve the 
learning and memory abilities of mice, senile plaque 
deposition was detected by immunofluorescence stain-
ing. The results showed that the number of Aβ1-42 in the 
cortex and hippocampus of mice decreased significantly 
compared with the vehicle group (Fig. 2), indicating that 
ECH alleviated cognitive impairment by reducing the pro-
duction of Aβ1-42.

ECH Reduced BACE1 Expression in the APP/PS1 Mice

Aβ is produced by the APP through the amyloid cleavage 
pathway, while the APP non-amyloid pathway can inhibit 
the production of Aβ. Therefore, the amyloid pathway cleav-
age enzyme BACE1 and non-amyloid cleavage enzyme 
ADAM10, as well as their production of cleavage were 
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assessed. The results showed that the full of APP has no 
change compared with vehicle (Fig. 3A). However, there 
was a significant decrease in the expression of BACE1 and 
production of cleavage sAPPβ and C99 after ECH treat-
ment (Fig. 3A–C). However, the expression of ADAM10, 
sAPPα and γ-secretase (PS1, NCT, PEN2, and APH-1) were 
not significantly different compared with the vehicle group 
(Fig. 3B–D). These results suggested that ECH administra-
tion could down-regulate the level of BACE1 to inhibit Aβ 
generation.

ECH Significantly Inhibited Oxidative Stress

Oxidative stress plays a vital role in AD pathogenesis and pro-
motes AD development via increasing Aβ deposition and tau 
hyperphosphorylation [7]. Therefore, antioxidant drugs may 
have a therapeutic effect on AD. We measured ROS and anti-
oxidant enzyme activity to investigate the relationship between 
ECH and oxidative stress. After ECH treatment, the content of 
ROS significantly decreased, while antioxidant enzyme (SOD1 
and SOD2) activity increased significantly (Fig. 4A–D, F, G).

Oxidative stress-induced damage occurs to the lipids of 
cellular membranes, proteins, and DNA [19]. 8-Hydroxy-
2′-deoxyguanosine (8-OHdG), one of the primary forms of 
free radical-induced oxidative damage, has been recognized 
as a biomarker of oxidative stress [19]. Moreover, GP91 has 
also been recognized as biomarkers of oxidative stress [20]. 
In this study, the levels of GP91 and 8-OHdG were sig-
nificantly decreased after ECH treatment (Fig. 4A, E, H–J). 
Taken together, these results illustrated that ECH could sig-
nificantly reduce oxidative stress, and its mechanism might 
be related to increase the activity of antioxidant enzymes.

ECH Restrained Glia Cell Activation 
and Pro‑inflammatory Cytokine Release

ECH alleviates LPS-induced cell apoptosis and inflamma-
tion in rat intestinal epithelial cells [21] and possesses a neu-
roprotective effect via inhibiting inflammation. However, it 
is unclear how ECH improves AD pathology by anti-inflam-
mation in the APP/PS1 mice.

Fig. 1   ECH treatment improved 
the cognitive capacity of APP/
PS1 mice. APP/PS1 mice 
(5 months old) were treated 
with ECH (i.p., 50 mg/kg/day) 
for 3 months. Morris water 
maze tests with 2 days of visible 
platform training, 5 days of 
hidden platform testing, and a 
probe trial after 24 h of the last 
hidden platform test were used 
to evaluate cognitive ability. A, 
B Mice from different groups 
exhibited a similar escape 
latency to the visible platform 
on days 1–2, and the hidden 
platform tests showed that ECH 
administration decreased the 
escape latency from the 3rd to 
7th day. C A representative path 
showing the mouse performance 
in the hidden platform trail on 
the 5th day. D, E In the probe 
trial, ECH treatment signifi-
cantly increased the times of 
crossing the platform’s former 
location. Nest construction was 
visualized after Morris water 
maze tests. F, G ECH treat-
ment significantly rescued the 
impaired ability to construct 
nests. Data were presented 
as the mean ± SEM; n = 6, 
*P < 0.05; **P < 0.01
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Fig. 2   ECH treatment reduced 
senile plaque burden in APP/
PS1 mice. Five-month-old 
APP/PS1 mice were treated 
with ECH for 3 months. A 
Immunofluorescent labeling of 
Aβ showing the Aβ plaque in 
the cortex and hippocampus of 
APP/PS1 mice. B, C Quan-
tification of Aβ fluorescence 
revealed a reduced number 
of Aβ plaques in the cortex 
and hippocampus of APP/PS1 
mice after ECH treatment. D, 
E ELISA showed that content 
of Aβ1-42 in the cortex and 
hippocampus. F, G Immunoblot 
analysis reveals the expression 
level of Aβ oligomer. Data were 
presented as the mean ± SEM; 
n = 6, *P < 0.05; **P < 0.01
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Fig. 3   ECH inhibited the activation of BACE1 and the secretion of 
sAPPβ in the cortex of APP/PS1 mice. Five-month-old APP/PS1 
mice were treated with ECH for 3  months. A Immunoblot analysis 
showed the expression levels of APP, C83, and C99 in the cortex. 
B The mRNA expression level of BACE1 in the cortex. C Immu-

noblot analysis showed the expression levels of ADAM10, BACE1, 
the secretion of sAPPα and sAPPβ in the cortex. D Immunoblot 
analysis reveals the expression level of the subunits of γ-secretase, 
including PS1, NCT, PEN2, and APH-1. Data were presented as the 
mean ± SEM; n = 6, *P < 0.05; **P < 0.01; ***P < 0.001
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GFAP or Iba-1 and Aβ were stained with double-labeled 
immunofluorescence, and we found that ECH could sig-
nificantly inhibit the activation of glial cells around senile 
plaques (Fig. 5A–D). Western blotting results showed that 
ECH inhibited the expression of GFAP and Iba-1 compared 
with the vehicle group (Fig. 5E).

To examine whether ECH inhibits inf lammatory 
responses in APP/PS1 mice, pro-inflammatory cytokines 
such as TNF-α and IL-1β were detected by ELISA 
and real-time polymerase chain reaction (RT-PCR) 
(Fig. 5F–I). The results suggest that ECH inhibited the 
expression of TNF-α and IL-1β to decrease the inflam-
mation response.

ECH Activated PI3K/AKT/Nrf2/PPARγ Signaling 
Pathways

Transcription factor PPARγ regulates the activity of the 
BACE1 promoter, and activating PPARγ can inhibit BACE1 
[5, 16]. As an upstream signal molecule of PPARγ, defi-
ciency of Nrf2 attenuated PPARγ transcriptional activity 
[22]. Previous study indicated that PI3K/AKT signaling 
pathway was participated in activating Nrf2 [23]. In our 
study, PI3K, AKT, Nrf2, PPARγ, and HO-1 expression were 
assessed. The results showed that ECH increase the phos-
phorylation the levels of PI3K and AKT, promoted Nrf2 
expression in the nucleus and cytoplasm, subsequently pro-
mote PPARγ expression compared with the vehicle group 
(Fig. 6A, B). Moreover, ECH accelerated the expression of 
HO-1 (Fig. 6B). In conclusion, our results indicate that ECH 
improves AD pathology by activating PI3K/AKT/Nrf2/
PPAPγ pathways.

ECH Inhibited NLRP3 Inflammasome Activation 
Through TXNIP/Trx‑1 Signaling Pathway

Moreover, Nrf2 is related to inflammation by inhibit-
ing NLRP3 inflammasome activation through TXNIP/
Trx-1 complex regulation [11]. In our research, we found 
that the expression of NLRP3 inflammasome significantly 
decreased and Trx-1 expression increased after ECH treat-
ment. However, the lever of TXNIP was down-regulated 
by ECH (Fig. 6C). Our results showed that ECH inhibited 
NLRP3 inflammasome activation by regulating TXNIP/
Trx-1 pathway.

Discussion

In this study, we investigated the molecular mechanisms 
of ECH on AD using APP/PS1 mice. We found that ECH 
improves mouse cognitive function and reduces both senile 
plaque deposition and oxidative damage in the brain.

Our data demonstrated that ECH ameliorated memory 
impairments and decreased Aβ generation in APP/PS1 mice. 
We found that ECH reduced Aβ production by inhibiting 
the expression of BACE1, but there were no effects on α- or 
γ-secretase. This finding is consistent with the research of 
Dai et al. [24].

BACE1 expression is regulated by a variety of transcrip-
tion factors, including NF-κB and PPARγ [4]. It has been 
reported that the level of PPARγ significantly reduced in 
the brains of AD patients and mice models [25]. PPARγ 
depletion enhances BACE1 mRNA levels by promoting 
BACE1 gene promoter activity. Conversely, overexpression 
of PPARγ or PPARγ activators, reduced BACE1 gene pro-
moter activity and inhibited BACE1 expression [26], which 
ultimately reduces the generation of Aβ [5]. Although our 
results showed that ECH significantly inhibited the expres-
sion of BACE1, it was unclear whether the mechanism of 
ECH is involving in activating PPARγ. In our study, we 
found that ECH can activate PPARγ, leading to the down-
regulation of BACE1 and the inhibition of Aβ. Further-
more, PPARγ as a direct downstream transcriptional target 
of Nrf2, its promoter activity can be activated by Nrf2. 
On the contrary, Nrf2 deficiency also leads to decreased 
expression of PPARγ [22]. A decline in the expression of 
the transcription factor Nrf2 have been observed in AD 
brains and Nrf2 induction ameliorates cognitive impair-
ment in the AD model mouse [12, 27]. To assess whether 
ECH activate PPARγ by promoting Nrf2 expression, 
thereby protecting AD model mice against disease pro-
gression, we detected Nrf2 expression in the nucleus and 
cytoplasm. The results showed that ECH promoted Nrf2 
translocation to the nucleus and the expression of down-
stream genes PPARγ. A previous study showed that PI3K/
AKT pathway is related to Nrf2 activation [23]. After 
treatment with the PI3K/AKT inhibitor Ly294002, the 
p-AKT and Nrf2 levels, as well as the Nrf2 nuclear trans-
location, were significantly suppressed [23]. Anthocyanins 
(potent antioxidant and neuroprotective agents) reduce Aβ 
oligomer-induced neurotoxicity by the PI3K/AKT/Nrf2 
pathway [28]. Panax notoginseng saponins activated Nrf2 
in a PI3K/AKT pathway-dependent manner and protected 
against barrier disruption [29]. In this study, we determined 
whether ECH could increase Nrf2 nuclear translocation by 
activating the PI3K/AKT pathway. Our results show that 
ECH up regulates the phosphorylation level of PI3K and 
then induces AKT to activate Nrf2. The activated Nrf2 can 
increase the promoter activity of PPARγ and inhibit the 
expression of BACE1.

Accumulating evidence indicates that AD is related to 
oxidative stress [30]. Our study found that the antioxi-
dant enzyme activity of SOD1 and SOD2 increased after 
ECH treatment, and SOD1 expression was upregulated. 
The levels of the oxidative stress biomarkers (GP91 and 
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8-OHdG) were significantly decreased after ECH treat-
ment. Furthermore, ECH inhibited glia cells activities 
and then reduced the release of inflammatory cytokines, 

including IL-1β and TNF-α. Nrf2 acted as the key tran-
scriptional regulator [31], against oxidative stress dam-
age in AD [25] by increasing the endogenous antioxidant 
capacity [32]. In addition, cytoprotective gene heme 
oxygenase 1 (HO-1) could be induced by Nrf2 nuclear 
translocation. The Nrf2/HO-1 signaling axis is a multiple 
organ protection chain that protects against oxidative stress 
injury. Nrf2/HO-1 axis can increase SOD2 expression and 
modulate mitochondrial structure and function in order to 
resist oxidative stress injury. In this study, we found that 
ECH can promote Nrf2 translated into the nucleus, then 
induce the expression of HO-1, up regulate the expres-
sion of antioxidant enzyme SOD2 and inhibit oxidative 

Fig. 4   ECH treatment limited the oxidative stress in the cortex of 
APP/PS1 mice. Five-month-old APP/PS1 mice were treated with 
ECH for 3 months. A–C, E Immunoblot analysis showed the expres-
sion level of SOD1, SOD2, and GP91 in the cortex. D Changes in 
SOD activity in the cortex. F ROS production in the cortex was 
detected with the dichlorofluorescein diacetate probe. G The mRNA 
expression level of SOD1 in the cortex. H–J Immunofluorescent 
labeling of 8-oHdG showing the 8-oHdG in the cortex and hippocam-
pus of APP/PS1 mice. Data were presented as the mean ± SEM; n = 6, 
*P < 0.05; **P < 0.01

◂

Fig. 5   ECH suppressed the neuroinflammatory reaction in the cortex 
and hippocampus of APP/PS1 mice. Five-month-old APP/PS1 mice 
were treated with ECH for 3 months. A–D ECH treatment suppressed 
the activation of microglia and astrocytes around the Aβ plaque. E 

Immunoblot analysis showed the expression levels of GFAP and Iba-
1. F, G ELISA showed that content of IL-1β and TNF-α in the cor-
tex. H, I The mRNA expression of IL-1β and TNF-α. Data were pre-
sented as the mean ± SEM; n = 6, *P < 0.05; **P < 0.01
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stress. Recently, studies have shown that Nrf2 induction 
increased GSH levels and attenuated reactive astrocytosis 
[33]. Resveratrol attenuates oxidative stress by PI3K/AKT-
induced Nrf2 activation [34]. Panax notoginseng saponins 
activated antioxidant signaling by Nrf2 in a PI3K/AKT 
pathway-dependent manner and protected against barrier 
disruption [29]. Our results indicated that ECH inhibited 
oxidative stress damage by PI3K/AKT-induced Nrf2 acti-
vation pathway.

In addition, chronic inflammation has a vital role 
in the onset and progression of AD [35]. Nrf2, thiore-
doxin interacting protein (TXNIP) and nucleotide-
binding oligomerization domain-like receptor protein 3 
(NLRP3) inflammasome pathways are closely related to 

inflammation-related diseases [36]. The NLRP3 inflam-
masome is a complex of multi-proteins that regulate 
inflammation by activating the secretion of the pro-
inflammatory cytokine [37]. TXNIP as an endogenous 
regulator can interact with NLRP3, which activates the 
NLRP3 inf lammasome and promotes inf lammatory 
responses [38]. A previous study showed that Nrf2 inhib-
its NLRP3 inflammasome activation by regulating the 
TXNIP/Trx-1 complex [39]. DI-3-n-butylphthalide treat-
ment suppresses TXNIP-NLRP3 interaction and inhib-
its NLRP3 inflammasome activation by upregulating 
Nrf2 [11]. Our results suggested that ECH decreased the 
TXNIP level and inhibited NLRP3 inflammasome activa-
tion against the neuroinflammation associated with Nrf2.

Conclusion

ECH decreased the Aβ deposition by reducing the expres-
sion of BACE1 through activating PI3K/AKT/Nrf2/PPARγ 
signaling pathway. Furthermore, ECH promoted Nrf2 via 
the PI3K/AKT signaling pathway against oxidative stress, 

Fig. 6   ECH activated the PI3K/AKT/Nrf2/PPARγ signaling path-
ways in the cortex of APP/PS1 mice. Five-month-old APP/PS1 mice 
were treated with ECH for 3 months. A Immunoblot analysis showed 
the expression levels of p-PI3K, PI3K, p-AKT, AKT, p-PPARγ, and 
PPARγ in the cortex. B Immunoblot analysis showed the expression 
level of Nucleu-Nrf2, Nrf2, and HO-1 in the cortex. C Western blot 
analysis showed the expression level of TXNIP, NLRP3, and Trx-1 in 
the cortex. Data were presented as the mean ± SEM; n = 6, *P < 0.05; 
**P < 0.01

◂

Fig. 7   Schematic diagram 
shows the mechanism of ECH 
ameliorated AD pathological 
process. ECH inhibits BACE1 
expression and oxidative stress 
by activating PI3K/AKT/Nrf2/
PPARγ signaling pathways, 
thus reducing Aβ production. In 
addition, ECH can reduce the 
production of Aβ by inhibiting 
the release of inflammatory 
factors
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inhibited TXNIP-NLRP3 interaction, reduced NLRP3 
inflammasome against inflammation, and improved AD 
pathology (Fig. 7).
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