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Abstract 

Background:  Growth traits are of great importance for poultry breeding and production and have been the topic 
of extensive investigation, with many quantitative trait loci (QTL) detected. However, due to their complex genetic 
background, few causative genes have been confirmed and the underlying molecular mechanisms remain unclear, 
thus limiting our understanding of QTL and their potential use for the genetic improvement of poultry. Therefore, 
deciphering the genetic architecture is a promising avenue for optimising genomic prediction strategies and exploit-
ing genomic information for commercial breeding. The objectives of this study were to: (1) conduct a genome-wide 
association study to identify key genetic factors and explore the polygenicity of chicken growth traits; (2) investigate 
the efficiency of genomic prediction in broilers; and (3) evaluate genomic predictions that harness genomic features.

Results:  We identified five significant QTL, including one on chromosome 4 with major effects and four on chro-
mosomes 1, 2, 17, and 27 with minor effects, accounting for 14.5 to 34.1% and 0.2 to 2.6% of the genomic additive 
genetic variance, respectively, and 23.3 to 46.7% and 0.6 to 4.5% of the observed predictive accuracy of breeding 
values, respectively. Further analysis showed that the QTL with minor effects collectively had a considerable influ-
ence, reflecting the polygenicity of the genetic background. The accuracy of genomic best linear unbiased predic-
tions (BLUP) was improved by 22.0 to 70.3% compared to that of the conventional pedigree-based BLUP model. The 
genomic feature BLUP model further improved the observed prediction accuracy by 13.8 to 15.2% compared to the 
genomic BLUP model.

Conclusions:  A major QTL and four minor QTL were identified for growth traits; the remaining variance was due to 
QTL effects that were too small to be detected. The genomic BLUP and genomic feature BLUP models yielded consid-
erably higher prediction accuracy compared to the pedigree-based BLUP model. This study revealed the polygenicity 
of growth traits in yellow-plumage chickens and demonstrated that the predictive ability can be greatly improved by 
using genomic information and related features.
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Background
Growth traits of chickens are well known for their 
genetic architectural complexity. Since the release 
of the chicken genome assembly [1], many research-
ers have begun to study economic traits for chickens 
by combining large-scale genomic and phenotypic 
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information. In 2006, Park et  al. used an advanced 
intercross line (AIL) population from two chicken 
lineages to demonstrate the presence of quantitative 
trait loci (QTL) on multiple chromosomes [2], provid-
ing a glimpse into the polygenicity of chicken growth 
traits. Thereafter, Johansson et al. [3] estimated that the 
genetic variation of chicken growth traits was the result 
of more than 100 genome-wide loci. Two other studies 
further revealed that genome-wide loci under selec-
tion accounted for at least 40% of the phenotypic vari-
ation in body weight at 56 days of age in an intercross 
chicken line, suggesting that bidirectional selection for 
growth traits acts on many genetic loci, rather than on 
only a few loci [4, 5].

In 2001, Meuwissen et al. [6] proposed a genomic pre-
diction (GP) method that uses genetic markers across 
the whole genome. Recently, this method has been 
extensively studied and applied to many species [7–10]. 
Several studies using GP have reported improved pre-
dictive capacity for chicken production and laying traits 
[11–13], and GP is currently widely applied in poultry 
breeding [14]. With the development of next-generation 
sequencing technologies (NGS), large-scale and low-cost 
genotyping has recently become available. Sequencing 
provides the ability to further understand the polygenic-
ity of chicken growth traits and offers opportunities to 
further improve the accuracy of GP.

The Chicken QTL Database (https://​www.​anima​lgeno​
me.​org/​cgi-​bin/​QTLdb/​GG/​index) contains informa-
tion on 3828 records related to chicken growth traits 
[15]. Regardless of their genetic background, the loci 
associated with growth traits in chickens occur through-
out the genome. Although growth traits are well known 
for their polygenicity [16–18], further investigations are 
needed to identify how and how many genetic loci, spe-
cifically, affect chicken growth traits. Such information 
is essential for identifying genomic features that contrib-
ute to improving the performance of genomic prediction 
methods.

In this study, we used a genotyping-by-sequencing 
(GBS) strategy to conduct a large-scale genomic analy-
sis of the nucleus breeding population of commercial 
yellow-plumage chickens. Based on 151,519 autosomal 
single-nucleotide polymorphisms (SNPs) located along 
the genome of 6359 chickens, we identified multiple QTL 
that affect growth traits with major or minor effects. We 
performed genomic evaluation and estimated the con-
tribution of each locus to the accuracy of genomic pre-
dictions. Thus, the objectives of this study were to: (1) 
conduct a genome-wide association study (GWAS) in 
yellow-plumage chickens to identify key genetic factors 
and explore the polygenicity of growth traits in chickens; 
(2) investigate the accuracy of GP in this population; and 

(3) evaluate genomic predictions that harness genomic 
features.

Methods
Animals, phenotypes, genotypes, and population structure
The animal and phenotypic data used for this study were 
obtained from a commercial nucleus breeding popula-
tion of yellow-plumage chickens. Two generations (8 and 
9) of chickens hatched in six batches from 2018 to 2019 
(2769 males and 5353 females) were generated, managed, 
and penned in a single nucleus breeding farm. Approxi-
mately 1400 candidate roosters and ~ 2800 candidate 
hens (male:female = 1:2) were available in each genera-
tion, and ~ 50 roosters and ~ 750 hens were selected for 
breeding the next generation; the main selective trait was 
feed conversion ratio (FCR), with a selection pressure of 
1:20 for males and 1:3–4 for females.

All birds were fed ad  libitum, following the feed-
ing management procedure of the company during the 
brooding stage (1–35  days) and the growing stage (36–
84 days). During the brooding stage, the birds were raised 
in a closed brooding area. They were then transferred to 
pens with vertical ventilation systems for the growing 
stage, where the males and females were separated and 
penned at different sides of the building. Each pen had 
17 feeding stations and five hanging water fountains. 
Birds with physical maldevelopment or deformities were 
eliminated. During the brooding stage birds were fed a 
diet containing 2837 kcal metabolic energy/kg and 200 g 
crude protein/kg, before switching to a high-energy diet 
containing 2900 kcal/kg and 190 g/kg. Daily feed intake 
of each bird was recorded throughout the feeding trial 
from 42 to 84 days of age by subtracting the food remain-
ing in the afternoon from the initial mass recorded in the 
morning. Body weight was recorded at 42 and 84  days 
of age (denoted as 42-day-old weight (DW) and 84 DW, 
respectively); FCR was calculated by dividing the total 
feed intake during the 42- to 84-day period by the total 
weight gained during that same period, and the average 
daily gain (ADG) was calculated by dividing the total 
weight gained during the 42- to 84-day period by 42 days. 
In total, 8122 body weight phenotypes (42 DW, 84 DW, 
and ADG) and 8115 FCR phenotypes were recorded. 
Basic statistics for these traits are in Table 1. All pheno-
typic values followed an approximately bell-shaped dis-
tribution (see Additional file 1: Figure S1).

From the full set of 8122 birds, 6684 were sequenced 
using the GBS method, of which the genotypes were 
successfully obtained for 6359 individuals (1870 from 
generation 8 and 4489 from generation 9). Genomic 
DNA was extracted from blood samples and quanti-
fied using a Qubit 2.0 Fluorometer. DNA concentra-
tions were normalised to 200 ng in each well of 96-well 
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plates. Two-enzyme GBS was used, with the enzymes 
EcoRI and MseI. A set of 96 forward barcoded adapters 
with an EcoRI overhang was designed using the GBS Bar-
code Generator (http://​www.​deena​bio.​com/​servi​ces/​gbs-​
adapt​ers) and a reverse adapter with an MseI overhang 
was designed according to Wang et  al. [19]. DNA sam-
ples were digested with EcoRI and MseI and then ligated 
to the designed adapters. Following adapter ligation, the 
samples were pooled using 96-plex molecular barcod-
ing and then size-selected via purification with AMPure 
XP Beads (VAHTS). The insert sizes of the libraries were 
detected using the Agilent 2100 Bioanalyzer. The purified 
libraries were obtained using an MGIEasy Circularization 
Kit, amplified by PCR and sequenced on an MGISeq2000 
by PE100 sequencing. The SNP genotypes were deter-
mined according to the pipeline implemented in Tassel 
5.0, with default parameters [20]. We used the genome 
version of Gallus gallus 6.0 as a reference. The average 
genome sequencing depth reached 0.78 × /bird. After 
SNP detection, data on 6684 individuals with genotypes 
on 1,994,350 SNPs were obtained. Beagle 5.0 was used to 
impute missing SNP genotypes [21] after SNP filtering 
quality control. The quality control procedure was based 
on whether the autosomal SNPs had a minor allele fre-
quency higher than 5%, a genotype quality score higher 
than 98, with a missing rate less than 60%, and whether 
they passed the Hardy–Weinberg equilibrium test at 
p ≥ 1e − 4. We also removed individuals with a SNP miss-
ing rate higher than 30%. Finally, 1,842,831 low-quality 
SNPs and 325 birds with high SNP missing rates were 
removed, and 6359 individuals with 151,519 autosomal 
SNPs were retained with a marker density of one SNP per 
6.34 kb. SNPs were uniformly distributed along the entire 
genome (see Additional file  1: Figure S2). Furthermore, 
principal component analysis based on a genome-wide 
complex trait analysis (GCTA) [22] of all birds showed 
no distinct population stratification (see Additional file 1: 

Figure S3), demonstrating that population stratification 
would not influence the GWAS or GS analyses.

Genome‑wide association study
A mixed linear model approach was used for the single-
SNP GWAS, as implemented in the GCTA software [22]. 
The mixed linear model for the GWAS was:

where y is the vector of phenotypic observations; b is 
the vector of fixed effects, including batch–sex effects 
and genotype at the SNP, which were fitted as covari-
ates; X is the incidence matrix for b ; g is the vector of 
random polygenic additive effects, i.e. the accumulated 
effect of all SNPs, as captured by the genomic relation-
ship matrix (GRM); Z is an incidence matrix allocating 
polygenic effects to phenotypic observations; and e is 
the vector of random residuals. The GRM was calculated 
using all SNPs, as implemented in the GCTA software, 
and the effect of each SNP was evaluated separately. The 
whole population data used here were not used for fur-
ther GP. Bonferroni correction was applied to correct 
for multiple testing across the genome and compensate 
for the number of markers, with the threshold set at 
0.05/151,519 = 3.30e − 7. The candidate QTL interval 
was based on the level of linkage disequilibrium (LD) 
between the most significant SNP and its neighbours, 
with the boundaries based on LD dropping below 0.2. 
The LD between SNPs was determined using the PLINK 
software [23] with options “–ld-window-kb 20,000 –ld-
snp p –ld-window 15,000”, where p represents the most 
significant SNP.

Mixed model for the best linear unbiased prediction
Two generations of birds were used to construct the rela-
tionship matrix. The mixed model for genomic best lin-
ear unbiased prediction (GBLUP) was the same as that 
used for GWAS, except that SNP genotype was removed 
as a fixed effect. In this model:

where I denotes the identity matrix,  is the additive 
genetic variance, and  is the residual variance. The 
GRM, G , was calculated as implemented in the GVCB-
LUP package, and the variance components were esti-
mated using genomic restricted maximum likelihood 
estimation (GREML) via the GREML_CE programme in 
the GVCBLUP package [25]. Genomic heritability was 
defined as:

y = Xb+ Zg + e,

Table 1  Basic statistics of the growth-related phenotypes

DW day-old weight, FCR feed conversion ratio, ADG average daily gain, SD 
standard deviation

Phenotype Sex Number of 
records

Mean ± SD Median

42 DW (g) Male 2769 853.9 ± 63.3 860

Female 5353 731.3 ± 51.9 730

84 DW (g) Male 2769 2472.0 ± 160.8 2480

Female 5353 2005.9 ± 155.0 2005

FCR Male 2767 3.06 ± 0.23 3.05

Female 5348 3.55 ± 0.33 3.51

ADG (g/day) Male 2769 38.5 ± 3.5 38.6

Female 5353 30.4 ± 3.2 30.4

http://www.deenabio.com/services/gbs-adapters
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The GBLUP of individual genetic values in the ref-
erence and validation samples were calculated during 
the last GREML iteration. The heritability and effect of 
each SNP were also computed using the GREML_CE 
programme.

To further improve the GP model by harnessing 
genomic features, we used a two-GRM GBLUP model 
(GFBLUP) to perform genomic evaluations. First, we 
defined a population for the GWAS (N = 1500) by ran-
dom sampling from 6359 birds; this population was used 
to identify significant SNPs and QTL (i.e. the discovery 
population). Then, we separated the significant SNPs 
obtained from the GWAS from the 151,519-SNP dataset 
and generated two GRM for the birds not used in GWAS 
analysis (N = 4859) (see Additional file 1: Figure S4). One 
GRM was based on significant SNPs and the other was 
based on the remaining SNPs. GBLUP analysis was per-
formed using the MTG2 software [26]. The GFBLUP 
model [27] is described as follows:

where s and a are the vectors of additive genetic values 
based on significant and non-significant SNPs, respec-
tively, Gs and Ga are the associated GRM and  and  
of the associated additive genetic variances; and  is the 
residual variance.

For pedigree-based BLUP (ABLUP), the GRM of the 
GBLUP model was replaced by the pedigree-based addi-
tive relationship matrix A , calculated using two genera-
tions of pedigree-based relationships with the BLUPF90 
package [24]. The last round of iteration for  and  
computed using the AIREMLF90 programme in the 
BLUPF90 package was used to predict the validation 
data.

Cross‑validation
A tenfold cross-validation was conducted to evaluate the 
predictive ability [28, 29] of the different models. The 
4859 genotyped birds remaining after selection of the 
discovery population for GWAS were randomly divided 
into ten validation datasets. For each run, nine partitions 
were treated as the reference group, whereas the remain-
ing one was used for validation. Phenotypic observations 
in the validation dataset were omitted from the ABLUP, 
GBLUP, and GFBLUP calculations (see Additional file 1: 
Figure S4).

To estimate the contribution of QTL regions to herit-
ability and prediction accuracy, we used GBLUP and 
GFBLUP models to estimate heritability and evalu-
ate prediction accuracy using all the birds (N = 6359). 

GFBLUP model : y = Xbb+ Zs+ Za + e,

Similarly to the above steps, we randomly divided these 
birds into ten validation datasets, and for each run, nine 
partitions were treated as the reference group, whereas 
the remaining one was used for validation. Phenotypic 
observations in the validation dataset were omitted from 
the GBLUP and GFBLUP models.

To evaluate the influence of the reference population 
size on the prediction accuracy of GBLUP, we randomly 
selected different subsets of the population from the full 
set of 6359 birds (550; 1100; 1650; 2200; 2750; 3300; 3850; 
4400; 4950; 5500; 6050; and the full set of 6359). For each 
subset, data were randomly partitioned into 11 equal 
portions: for each analysis ten portions were used as the 
reference group for the GBLUP model (i.e. 500; 1000; 
1500; 2000; 2500; 3000; 3500; 4000; 4500; 5000; 5500; and 
5781, respectively), while the remaining portion was used 
for validation (i.e. 50; 100; 150; 200; 250; 300; 350; 400; 
450; 500; 550; and 578, respectively). For example, when 
the size of the population was 550, 500 birds were ran-
domly subsampled as the reference set, and the remain-
ing 50 birds were used as the validation set. Therefore, 11 
reference sets (N = 500 for each set) and evaluation sets 
(N = 50 for each set) were obtained.

Prediction accuracy and inflation
Three statistical parameters were used to evaluate the 
performance of each prediction model, namely, observed 
prediction accuracy, theoretical prediction accuracy, 
and prediction inflation. To calculate the observed pre-
diction accuracy, data on the 8122 individuals were ana-
lysed using the ABLUP model with batch and sex set as 
fixed effects. The adjusted phenotype ( Yc ) of each bird 
was obtained by subtracting estimates of the fixed effects 
from the phenotype. The observed accuracy of the pre-
dicted phenotypic values in the validation population was 
calculated as the Pearson correlation between either the 
genomic (GEBV) or pedigree-based estimated breed-
ing value (EBV) and the Yc of the validation individuals 
( ̂R = corr[GEBV, Yc ] or R̂ = corr[EBV, Yc ]) averaged 
across all validation datasets. The theoretical predic-
tion accuracy was based on the prediction error variance 
(PEV) of the model, where the PEV was estimated by the 
error of variance between GEBV and the true genetic 
value (G), as follows [6]:

where  is the additive genetic variance. The theoretic 
accuracy is defined as the correlation between GEBV 
and G ( ̂R = corr[GEBV,G ] or R̂ = corr[EBV,G ]) with-
out selection and under the assumption that the model is 
correct. The theoretical accuracy of prediction was esti-
mated using BLUPF90 for the ABLUP model, GVCBLUP 
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for the GBLUP model, and MTG2 for the GFBLUP 
model. Prediction inflation was calculated as the regres-
sion of Yc on either GEBV or EBV in the validation set. 
For this statistic, values approaching 1 represent superior 
results.

Contribution of QTL to genomic heritability and prediction 
accuracy
We used two methods to estimate the contribution of 
QTL to genomic heritability and prediction accuracy: (1) 
comparison of full and reduced models, (2) estimation of 
the heritability of two GRM (the significant SNP set from 
GWAS and the remaining set), and (3) evaluation of the 
prediction accuracy of the GFBLUP model.

Method 1: Comparison of the full and reduced models
The contributions of QTL to genomic heritability and 
prediction accuracy were defined as “partial heritability” 
and “partial accuracy”, respectively, based on results from 
a full model and a reduced model. The GBLUP model 
that fits all SNPs as random effects was used for the full 
model. For each run, significant SNPs (P < 3.30e − 7, Bon-
ferroni correction) of the ith QTL were selected from 
the GWAS analysis. Then, the reduced model fitted sig-
nificant SNPs as fixed effects to remove their effects 
and those of other SNPs that were in high LD with the 
targeted SNPs from the random genetic effects on phe-
notype [30–32]. The GVCBLUP package was used to 
calculate the genomic heritability and the GEBV. The 
reduced model was described as:

where b is the vector of fixed batch–sex effects; s is the 
column vector of fixed SNP effects; a is the vector of 
additive genetic values based on genomic information; 
and Ga is the genomic additive relationship matrix. Vari-
ance components were then estimated using the reduced 
model. The relative contribution of QTL i to the herita-
bility and observed (theoretical) prediction accuracy was 
calculated as follows:

where h2 ( h2i  ) is the estimated heritability from the full 
(reduced) model, and R̂(R̂i ) is a measure of prediction 
accuracy for the full (reduced) model. Both R̂ and R̂i were 
calculated as the average observed prediction accuracy or 
average theoretical prediction accuracy.

QTL reduced model : y = Xbb+ Xss+ Za + e,

C(H2) = (h2 − h2i )/h
2,

C(R̂) = (R̂ − R̂i)/R̂,

Method 2: Estimating the contribution of two GRM using 
the GFBLUP model
In this method, which was based on the GWAS results, 
we split the 151,519 SNPs into a set with the significant 
GWAS results and a set with the others. Then, we used 
GCTA to compute a GRM for each set. Using the GRM, 
the GFBLUP model was used to estimate the additive 
variance explained by each GRM, and the contribution 
of the i th QTL region (QTLi on GGA1, GGA2, GGA4, 
GGA17, or GGA27) to heritability. Observed prediction 
accuracy was computed as:

where h2qtl and h2snp represent the phenotypic variance 
explained by the GRM computed from significant and 
non-significant SNPs, respectively, and R̂ and R̂s repre-
sent the observed prediction accuracy computed by both 
GRM and the GRM composed of non-significant SNPs, 
respectively. The theoretical prediction accuracy 
obtained by MTG2 was the square root of the combined 
reliability (based on PEV of GEBV for each individual) 
computed by both GRM.

The change in prediction inflation addition for the 
above two methods was calculated as follows:

where the abs function represents the absolute value 
between prediction inflation and 1, while inflationr and 
inflationall represent the prediction inflation of the pre-
diction models that used the GRM computed by non-sig-
nificant SNPs and both GRM, respectively.

Contribution of SNPs ranked by GWAS
We used the full model described above to estimate the 
contribution of the GWAS top SNPs (1%, 5%, 10%, 20%, 
30%, 40%, 50%, 60%, 70%, 80%, and 90%) by removing 
each in turn from the statistical model. To avoid data 
reuse, we repeated a random, tenfold cross-validation 
GWAS. For each fold validation, 5723 birds (nine par-
titions of the full set of data) were used for GWAS and 
reference, and the remaining were used as the valida-
tion set. To avoid obtaining SNPs from the same QTL 
with variants in high LD, we used LD pruning to remove 
one SNP in each SNP pair with an LD > 0.9 using the 
PLINK ‘-indep-pairwise’ command [23]. The removed 
SNPs were not included in the GRM computation for 
the GBLUP model. As a result, a subset of 118,570 SNPs 
that tagged all other SNPs with LD r2 < 0.9 was obtained. 

C(H2) = h2qtl/(h
2
qtl + h2snp),

C(R̂) = (R̂ − R̂s)/rall,

C(Inflation) = abs(inflationr − 1)− abs(inflationall − 1),
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After removing the top SNPs, the remaining tagged SNPs 
were used to compute the GRM using the GBLUP model 
of the GVCBLUP package to perform genomic evalua-
tion on the 10th dataset. The relative contribution of each 
SNP set to the prediction accuracy and heritability was 
calculated as follows:

where r and h2 are the measures of prediction accuracy 
and heritability, respectively, for the full model using 
all tagged SNPs; r90 is the measure of observed predic-
tion accuracy or theoretical prediction accuracy for the 
GBLUP model based on the GRM construction with 
tagged SNPs after removing the top SNPs (1–90%); and 
h290 represents the measure of heritability using tagged 
SNPs after removing the top SNPs (1–90%). Both r and 
r90 were calculated as the average Pearson correlation 
between the GEBV and Yc , and were averaged across all 
validation datasets.

Results
QTL identification using GWAS
The GWAS of four growth traits (42 DW, 84 DW, FCR, 
and ADG; Table  1) and (see Additional file  1: Figure 
S1) identified five non-overlapping QTL intervals with 
SNPs that reached genome-wide significance (Bonfer-
roni multiple testing correction; P < 3.30e−7), which 
were located on GGA1, 2, 4, 17, and 27, respectively 
(Fig.  1) and (see Additional file  1: Figure S5). The most 
significant QTL was located on GGA4, which was asso-
ciated with all traits, indicating that major genes affect-
ing growth and feed efficiency traits may be located 
within this region. Two SNPs (GGA4_75886144 and 
GGA4_75890242) located in an intron of an unknown 
gene (ENSGALG00000054173) had the most significant 
P-value for all traits (see Additional file 2: Tables S1–S4), 
as its significance level far exceeded that of the other 
SNPs. We also estimated the effects and contribution 
to heritability of these two SNPs based on the GBLUP 
model implemented using GVCBLUP [25]. The results 
showed that these SNPs had the greatest contributions 
(Fig. 2), suggesting that they may be positioned near the 
causative genes.

In addition to the QTL on GGA4, we also detected 
QTL for different traits in different genomic regions. 
Comparing the GWAS results for 42 DW and 84 DW, the 
greatest differences were found on GGA1 (QTL detected 
only for 42 DW), GGA17, and GGA27 (QTL detected 
only for 84 DW). We also compared the GWAS results 
for ADG and FCR, which were measured during the 

C(R̂) = (r − r90)/r,

C(H2) = (h2 − h290)/h
2,

same period (birds 42 to 84 days old), and the difference 
between the detected QTL was identified on GGA17. 
Collectively, these results indicated that the detected 
QTL affected chicken growth traits that had significant 
differences.

Improvement of prediction accuracy using GBLUP
We performed genomic evaluations with the GBLUP 
model, using 151,519 SNPs for the four traits. The 
observed average accuracy of the GEBV from the ten-
fold validation data set ranged from 0.31 to 0.45 for the 
GBLUP model (Table 2), which was 22.0 to 70.3% higher 
than that of the EBV from the same dataset with the 
pedigree-based ABLUP model (0.25–0.27). The theo-
retical average accuracy of GBLUP was improved by 
26.7 to 45.6% (0.68–0.76) compared to that of ABLUP 
(0.51–0.57; Table  2). The average prediction inflation of 
both GEBV and EBV was at a similar level for 42 DW, 
84 DW, and ADG, but not for FCR (see Additional 
file  2: Table  S5). The large improvement in prediction 
was achieved by harnessing genomic information that 
far exceeded the results of the pedigree method. As 
expected, the prediction accuracy of the GEBV largely 
depended on the size of the reference group; that is, the 
average observed (theoretical) prediction accuracy of 
GEBV improved with an increase in reference population 
size, and the prediction inflation of all four growth traits 
tended to stabilise to 1 (see Additional file 1: Figure S6). 
The estimate of genomic heritability also had a significant 
impact on prediction accuracy. The estimated genomic 
heritability was lowest for 42 DW (Table  2), as was the 
prediction accuracy. Therefore, a larger reference popu-
lation is required to increase the predictive ability of 42 
DW.

Contributions of QTL to genomic heritability 
and prediction accuracy
Based on the reduced GBLUP model that fitted signifi-
cant SNPs within a QTL region as fixed effects, the con-
tribution of a QTL was estimated as the reduction in 
heritability and prediction accuracy compared to the 
full model. The QTL on GGA4 contributed the most to 
all four phenotypes, with the contribution to heritabil-
ity ranging from 14.5 to 34.5%, and the contribution to 
the observed and theoretical prediction accuracy rang-
ing from 23.3 to 46.7% and 4.5 to 11.1%, respectively. The 
contributions to GP and heritability differed between 
traits. In particular, for 84 DW, the contribution was 
more than twice as high as that for 42 DW (Table  3) 
and (see Additional file  2: Table  S6), and the predic-
tion inflation for the reduced model was also increased 
compared to that of the full model for 42 DW (see Addi-
tional file 2: Table S7), which indicates that this QTL has 
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a greater effect on late growth and development stages. 
Although the contributions of the QTL on GGA1 (42 
DW), GGA2 (84 DW, ADG, and FCR), GGA17 (84 DW 
and ADG), and GGA27 (84 DW, ADG, and FCR) were 
markedly lower than that of the QTL on GGA4, their 

effects were not negligible. For example, the QTL on 
GGA1, detected only for 42 DW, contributed 2.6 and 
2.3% (0.5%) to heritability and observed (theoretical) 
prediction accuracy, respectively, suggesting a relatively 
considerable contribution of this QTL to early growth 

Fig. 1  Manhattan plots of the genome-wide association study for: (a) 42-day-old weight (DW), (b) 84 DW, (c) average daily gain (ADG), and (d) feed 
conversion ratio (FCR). Horizontal grey dashed lines indicate the whole-genome significance threshold (P-value = 3.30e−7)
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Fig. 2  Estimates of additive effects and contributions to heritability of significant SNPs in the QTL region on chromosome 4 for: (a) 42-day-old 
weight (DW), (b) 84 DW, (c) average daily gain (ADG), and (d) feed conversion ratio (FCR). The highest peak emerged at around 75.89 Mb (blue and 
red lines); yellow dots represent SNPs with the greatest significance (GGA4_75886144 and GGA4_75890242)
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stages in this population. The contribution of the QTL 
on GGA2, GGA17, and GGA27 to the observed (theo-
retical) prediction accuracies were only 3.16%, 0.60%, and 
3.58% (0.35%, 0.06%, and 0.25%) for 84 DW, respectively 
(Table 3) and (see Additional file 2: Table S6), which was 
consistent with the idea that growth traits are affected by 
many loci with minor effects [4, 5].

Harnessing QTL markers through the GFBLUP model
As described above, the contribution of the detected 
QTL was considerable, hence, we used a two-GRM 
GBLUP model (GFBLUP) to improve the prediction 
accuracy by allowing for increased weight on detected 
QTL through a separate GRM. As a result, the average 
accuracy of GP was improved by 13.8 to 15.2% compared 
to the conventional GBLUP model (Table 2). In addition, 
the prediction inflation for the GFBLUP model was lower 
than that of the GBLUP model, and it was maintained at 
a steady level (0.95 to 0.97) for different growth traits (see 
Additional file 2: Table S5), indicating that it is important 
to attribute a greater weight to genetic regions that sig-
nificantly contribute to phenotypes.

Using the GFBLUP model, we also estimated the 
genetic variance explained by each GRM and evaluated 
their predictive ability. We regarded the contribution of 
the GRM built by significant SNPs in each QTL inter-
val as the representative of each QTL’s contribution. As 
a result, the contribution of the QTL interval on GGA4 
still far exceeded that of the others, with the contribu-
tion to heritability ranging from 12.6 to 29.0% and the 
observed prediction accuracy ranging from 35.0 to 
49.5% (see Additional file 2: Table S8). We also observed 
a relatively minor difference in the theoretical predic-
tion accuracy between the GRM based on significant 
SNPs (0.51–0.57) and the GRM based on the other SNPs 
(0.55–0.62) (see Additional file 2: Table S9). In addition, 
the most marked increase in average prediction infla-
tion was obtained when the effects of the QTL interval 
on GGA4 were not considered compared to those of the 
other QTL (see Additional file  2: Table  S10). The con-
tributions of the other QTL intervals to the prediction 
accuracies were also negligible. For example, the contri-
bution of other QTL to observed prediction accuracies 
was 1.37 to 6.77% for 84 DW and 1.29 to 5.52% for ADG 
(see Additional file 2: Table S8). This result was generally 
consistent with that obtained using the GBLUP reduced 
model, thus demonstrating the major effect of the QTL 
on GGA4 and the minor effects of the QTL on GGA1, 2, 
17, and 27.

Discussion
Comparison with QTL from previous studies and candidate 
genes
Recently, low-cost genotyping analysis using NGS has 
provided new data resources for genetic population 
analysis. GBS can provide convenient and sufficient 
resolution for GWAS and GS studies. In this study, we 
performed large-scale GBS in a nucleus breeding popu-
lation of 6359 yellow-plumage chickens. Five significant 
QTL regions were identified; the most significant QTL, 
on GGA4, has been widely reported in previous studies. 
Park et al. detected multiple loci using an F2 AIL popu-
lation, including the QTL region on GGA4 [2]. Gu et al. 
identified the same QTL interval, which spanned 8.6 Mb, 
by performing a GWAS on an F2 chicken resource popu-
lation derived from a cross between Silky Fowl and White 
Plymouth Rock [33]. Other studies further narrowed the 
QTL region to a length of 1.5 Mb, harbouring 15 genes 
[34, 35]. Although we were unable to further narrow the 
size of the QTL interval in our study due to a strong level 
of LD and limited SNP density, we identified two signifi-
cant SNPs with the highest effects and contribution to 
heritability of growth traits. The most promising causal 
genes may be located near these two sites. Hence, further 

Table 2  Estimates of heritability and average prediction 
accuracy based on tenfold cross-validation for different models

ABLUP pedigree-based best linear unbiased prediction, GBLUP genomic best 
linear unbiased prediction, GFBLUP genomic feature BLUP

Numbers before and after “/” are the observed prediction accuracy and 
theoretical prediction accuracy, respectively

Phenotype Genomic 
heritability

ABLUP 
accuracy

GBLUP 
accuracy

GFBLUP 
accuracy

42 DW 0.31 0.26/0.52 0.31/0.69 0.35

84 DW 0.51 0.27/0.52 0.45/0.76 0.52

FCR 0.42 0.26/0.57 0.39/0.72 0.44

ADG 0.42 0.25/0.51 0.42/0.74 0.48

Table 3  QTL contributions to heritability and prediction 
accuracy (%)

Numbers before and after “/” are the contribution to heritability and GP accuracy, 
respectively

QTL quantitative trait loci, DW day-old weight, FCR feed conversion ratio, ADG 
average daily gain

QTL region 42 DW 84 DW FCR ADG

GGA1: 53.90–
56.28 Mb

2.59/2.30 – – –

GGA2: 110.08–
113.21 Mb

– 1.00/3.16 2.53/4.49 1.04/4.26

GGA4: 74.14–
81.87 Mb

14.53/23.30 32.09/46.65 23.87/28.79 34.14/43.35

GGA17: 7.60–
9.80 Mb

– 0.43/0.60 – 0.49/0.44

GGA27: 5.91–
6.10 Mb

– 0.68/3.58 0.16/0.66 0.34/2.70
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studies should aim at improving the SNP density within 
this locus.

The QTL region on GGA4 harbours multiple genes. 
Functional explorations in previous studies have sug-
gested that growth traits may be influenced by multi-
ple genes in this interval. For instance, the LCORL and 
NCAPG genes, which have been reported to be associ-
ated with body size in humans, cattle, and horses, may 
have an important influence on growth traits [36]. The 
LCORL gene was also found to be expressed at higher lev-
els in the breast muscle of high-muscle-weight chickens 
than in low-muscle-weight chickens [37]. The NCAPG 
gene plays a role in growth and development processes in 
mammals and has been identified as an important candi-
date gene for growth through the regulation of arginine 
metabolism [38]. Furthermore, variants in the SLIT2 
gene have been shown to have multiple effects, ranging 
from an association with spontaneous preterm birth to 
correlations of its placental expression with human foe-
tal growth [39], and it has been identified as a candidate 
gene for internal organ weight in beef cattle [40]. In addi-
tion, the LCORL, LAP3, and FAM184B genes have been 
identified as candidate genes for organ weight and body 
growth in cattle and sheep [40, 41].

Based on a search of the Chicken QTL Database [15], 
the QTL identified on GGA1, 2, 17, and 27 are also con-
sistent with those identified in several previous studies. 
The QTL region on GGA1 for 42 DW was identified in 
two studies; however, they reported different interval 
lengths, including a region between 45.66 and 54.61 Mb 
that was associated with body weight at nine days (early 
growth stage), and a region between 51.21 and 55.21 Mb 
found to be related to duodenum weight [42]. The QTL 
on GGA2 was equivalent to a QTL previously identi-
fied between 111.52 and 112.37  Mb that was report-
edly associated with body weight at different growth 
stages, including body mass at 28, 56, and 112 days [43]. 
Although the P-value of the SNPs on GGA2 did not reach 
significance for 42 DW, a relatively high peak was present 
for 42 DW in the same region as the QTL on GGA2 that 
was identified for other growth traits. This result sug-
gests that this QTL may also affect body weight at early 
developmental stages in this population. In fact, three 
studies have identified QTL for FCR on GGA17 [44–46], 
which overlapped with the QTL for body weight identi-
fied in our study. The QTL that we identified on GGA27 
overlapped with one entry for chicken feed intake in 
the Animal QTL Database [47], indicating a consider-
able effect of this QTL interval on chicken growth. These 
QTL on GGA1, 2, 17, and 27 also harbour genes related 
to growth traits. For example, the most significant SNP 
associated with 42 DW on GGA1 was in the intergenic 
region between the IGF-1 and PARPBP genes. IGF-1 

is a well-known factor that is implicated in acceler-
ated growth during childhood and puberty in humans 
[48]. The IGF-1 pathway is also highly relevant in cattle 
puberty [49]. This locus may contribute more to early 
than late developmental stages. The IGF2BP1 gene is 
associated with body size and growth in humans, ducks, 
and goats [50–52] and has been reported as an important 
candidate gene for fat metabolism and adipogenesis in 
chickens [37].

Polygenicity of growth traits in chickens
A previous study has reported that specialised broiler 
breeds were selected for production traits during long-
term domestication, resulting in many growth-related 
loci that have undergone strong long-term selection, sug-
gesting that growth in broilers is under polygenic control 
[53]. The influence of growth-related QTL remains to be 
quantified to evaluate the extent by which they impact 
growth and genomic evaluation of populations. In this 
study, we calculated the contribution of each QTL to 
heritability and genome prediction accuracy using two 
methods (GBLUP and GFBLUP models); however, the 
results of these two models differed slightly (Table 3) and 
(see Additional file 2: Table S8). Using the GBLUP mod-
els (full model and reduced model), we included the sig-
nificant SNPs as fixed factors, which also removed the 
effects of all SNPs that were in high LD with the fitted 
SNPs. This may have resulted in the effect of QTL inter-
vals having been overestimated. Therefore, to estimate 
the contribution of each QTL, we used the GFBLUP 
model as a comparison with the GBLUP model. Because 
the estimation of contributions based on the full and 
reduced GBLUP models (see “Methods”) is affected by 
the level and extent of LD of the region (Table 3), which 
were far greater for the QTL on GGA4 than that of the 
other QTL, the contribution of the GGA4 QTL to herit-
ability was estimated to be larger with GBLUP than with 
GFBLUP (see Additional file 2: Table S8), and smaller for 
the other QTL. The estimated contribution of the QTL 
region on GGA4 to prediction accuracy was, however, 
larger with the GFBLUP model than with the GBLUP 
model. This was likely due to the improved performance 
of the GFBLUP method since the estimated contributions 
to prediction accuracy of the other QTL were all larger 
with the GFBLUP model. In general, we conclude that the 
QTL on GGA4 made the greatest contribution to herit-
ability and prediction accuracy, although the QTL with 
minor effects that mapped to other chromosomes jointly 
also made considerable contributions. These results 
showed that the detected QTL jointly only explained a 
limited proportion of the genetic variance, which demon-
strated the polygenicity of chicken growth traits.
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In addition to significant QTL, other insignificant QTL 
with smaller effects across the whole genome can also 
contribute to growth traits [54]. In the current study, 
many QTL with minor effects could not be detected due 
to statistical detection limits, however, we were able to 
evaluate their joint contribution by removing the effects 
of the top SNPs based on the GWAS P-value (top 1–90%). 
The estimate of genomic heritability and the observed 
and theoretical prediction accuracies were drastically 
reduced when the top 30% of SNPs were removed, result-
ing in estimates of heritability close to zero for all traits 
(Fig.  3) and (see Additional file  1: Figure S7). We also 
observed an increase in the prediction inflation for all 
traits after removing additional top SNPs from 1 to 90% 
(see Additional file 1: Figure S7). The results of decreased 
estimated heritability, decreased prediction accuracy, and 
increased prediction inflation after removing top SNPs 
suggest that, besides the major effect of the detectable 
QTL, there were other undetectable insignificant QTL 
capable of affecting chicken growth traits that may be 
more suited to the “infinitesimal model” [55–57]. Finally, 
we observed that the top 30% of SNPs were widely dis-
tributed across the whole genome (see Additional file 1: 
Figure S8). These results suggest that, in addition to the 
detectable QTL, a cumulative contribution of SNPs with 
seemingly insignificant effects also have a considerable 
influence on the complex traits evaluated here, reflecting 
the importance of obtaining whole-genome information 
to improve the accuracy of GP.

Application of genomic prediction in poultry breeding
Genomic prediction based on genetic markers across the 
genome has become the standard evaluation method in 
dairy cattle breeding programmes [8, 58]. In contrast, the 
shorter generation interval, larger base population, and 
considerable economic benefits of chickens make them 

an ideal research subject for GP studies. The traditional 
poultry breeding method has produced great benefits in 
recent decades, and GP is expected to further improve 
upon this conventional breeding method for chickens. 
In recent years, genomic selection schemes have been 
applied to poultry breeding [14, 58, 59], and predictive 
improvement has been continuously studied; however, 
further studies continue to be greatly needed [11–13]. 
Although we determined that the GBLUP model signifi-
cantly improved the accuracy of GEBV, this improvement 
should be considered as a “proof of principle”. In prac-
tice, the cost of genotyping is a major concern. Selec-
tion for body weight using the traditional pedigree-based 
method (ABLUP) has been shown to be highly effective, 
since the trait has a relatively high heritability and can 
be measured easily on both sexes and at a young age. 
To simultaneously control the cost and increase predic-
tion performance, the effect of the size of the reference 
population should be evaluated when GP is first used 
in chicken populations, as there is a trade-off between 
genotyping cost and predictive ability. In our results, we 
observed a relatively smooth increase in GP accuracy and 
prediction inflation with a reference population size of 
3000–5781 when compared with the trend observed in a 
population size of 500–3000 (see Additional file 1: Figure 
S6). Hence, when the reference population reaches a suf-
ficient size, the increase in predictive ability is maintained 
at a relative gradual level and we can determine the low-
est level of reference population size for controlling geno-
typing cost. In this study, we hypothesise that a reference 
population size of 3000–4000 is sufficient for maintain-
ing a relatively high level of predictive ability. However, 
these results were based on random cross-validation and 
a more stringent evaluation using the parental generation 
to predict progenies is needed when enough individuals 
are sequenced. With the rapid decline in genotyping cost, 

Fig. 3  Estimates of the contribution made by the top SNPs to: (a) Heritability and (b) observed prediction accuracy based on the genomic best 
linear unbiased prediction (GBLUP) model. DW, day-old weight; ADG, average daily gain; FCR, feed conversion ratio
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which has thus far exceeded the prediction of Moorer’s 
Law (https://​www.​genome.​gov/​seque​ncing​costs​data), 
and with the further advancements in genomic selec-
tion for broilers, we expect that large-scale application 
of whole-genome sequencing will offer improved oppor-
tunities for genomic selection in poultry breeding in the 
near future.

Pre‑selection of markers improves the predictive ability 
of genomic evaluation
Genomic prediction ability is primarily influenced by the 
prediction model that is applied [6], the size of the ref-
erence population [60], genetic relationships between 
the reference and validation populations [61], heritabil-
ity [62], level of LD [63], marker density [64], changes 
in SNP effects across generations [6], and the complex-
ity of the genetic architecture of the trait (traits that are 
controlled by a limited number of major genes or com-
plex traits that are influenced by many genes with minor 
effects) [65].

In our study, we evaluated the contribution of signifi-
cant SNPs to heritability and prediction accuracy. Fig-
ure 3 shows a 74.1 to 81.1% reduction in accuracy after 
removing the top 30% of significant SNPs based on 
GWAS. The results indicated that, although each SNP 
has only a minor effect, the accumulation of the effects of 
many SNPs throughout the genome has a large impact on 
prediction accuracy. Although prediction accuracy could 
be improved by increasing marker density, inclusion of 
a large number of the sites that do not affect the phe-
notype could have adverse effects on GP accuracy [66], 
and preselecting SNPs that contribute to phenotypes can 
improve prediction accuracy and reduce cost [67–70].

With the increasing availability of whole-genome 
sequencing data, selected sites that are in high LD with 
causative variants have become particularly important 
for estimating the GEBV. In this study, the two-GRM 
GBLUP model that harnessed preselected significant 
SNPs improved the prediction accuracy compared to the 
conventional GBLUP model. However, the preselected 
SNPs or QTL were confined to a yellow-plumage chicken 
population, which has not been selected for growth and 
efficiency to the same extent as commercial broilers. 
Therefore, the preselected SNPs may not be suitable for 
assisting GP in commercial broilers. To make the SNP 
pre-selection method universal, it is important to opti-
mise the method with a more systematic pre-analysis 
to determine the genetic contribution of each marker 
required to increase prediction accuracy. For example, 
for some commercial broilers that have been under long-
term selection, there may be no detectable major genes 
and the genetic architecture of their traits may be more 
in line with the “infinitesimal model”. In this case, further 

improvements in GP using only GWAS information may 
not be feasible. We used GWAS analysis to preselect 
SNPs and improve prediction accuracy by using the GFB-
LUP model, however, a more systematic optimisation for 
preselecting SNPs is needed. Multi-omics meta-analysis 
provides a promising and accurate strategy for optimising 
the GP model, since an evaluation that integrates external 
information may more efficiently and precisely identify 
loci that have important genetic contributions to phe-
notypes [71–73]. A recent study in cows that combined 
functional and evolutionary trait heritability scores and 
multi-omics information [73] resulted in a set of biologi-
cal priors for optimising GP and significantly increased 
prediction accuracy. Overall, pre-selected markers will 
enable us to determine genomic features more clearly and 
precisely, as will the further combination of optimised 
predictive models (such as BayesRC [73]) to improve the 
performance of GP.

Conclusions
In this study, we examined the polygenicity and com-
pared the predictive ability of different prediction models 
for growth traits in a yellow-plumage chicken population: 
(1) by using GWAS, we identified five candidate QTL 
intervals for growth traits and confirmed a major effect 
of the QTL on GGA4 and four other QTL with minor 
effects on GGA1, GGA2, GGA17, and GGA27; (2) by 
using the GBLUP model, the prediction accuracy was 
greatly improved compared to the conventional pedi-
gree-based method (ABLUP model); (3) by accounting 
for QTL markers using the GFBLUP model, the predic-
tion accuracy was further improved compared to the 
GBLUP model. Although our genomic evaluation and 
the genomic feature-harnessing model results demon-
strated an improvement of prediction performance, these 
improvements must be considered as a “proof of prin-
ciple” for evaluating the feasibility of applying genomic 
selection in poultry breeding.
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The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12711-​021-​00672-9.

 Additional file 1: Figure S1. Phenotypic distribution of four traits in 
yellow-plumage chickens (males and females). The data present the phe-
notypic distribution of four growth traits according to males (left panel) 
and females (right panel). Figure S2. SNP density of 151,519 variants. The 
data present the SNP density of detected SNPs within 1-Mb windows. 
Figure S3. Principal component analysis (PCA) of birds. PCA of sequenced 
individuals, where the top two principal components were plotted. 
Figure S4. Study design for cross-validation. The discovery sets were 
randomly selected from 6359 birds; 1500 individuals were used for GWAS; 
and the remaining 4859 birds were used for predictive evaluation (ABLUP, 
GBLUP and GFBLUP models used for tenfold cross-validation), where the 
accuracy and inflation of prediction were averaged across all validation 
sets. Figure S5. QQ plots of the genome-wide association study of the 

https://www.genome.gov/sequencingcostsdata
https://doi.org/10.1186/s12711-021-00672-9
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four traits. The red dots represent SNPs that passed the significance level 
threshold (P-value < 3.30e−7). Figure S6. Trend line of genomic prediction 
accuracy and inflation based on different sizes of the reference popula-
tion (500 to 5500). Three indicators were used for evaluation, namely (a) 
observed prediction accuracy, (b) theoretical prediction accuracy, and (c) 
prediction inflation. Figure S7. Trend line of genomic prediction accuracy 
and inflation. The line is based on the proportion of top SNPs removed 
based on the GWAS results. (a) Theoretical prediction accuracy, and (b) 
prediction inflation. Figure S8. Genome-wide distribution of the top 30% 
of SNPs. The distribution of SNPs is based on GWAS results overlapping 
in the tenfold validation analysis, where the number of overlapping SNPs 
was equal to 15,077, 14,460, 14,558, and 14,259 in the analysis of 42 DW, 
84 DW, ADG, and FCR, respectively. 

Additional file 2: Table S1. Information on the significant SNPs 
associated with 42 DW in the QTL region on chromosome 4. The data 
present the genomic location, effect, heritability, P value, and functional 
annotation of each GWAS significant SNP associated with 42 DW on 
chromosome 4. Table S2. Information on the significant SNPs associated 
with 84 DW in the QTL region on chromosome 4. The data present the 
genomic location, effect, heritability, P value, and functional annotation 
of each GWAS significant SNP associated with 84 DW on chromosome 4. 
Table S3. Information on the significant SNPs associated with ADG in the 
QTL region on chromosome 4. The data present the genomic location, 
effect, heritability, P value, and functional annotation of each GWAS signifi-
cant SNP associated with ADG on chromosome 4. Table S4. Information 
on the significant SNPs associated with FCR in the QTL region on chromo-
some 4. The data present the genomic location, effect, heritability, P value, 
and functional annotation of each GWAS significant SNP associated with 
FCR on chromosome 4. Table S5. Average prediction inflation based on 
tenfold cross-validation. The data provide the average prediction inflation 
using ABLUP, GBLUP or GFBLUP models. Table S6. QTL contributions to 
the theoretical prediction accuracy (%). Description: The contributions 
were estimated by setting GWAS significant SNPs in each QTL as fixed 
factors. Table S7. Average prediction inflation addition after setting 
GWAS significant SNPs as fixed factors. The average prediction inflation 
changes after setting GWAS significant SNPs as fixed factors, where values 
approaching 0 represent lower inflations. Table S8. QTL contributions 
to heritability and observed prediction accuracy (%) using the GFBLUP 
model. The contributions were evaluated by estimating the contribution 
of two GRM using the GFBLUP model. Table S9. Average theoretical pre-
diction accuracy using two GRM in the GFBLUP model. The data provide 
the average theoretical accuracy of prediction based on the GRM of GWAS 
significant sites and the remaining sites, respectively. Table S10. Average 
prediction inflation addition in the GFBLUP model. The changes in average 
prediction inflation evaluated by using the GRM without GWAS significant 
SNPs compared to that using both GRM, where values approaching 0 
represent lower inflations.
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