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Hypoxic Culture Promotes
Dopaminergic-Neuronal Differentiation
of Nasal Olfactory Mucosa Mesenchymal
Stem Cells via Upregulation of
Hypoxia-Inducible Factor-1a
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Abstract
Olfactory mucosa mesenchymal stem cells (OM-MSCs) display significant clonogenic activity and may be easily propagated for
Parkinson’s disease therapies. Methods of inducing OM-MSCs to differentiate into dopaminergic (DAergic) neurons using
olfactory ensheathing cells (OECs) are thus an attractive topic of research. We designed a hypoxic induction protocol to
generate DAergic neurons from OM-MSCs using a physiological oxygen (O2) level of 3% and OEC-conditioned medium
(OCM; HI group). The normal induction (NI) group was cultured in O2 at ambient air level (21%). The role of hypoxia-
inducible factor-1a (HIF-1a) in the differentiation of OM-MSCs under hypoxia was investigated by treating cells with an HIF-1a
inhibitor before induction (HIR group). The proportions of b-tubulin- and tyrosine hydroxylase (TH)-positive cells were
significantly increased in the HI group compared with the NI and HIR groups, as shown by immunocytochemistry and Western
blotting. Furthermore, the level of dopamine was significantly increased in the HI group. A slow outward potassium current
was recorded in differentiated cells after 21 d of induction using whole-cell voltage-clamp tests. A hypoxic environment thus
promotes OM-MSCs to differentiate into DAergic neurons by increasing the expression of HIF-1a and by activating down-
stream target gene TH. This study indicated that OCM under hypoxic conditions could significantly upregulate key tran-
scriptional factors involved in the development of DAergic neurons from OM-MSCs, mediated by HIF-1a. Hypoxia promotes
DAergic neuronal differentiation of OM-MSCs, and HIF-1a may play an important role in hypoxia-inducible pathways during
DAergic lineage specification and differentiation in vitro.
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Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative

disorder of the central nervous system (CNS) that mainly

affects the motor system.1 Functional recovery is possible

after CNS injury and neurodegeneration2 by neurorestorative

strategies including cell therapy,3 neurostimulation or neu-

romodulation, neuroprosthesis or related advanced assistive

devices, bioengineering or tissue engineering, neurotization

or nerve bridging, neurorehabilitation, drug or growth fac-

tors, and other novel treatment procedures.4,5 PD symptoms

such as muscle tremors, slowness of movement, and rigidity

are caused by the destruction of dopaminergic (DAergic)

neurons that produce dopamine (DA).6,7 Nasal olfactory

mucosa mesenchymal stem cells (OM-MSCs) possess the

capacity of multidirectional differentiation and the ability

to promote nervous system regeneration in vivo.8 Notably,

OM-MSCs could be obtained from the patients themselves

and used for autologous transplantation9 and have thus

recently been considered a promising approach for PD ther-

apeutic applications.10-12 This approach has several advan-

tages including ease of acquisition, convenient location, and

high versatility.13 OM-MSCs have previously been used suc-

cessfully in mammalian models of neurodegenerative dis-

eases and nerve damage.9,14,15

To optimize their therapeutic effect for PD, OM-MSCs

should be more committed to differentiate into a neural line-

age, with a high potential to become functional DAergic

neurons. Inducing OM-MSCs to differentiate into appropri-

ate neural cells is thus a key technological goal of cell

replacement therapy. Oxygen (O2) is a component of the

stem cell niche and acts as an important regulator of stem

cell fate specification. The level of O2 plays a fundamental

role in maintaining the stem cell niche, and recent studies

have investigated the effect of hypoxemia on stem cell dif-

ferentiation. Reduced O2 levels can promote the survival,

proliferation, and catecholaminergic differentiation of neural

stem cells (NSCs) and bone marrow–derived mesenchymal

stem cells.16-18 Accumulated evidence suggests that these

beneficial effects might be associated with the increased

expression of hypoxia-inducible factor-1a (HIF-1a).

In this study, we assessed the effects of hypoxemia on the

differentiation of OM-MSCs and their ability to produce func-

tional neurons. Based on indications that these beneficial

effects might be associated with the increased expression of

HIF-1a induced by hypoxia/ischemia/hyperthermia precondi-

tioning,19,20 we also hypothesized that HIF-1a might play a

key role in cell fate specification and differentiation and that

upregulation of HIF-1a by hypoxemic conditioning might

stimulate OM-MSCs to differentiate into a DAergic lineage.

Materials and Methods

Ethics Statement

All surgical operations were executed according to the Chi-

nese legislations involving animal protection and were

approved by the ethics committee of Hunan Normal Univer-

sity. The use of human nasal mucosa biopsy tissues was

permitted by the ethical committee of Hunan Normal Uni-

versity and the patients gave written informed consent.

Isolation and Culture of Human OM-MSCs
(hOM-MSCs)

The culture of hOM-MSCs was carried out using a protocol

from a previous study.8 Then substantial OM (1–2 mm3) was

collected from the surface interior of the concha nasalis

media, washed 3 to 5 times with penicillin–streptomycin

(Invitrogen, Carlsbad, CA, USA) under room temperature,

and then cut into approximately 0.5 mm3 pieces of tissue

block. The tissues were cultured in Dulbecco’s modified

Eagle’s medium:nutrient mixture F12 (DMEM/F12; Invitro-

gen) containing 10% fetal bovine serum (FBS; Invitrogen)

and incubated at 37 �C in 5% CO2. The medium (DMEM/

F12 þ 10% FBS) was changed every 3 d. After 5 to 7 d, the

cells began to climb the culture bottle. We then used flow

cytometry to test cell surface correlation antigens after 2 to 3

weeks. Four to 5 passages of cells were used in our

experiment.

Primary Culture and Purification of Olfactory
Ensheathing Cells (OECs)

The 3-d old Kunming mice (male and female unlimited)

were obtained from the Experimental Animal Centre of Cen-

tral South University. Primary culture and purification of

OECs were performed according to the isolation protocol

described in our previous study.21 Briefly, the meningeal

membranes were separated with dissecting forceps and the

olfactory bulb’s outer layers were removed. The collected

tissues were digested at 37 �C in 0.25% trypsin (Sigma-

Aldrich, St Louis, MO, USA) for 10 min. This step was

stopped by adding DMEM/F12 supplemented with 10%
FBS. Then the tissues were cut into pieces and centrifuged

at 1,200g for 5 min. The tissues were resuspended and placed

into a culture bottle with the medium DMEM/F12 supple-

mented with 10% FBS and penicillin–streptomycin (50 mg/

mL). Then the tissues were incubated at 37 �C in 5% CO2.

Serum-free OEC culture medium was used for cell purifica-

tion. We began to collect OEC-conditioned medium (OCM)

while the OECs’ purity was up to 90%.

Preparation of OCM

When the cell confluence reached 80%, the cells were

washed twice with phosphate-buffered saline (PBS). Then

the medium containing FBS was replaced by fresh DMEM

without FBS. OEC-conditioned medium was collected (48-h

incubation) by a series of centrifugation steps (200g for 5

min; 1,000g for 10 min) and filtered through a 0.45-mm

syringe (Invitrogen) to remove detached cells and cellular
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debris. OCM was stored in a low-temperature refrigerator

(�80 �C) as an inductive agent of OM-MSCs.

Neuronal Differentiation of OM-MSCs

When OM-MSCs reached passage 4, the medium containing

FBS was replaced by OCM after washing the cells twice

with PBS; half of the medium was replaced every 2 d. Immu-

nofluorescence was performed using standard protocols8

after being induced by OCM for 21 to 24 d. Briefly, after

fixation and washing, the cultures were blocked with 10%
normal goat or donkey serum in 0.3% Triton X-100 (Sigma-

Aldrich) for 1 h at room temperature and then incubated with

the primary antibody at 4 �C overnight. The following pri-

mary antibodies were used: monoclonal rabbit anti-III b-

tubulin (anti-Tuj-1, 1:1,000; Abcam, Cambridge, United

Kingdom) and monoclonal anti-tyrosine hydroxylase (anti-

TH, 1:500; Abcam) for neurons. The cultures were then

incubated with fluorescence-conjugated secondary antibo-

dies for 1 h at room temperature and mounted with a cover-

slip and media containing 40,6-diamidino-2-phenylindole

(DAPI) (Beyotime, Hangzhou, China) to counterstain the

nuclei. Images were taken with a fluorescence microscope

(Carl Zeiss Axioskop2þ, Jena, Germany).

Western Blot

Cells were dissolved with sodium dodecyl sulfate (SDS;

Amresco, Solon, OH, USA) buffer (62.5 mM Tris–HCl,

10% glycerol, 2% SDS, and 50 mM dithiothreitol). The pro-

teins were then transferred to polyvinylidene difluoride

(PVDF) (Amresco) membranes. The blots were blocked in

4% bovine serum albumin (Amresco) in Tris-buffered sal-

ine/Tween-20 (Amresco) solution for 30 min at room tem-

perature and then incubated at 4 �C overnight with the

following primary antibodies: mouse monoclonal anti-P75

(Sigma-Aldrich), mouse monoclonal anti–glial fibrillary

acidic protein (GFAP; Sigma-Aldrich), human monoclonal

anti-HIF-1a (Sigma-Aldrich), human monoclonal anti-III

beta-tubulin (Sigma-Aldrich), human monoclonal anti-TH

(Sigma-Aldrich), human monoclonal anti-GFAP (Sigma-

Aldrich), human monoclonal anti-nuclear receptor related

1 protein (Nurr1; Sigma-Aldrich), human monoclonal anti-

pituitary homeobox 3 (Pitx3; Sigma-Aldrich), human mono-

clonal anti-Lmx1b (Sigma-Aldrich), and human monoclonal

anti-actin (Sigma-Aldrich). After incubation with secondary

antibodies at room temperature for 1 h, the blot was visua-

lized using ChemiDoc XRS imaging system (Bio-Rad

Laboratories, Hercules, CA, USA).

RNA Extraction and Quantitative Polymerase Chain
Reaction

The total RNA was extracted from cells using the acid guani-

dinium isothiocyanate–phenol–chloroform method with TRI-

zol reagent (Sigma-Aldrich) and reverse-transcribed for

complementary DNA (cDNA) synthesis with SuperScript III

cDNA synthesis kit (Sigma-Aldrich). Each cDNA subpopula-

tion was subjected to polymerase chain reaction (PCR) ampli-

fication using the specific primers. The sense and antisense

primers for each gene were as follows: HIF-1a, human HIF-

1a-F: 50-AAGTGTACCCTAACTAGCCG-30 and human

HIF-1a-R: 50-CACAAATCAGCACCAAGC-30, product

length: 160 bp; TH (tyrosine hydroxylase), human TH-F: 50-
AGGAGGTCTACACCACGCTGAAGGG-30 and human

TH-R: 50-TGCACTGGAACACGCGGAAGG-30, product

length: 234 bp; actin, actin-F: 50-CATCCTGCGTCTGGACC-

TGG-30 and actin-R: 50-TAATGTCACGCACGATTTCC-30,
product length: 107 bp; engrailed-1 (En1), human En1-F: 50-
CTGACTCGCAGCAGCCTCTCGT-30 and human En1-R:

50-GCCGCTTGTCCTCCTTCTCGTT-30, product length:

126 bp; En2, human En2-F: 50-GCTGAGCCTCAACGAGT-

CAC-30 and human En2-R: 50-TACTCGC-

TGTCCGACTTGCC-30, product length: 162 bp; Nurr1,

human Nurr1-F: 50-GCCACTACGCACATGATCGAG-30

and human Nurr1-R: 50-AGCGCATCTGGCAACTAGACA-

30, product length: 109 bp; Pitx3, human Pitx3-F: 50-GAC-

TAGGCCCTACACACAGACCG-30 and human Pitx3-R: 50-
TTTTGACAGTCCGCGCACGTT-30, product length: 159 bp;

LIM homeobox transcription factor 1-beta (Lmx1b), human

Lmx1b-F: 50-ACCAGCTGCTACTTCCGGGAT-30 and

human Lmx1b-R: 50-CCCTTGCGTAGCTGCCGTTC-30,
product length: 185 bp; actin, actin-F: 50-
CATCCTGCGTCTGGACCTGG-30 and actin-R: 50-
TAATGTCACGCACGATTTCC-30, product length: 107 bp.

The PCR products were mixed with a loading buffer (0.25%
bromophenol blue, 0.25% xylene cyanol, and 40% sucrose;

Sigma-Aldrich) and separated on 2% agarose gels. The data

were analyzed using MxPro QPCR software (Thermo Fisher

Scientific, Waltham, MA, USA).

Patch-Clamp Recording

Potassium currents of OM-MSCs after neural differentiation

were recorded using a patch clamp under the room tempera-

ture environment described in our previous study.22 Briefly,

pipettes with a tip resistance of 2 to 4 MO were made from

borosilicate capillaries with a Brown–Flaming micropipette

puller. The cells were accessed by the patch electrode using

an infrapatch system. The cells and the recording electrode

were recorded with a digital camera. The current signals

were amplified with an EPC-9 amplifier with a low-pass

filter at 10 kHz. Data collection and analysis were all per-

formed with PulseFit þ Pulse 810 (HEKA Elektronik, Lam-

brecht/Pfalz, Germany).

Enzyme-Linked Immunosorbent Assay (ELISA)

The supernatant liquors of the normal induction group (NI

group), the hypoxia induction group (HI group), and the

group with the addition of an HIF-1a inhibitor to the OM-

MSCs under hypoxic conditions (HIR group) were collected,
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and the contents of DA, which were released, were detected

in triplicate using a commercially available ELISA kit (BD

Biosciences, New York, NJ, USA) according to the recom-

mended protocol.

Statistical Analysis

All data were presented as mean + standard error of the

mean (SEM). Statistical significance was assessed with t

tests or one-way analysis of variance (ANOVA) using Prism

4.0 software (GraphPad Software; Autodesk, Inc, San

Rafael, CA, USA). P values less than 0.05 were considered

as statistically significant differences and values less than

0.01 were considered as statistically significant differences.

Results

Characteristics of hOM-MSCs and mouse olfactory
ensheathing cells

Tissue samples were obtained from the root of the medial

aspect of the middle turbinate in patients undergoing

endoscopic nasal surgery. The OM usually healed within

1 month after injury. Olfactory procedures had no effect

on the patients’ sense of smell. Following the protocols,

we successfully cultured MSC-like cells from the OM

samples. Adherent cells migrated from the explants and

most cells became spindle shaped after 6 to 8 d in culture

(Fig. 1). After passaging, the cells grew rapidly and

nuclear disintegration and cell division could be

observed, indicating active proliferation. Moreover, pur-

ified cells were immunopositive for the characteristic

OM-MSC markers stromal cell antigen-1 (STRO-1) and

nestin (Fig. 1B, C). We determined the immunophenotyp-

ing profile of OM-MSCs by assessing cell surface anti-

gens by flow cytometry. The cultured cells expressed the

MSC markers CD73, CD90, and CD105, but not the

hematopoietic cell markers CD34 and CD45 (Fig. 1D).

The results suggested that these cells were mainly com-

posed of MSCs.

After 7 d of culture, the OECs grew vigorously and most

of the cells showed bipolar or multipolar shapes with

spindle-like morphology. Immunocytochemistry for the

characteristic OECs markers showed positive expression of

p75 (Fig. 1F). Western blot analysis of OECs showed posi-

tive immunoreactivity for nerve growth factor (NGF) recep-

tor, p75, and GFAP (Fig. 1G).

Culture in Reduced O2 Promotes DAergic Neuronal
Differentiation of OM-MSCs

OM-MSCs cultured in DMEM supplemented with 10% FBS

retained their proliferative and undifferentiated state for a

prolonged period. However, after cultivation in OCM,

OM-MSCs began to differentiate after 48 h, including

demonstrating soma growth and synapse formation. Over

the first week, cells progressively assumed the morphology

of multipolar neurons with further morphological changes

over the subsequent 7 d to yield network-like structures.

By day 21 of induction, the cells in all 3 groups displayed

neuron-like morphologies with long processes (Fig. 2).

The differentiated cells expressed the neuron-specific

class marker TUJ-1, the DAergic neuron-specific marker

TH, and the astrocyte-specific marker GFAP (Fig. 2). TH

is the rate-limiting enzyme in the production of DA and

considered to be a basic marker for DAergic neurons. Com-

pared with the NI and HIR groups, cells in the HI group had

significantly higher proportions of TUJ-1-positive and TH-

positive cells. Expression levels of TUJ-1 and TH were

much higher in the HI group compared with the NI and HIR

groups after 21 d of induction according to Western blotting,

while GFAP expression was lower in HI than in the other 2

groups (Fig. 2).

Function of Terminally Differentiated DAergic Neurons

We characterized the function of the differentiated DAergic

neurons induced from OM-MSCs in vitro and assessed DA

release by ELISA. The DA levels were significantly

increased in the HI group compared with the NI and HIR

groups (1.70 + 0.03 ng/mL vs. 0.54 + 0.02 ng/mL vs. 0.53

+ 0.02 ng/mL, respectively; Fig. 3).

We investigated the electrophysiological characteris-

tics of OM-MSCs after neuronal differentiation induced

by OCM. We measured voltage-gated potassium currents

by whole-cell voltage clamping. Depolarizing pulses from

�80 to 30 mV evoked a slow outward potassium current,

which was blocked by the addition of tetraethylammo-

nium chloride (TEA) to the extracellular solution. The

I-V curves showed that the potassium currents were acti-

vated at �20 mV, with slow activation and deactivation

(Fig. 3).

Involvement of HIF-1a in DAergic Neuronal
Differentiation

To clarify the mechanisms involved in neuronal differen-

tiation under low-O2 conditions, we investigated the effects

of hypoxia on OM-MSC differentiation. Expression levels

of HIF-1a and TH were upregulated in the HI group com-

pared with the NI and HIR groups (Fig. 4). These results

indicated that upregulation of HIF-1a expression increased

TH expression in OM-MSCs, while addition of a novel

HIF-1a inhibitor decreased TH expression in differentiated

cells. This suggested that upregulation of TH was closely

related to enhanced expression of HIF-1a during neural

differentiation of OM-MSCs under hypoxia (Fig. 4). In

order to confirm their potential for DAergic neuronal dif-

ferentiation, we examined some important key transcrip-

tional factors involved in the development of DAergic

neurons, including Lmx1b, Pitx3, Nurr1, En1, and En2.

These genes were significantly upregulated in the HI group

compared to the NI and HIR groups (Fig. 4C). Western blot
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further demonstrated overexpression of protein in the HI

group, including Lmx1b, Pitx3, and Nurr1 (Fig. 4D). These

results indicated that OCM under hypoxic conditions could

promote OM-MSCs to differentiate into neurons, typically

DAergic neurons.

The above results were in accord with the results for DA

detection. The DA levels were higher in the HI group com-

pared with the NI group (Fig. 3). Addition of an HIF-1a

inhibitor to OM-MSCs under hypoxic conditions (HIR

group) reduced DA expression in differentiated cells. These

results indicated that neural differentiation of OM-MSCs in a

low-O2 environment was associated with upregulation of

HIF-1a expression and that HIF-1a may be involved in reg-

ulating the fate of DAergic neurons, given that the DAergic

neural differentiation–promoting effect could be blocked by

an HIF-1a inhibitor.

Figure. 1. Characterization of olfactory mucosa mesenchymal stem cells (OM-MSCs). (A) Adherent cells migrated from the explants and
most cells became spindle shaped. (B and C) Immunocytochemistry of the characteristic markers of human OM-MSCs: nestin (B) and
stromal cell antigen-1 (STRO-1; C). (D) Surface marker expression. Flow cytometric analysis of these cells showed that they express the
MSC markers CD73, CD90, and CD105, but not CD34 and CD45, which are characteristic of hematopoietic cells. (E and F) Characteriza-
tion of olfactory ensheathing cells (OECs; E) and immunocytochemistry of the characteristic markers of OECs: p75 (F). (G) Western blot of
the OEC characteristic markers of glial fibrillary acidic protein (GFAP) and p75. A to F: Scale bar ¼ 100 mm.
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Figure 3. Potassium currents and dopamine (DA) checked in differentiated neurons. (A) Depolarizing pulses evoked a slow outward
current. (B) Potassium currents were blocked when tetraethylammonium chloride (TEA) was added into the extracellular solution.
(C) Current–voltage curves (I-V curves). (D) Concentrations of DA that is released by differentiated cells. *P < 0.05. **P < 0.01.

Figure 2. Hypoxia promoted neuronal differentiation more efficiently in vitro compared with routine culture group. A-C: Morphological
evaluation of differentiated cells. D-I: representative images of Tuj-1 and TH immunostaining of N-I, H-I and H-I-R group. J: Western blot
analysis of Tuj-1, TH and GFAP of three groups. K: quantitation of protein bands. *P < 0.05, **P < 0.01. A-I: Scale bar ¼ 100 mm.
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Discussion

OM-MSCs possess significant clonogenic activity and could

be easily propagated for the purpose of PD therapies. Stan-

dard in vitro cell culture procedures include culture at 37 �C
in an atmosphere of 5% CO2 and 95% air. However, O2

levels in cell culture in vitro are not adjusted to the normal

physiological levels found in vivo. The mean O2 concentra-

tion under physiological conditions is 3%, which is much

lower than that in ambient air.16 The O2 level in mammalian

brain tissue ranges from 1% to 5% and is even lower in some

brain regions, for example, O2 levels in mouse brain ranged

from 0.55% in the mesencephalon to 8% at the surface.23

Furthermore, there is evidence to suggest that low-O2 levels

may be important for the differentiation of stem cells in

vitro. Morrison et al. suggested that O2 levels influenced the

fate of neural crest stem cells,16 while Studer et al. indicated

that reduced O2 levels also promoted the survival, prolifera-

tion, and catecholaminergic differentiation of CNS stem

cells.24 In accord with these previous studies, our results

demonstrated that decreased O2 levels promoted the

commitment of OM-MSCs to the DAergic lineage in vitro.

We characterized the function of DAergic neurons differen-

tiated from OM-MSCs by measuring released DA by

ELISA. Consistent with the results of differentiation, DA

release was significantly elevated in the HI group compared

with the NI and HIR groups. Overall, these results suggest

that decreased O2 levels promote functional DAergic neuro-

nal differentiation of OM-MSCs.

Although the mechanism whereby hypoxia promotes

DAergic neuronal differentiation is uncertain and complex,

our data suggested that the enhancement of TH expression in

differentiated OM-MSCs by reduced O2 levels may be regu-

lated by HIF-1. HIF-1 is a low-O2 sensor that plays a central

role in response to hypoxia. It is a heterodimeric transcrip-

tion factor composed of a and b subunits, with regulation of

HIF-1 activity being largely dependent on the a subunit.25,26

HIF targets and regulates >1,000 genes, either directly or

indirectly. HIF-1 markedly influences the expression levels

of several genes encoding transcription factors, enzymes,

receptors, receptor-associated kinases, and differentiation

factors in various cell types, thus supporting a potential role

Figure 4. Quantitative polymerase chain reaction (Q-PCR) and Western blot analysis of hypoxia on expression of hypoxia-inducible factor-
1a (HIF-1a) and tyrosine hydroxylase (TH). (A) Quantitative analysis of the HIF-1a and TH. (B) Representative experiment of Western blot
analysis of HIF-1a and quantifications of HIF-1a expression. (C) The transcription levels of key transcriptional factors involved in the
development of DAergic neurons (LIM homeobox transcription factor 1-beta [Lmx1b], pituitary homeobox 3 [Pitx3], nuclear receptor
related 1 protein [Nurr1], engrailed 1 (En1), and En2) were detected by Q-PCR. (D) Western blot analysis of Lmx1b, Pitx3, and Nurr1.
*P < 0.05. **P < 0.01.
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for HIF in the hypoxia-induced promotion of OM-MSC dif-

ferentiation into DAergic lineage cells. Previous studies

showed that HIF-1a was the main regulator controlling the

metabolic fate and multipotency of MSCs.27,28 Stable

expression of HIF-1a in MSCs led to induction of

octamer-4 and Kruppel-like factor 4 (KLF4) and influenced

terminal differentiation.29,30 In terms of CNS-derived stem

cells, hypoxia has been indicated to promote DAergic neu-

ronal differentiation through the activation of HIF-1a,31,32

though the mechanism whereby hypoxia affected DAergic

commitment was complex. Consistent with previous studies,

our results suggested that hypoxia enhanced the number of

TH-positive cells and increased DA release by OM-MSCs in

vitro, mediated by HIF-1a. This was supported by the block-

ing of this positive effect by the HIF-1a inhibitor YC-1.

Furthermore, our study examined some important key genes

involved in the development of DAergic neurons, including

Lmx1b, Pitx3, Nurr1, En1, and En2. These genes were sig-

nificantly upregulated in the HI group compared to the NI

and HIR groups. Western blot further demonstrated over-

expression of proteins in the HI group, including Lmx1b,

Pitx3, and Nurr1. These results indicated that OCM under

hypoxic conditions could significantly upregulate key tran-

scriptional factors involved in the development of DAergic

neurons of OM-MSCs, mediated by HIF-1a.

In the current study, we cultured OECs and collected

OCM for DAergic induction of OM-MSCs. OECs have pre-

viously been reported to secrete a variety of neurotrophins

and matrix molecules related to nerve regeneration and

growth, such as nerve growth factor, brain-derived neuro-

trophic factor (BDNF), glial cell line–derived neurotrophic

factor (GDNF), and neurotrophin,33,34 which have been

found to induce and promote the differentiation of NSCs into

neurons.35-37 Moreover, some reports showed that OECs

could promote NSCs to differentiate into DAergic neurons

and cholinergic neurons.38,39 The expression of neuron-like

sodium and potassium currents in in vitro–differentiated

OM-MSCs can be considered as strong evidence that OM-

MSCs could turn into electrophysiologically active neurons

when exposed to appropriate neuronal differentiating condi-

tions. We previously showed that neurons derived from

NSCs had active electrophysiological properties. Not only

did the neurons exhibit typical voltage-dependent transient

inward sodium currents that were blocked by tetrodotoxin,

but they also displayed voltage-dependent slowly rectifying

outward currents that were blocked by TEA.40 In the current

study, we measured voltage-gated sodium and potassium

currents in differentiated OM-MSCs by whole-cell voltage

clamping but only detected slow outward potassium cur-

rents, and no sodium currents were detected in differentiated

OM-MSCs.

Overall, the results of this study suggest that the induction

of OM-MSCs by OCM under hypoxic culture conditions

improves the production of DAergic neurons. Moreover,

HIF-1 appears to play an important role in hypoxia-

inducible pathways in DAergic-lineage specification and

differentiation in vitro. This novel induction protocol is sim-

ple, effective, and safe and could significantly increase the

DAergic neuronal differentiation potential of OM-MSCs,

thus representing an important development in the treatment

of PD.
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