Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1-(5-Chloro-6-fluoro-1,3-benzothiazol-2yl)hydrazine

Hoong-Kun Fun, ${ }^{\mathrm{a} *} \ddagger$ Ching Kheng Quah, ${ }^{\mathrm{a}} \S$ B. K. Sarojini, ${ }^{\text {b }}$ B. J. Mohan ${ }^{\text {b }}$ and B. Narayana ${ }^{\text {c }}$
${ }^{\text {a }}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ${ }^{\mathbf{b}}$ Department of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India, and ${ }^{\text {c }}$ Department of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India
Correspondence e-mail: hkfun@usm.my

Received 4 July 2012; accepted 11 July 2012

Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.001 \AA$; R factor $=0.024 ; w R$ factor $=0.066 ;$ data-to-parameter ratio $=21.0$.

In the title compound, $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{ClFN}_{3} \mathrm{~S}$, the 1,3-benzothiazole ring system is nearly planar (r.m.s. deviation $=0.023 \AA$). In the crystal, molecules are linked via intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds into a two-dimensional network parallel to (100).

Related literature

For general background to and the biological activities of benzothiazole derivatives, see: Yaseen et al. (2006); Kini et al. (2007); Munirajasekhar et al. (2011); Gurupadayya et al. (2008); Bowyer et al. (2007); Mittal et al. (2007); Pozas et al. (2005); Rana et al. (2008). For a related structure, see: Fun et al. (2012). For standard bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier \& Glazer (1986).

Experimental

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{ClFN}_{3} \mathrm{~S}$

$M_{r}=217.65$
Monoclinic, $P 2_{1} / c$
$a=11.1287$ (6) A
$b=5.6641$ (3) \AA
$c=13.3419$ (7) A
$\beta=108.552(1)^{\circ}$
$V=797.29(7) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation
$\mu=0.70 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.31 \times 0.16 \times 0.14 \mathrm{~mm}$

Data collection

Bruker SMART APEXII DUO
CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\text {min }}=0.813, T_{\text {max }}=0.908$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.066$
$S=1.07$
2899 reflections

9459 measured reflections 2899 independent reflections 2638 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.017$

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N2-H1N2 $\cdots \mathrm{N} 1^{\mathrm{i}}$	$0.816(16)$	$2.132(16)$	$2.9478(12)$	$176.9(16)$
N3-H2N3 $\cdots \mathrm{N} 3^{\mathrm{ii}}$	$0.850(16)$	$2.443(17)$	$3.1382(12)$	$139.5(14)$
Symmetry codes: (i) $-x,-y,-z ;$ (ii) $-x, y-\frac{1}{2},-z+\frac{1}{2}$				

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

The authors thank Universiti Sains Malaysia (USM) for a Research University Grant (No. 1001/PFIZIK/811160). BKS gratefully acknowledges the Department of Atomic Energy (DAE)/BRNS, Government of India, for providing financial assistance in the BRNS Project (No. 2011/34/20-BRNS/0846).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5255).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bowyer, P. W., Ruwani, S. \& Gunaratne (2007). Biochem J. 2, 173-180.
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cosier, J. \& Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
Fun, H.-K., Quah, C. K., Munirajasekhar, D., Himaja, M. \& Sarojini, B. K. (2012). Acta Cryst. E68, o2438-o2439.

Gurupadayya, B. M., Gopal, M., Padmashali, B. \& Manohara, Y. N. (2008). Indian J. Pharm. Sci. 70, 572-577.
Kini, S., Swain, S. P. \& Gandhi, A. M. (2007). Indian J. Pharm. Sci. 69, 46-50.
Mittal, S., Samottra, M. K., Kaur \& Gita, S. (2007). Phosphorus Sulfur Silicon Relat. Elem. 9, 2105-2113.
Munirajasekhar, D., Himaja, M. \& Sunil, V. M. (2011). Int. Res. J. Pharm. 2, 114-117.
Pozas, R., Carballo, J., Castro, C. \& Rubio, J. (2005). Bioorg. Med. Chem. Lett. 15, 1417-1421.
Rana, A., Siddiqui, N. \& Khan, S. (2008). Eur. J. Med. Chem. 43, 1114-1122.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Yaseen, A., Haitham, A. S., Houssain, A. S. \& Najim, A. (2006). Z. Naturforsch. Teil B, 62 523-528.

supplementary materials

Acta Cryst. (2012). E68, o2459 [doi:10.1107/S160053681203156X]

1-(5-Chloro-6-fluoro-1,3-benzothiazol-2-yl)hydrazine

Hoong-Kun Fun, Ching Kheng Quah, B. K. Sarojini, B. J. Mohan and B. Narayana

Comment

Benzothiazoles are very important bicyclic ring compounds which are of great interest because of their biological activities. The substituted benzothiazole derivatives have emerged as significant components in various diversified therapeutic applications. A literature review reveals that benzothiazoles and their derivatives show considerable activity, including potent inhibition of human immunodeficiency virus type 1 (HIV-1) replication by HIV-1 protease inhibition (Yaseen et al., 2006), antitumor (Kini et al., 2007), anthelmintic (Munirajasekhar et al., 2011), analgesic and antiinflammatory (Gurupadayya et al., 2008), antimalarial (Bowyer et al., 2007), antifungal (Mittal et al., 2007), anticandidal activities (Pozas et al., 2005) and various activities relating to the central nervous system (Rana et al., 2008).
In the title molecule (Fig. 1), the benzo[d]thiazol-2-yl ring system (S1/N1/C1-C7) is nearly planar (r.m.s. deviation $=$ 0.023). Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable with a related structure (Fun et al., 2012).

In the crystal structure, Fig. 2, molecules are linked via intermolecular N2—H1N2 $\cdots \mathrm{N} 1$ and $\mathrm{N} 3-\mathrm{H} 2 \mathrm{~N} 3 \cdots \mathrm{~N} 3$ hydrogen bonds (Table 1) into two-dimensional networks parallel to (100).

Experimental

Concentrated $\mathrm{HCl}(6 \mathrm{ml})$ was added drop-wise to hydrazine hydrate [$6 \mathrm{ml}, 0.12 \mathrm{~mol}$] at 273-283 K followed by ethylene glycol (50 ml). To the above solution, 5 -chloro-6-fluoro benzothiazol-2-amine [$6.079 \mathrm{~g}, 0.03 \mathrm{~mol}]$ was added in portions. It was then refluxed for $3-4 \mathrm{~h}$. A colourless solid was precipitated at the end of the reflux period. The mixture was cooled and the product was filtered and then washed with water several times. It was air dried and recrystallized using ethanol. The single crystals were grown by slow evaporation from solvent methanol (m.p. $=483-485 \mathrm{~K}$).

Refinement

All hydrogen atoms were located in a difference Fourier map and refined freely with $\mathrm{N}-\mathrm{H}=0.815$ (16)-0.905 (15) \AA and $\mathrm{C}-\mathrm{H}=0.951$ (14) or 0.966 (15) \AA.

Computing details

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figure 1

The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.

Figure 2
The crystal structure of the title compound, viewed along the b axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.

1-(5-Chloro-6-fluoro-1,3-benzothiazol-2-yl)hydrazine

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{ClFN}_{3} \mathrm{~S}$
$M_{r}=217.65$
Monoclinic, $P 2{ }_{1} / c$
Hall symbol: -P 2ybc
$a=11.1287$ (6) \AA
$b=5.6641$ (3) \AA
$c=13.3419$ (7) \AA
$\beta=108.552(1)^{\circ}$

$$
\begin{aligned}
& V=797.29(7) \AA^{3} \\
& Z=4 \\
& F(000)=440 \\
& D_{\mathrm{x}}=1.813 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 5638 \text { reflections } \\
& \theta=3.9-32.6^{\circ} \\
& \mu=0.70 \mathrm{~mm}^{-1}
\end{aligned}
$$

$T=100 \mathrm{~K}$
Block, colourless

Data collection

Bruker SMART APEXII DUO CCD areadetector
 diffractometer
 Radiation source: fine-focus sealed tube
 Graphite monochromator
 φ and ω scans

Absorption correction: multi-scan
(SADABS; Bruker, 2009)
$T_{\text {min }}=0.813, T_{\text {max }}=0.908$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.024$
$w R\left(F^{2}\right)=0.066$
$S=1.07$
2899 reflections
138 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$0.31 \times 0.16 \times 0.14 \mathrm{~mm}$

> 9459 measured reflections
> 2899 independent reflections
> 2638 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.017$
> $\theta_{\max }=32.7^{\circ}, \theta_{\min }=1.9^{\circ}$
> $h=-16 \rightarrow 16$
> $k=-8 \rightarrow 8$
> $l=-20 \rightarrow 20$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from
neighbouring sites
All H -atom parameters refined
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0319 P)^{2}+0.296 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.53$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.20$ e \AA^{-3}

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier \& Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R -factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
S1	$0.17661(2)$	$0.55946(4)$	$0.127235(17)$	$0.01252(6)$
F1	$0.45495(6)$	$0.83076(11)$	$-0.09724(5)$	$0.01932(13)$
C11	$0.40693(2)$	$0.42019(4)$	$-0.236217(18)$	$0.01702(6)$
N1	$0.13780(7)$	$0.19036(15)$	$0.00140(6)$	$0.01316(14)$
N2	$0.02947(8)$	$0.17861(16)$	$0.12535(6)$	$0.01531(15)$
N3	$-0.01178(8)$	$0.31566(15)$	$0.19707(6)$	$0.01435(15)$
C1	$0.25396(8)$	$0.54873(16)$	$0.03242(7)$	$0.01196(15)$
C2	$0.33315(8)$	$0.71802(17)$	$0.01037(7)$	$0.01342(15)$
C3	$0.37807(8)$	$0.67098(17)$	$-0.07310(7)$	$0.01365(16)$
C4	$0.34704(8)$	$0.46473(17)$	$-0.13335(7)$	$0.01302(15)$
C5	$0.26897(8)$	$0.29589(17)$	$-0.11025(7)$	$0.01283(15)$
C6	$0.22136(8)$	$0.33884(16)$	$-0.02676(7)$	$0.01158(15)$

C7	$0.10783(8)$	$0.28418(17)$	$0.08008(7)$	$0.01228(15)$
H2A	$0.3595(12)$	$0.862(3)$	$0.0500(11)$	$0.014(3)^{*}$
H5A	$0.2461(12)$	$0.158(3)$	$-0.1530(11)$	$0.015(3)^{*}$
H1N2	$-0.0159(14)$	$0.073(3)$	$0.0922(12)$	$0.023(4)^{*}$
H1N3	$-0.0937(14)$	$0.360(3)$	$0.1679(12)$	$0.023(4)^{*}$
H2N3	$-0.0068(14)$	$0.231(3)$	$0.2508(12)$	$0.025(4)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.01537(10)$	$0.01201(11)$	$0.01173(10)$	$-0.00092(7)$	$0.00648(7)$	$-0.00130(7)$
F1	$0.0220(3)$	$0.0177(3)$	$0.0227(3)$	$-0.0073(2)$	$0.0133(2)$	$-0.0019(2)$
Cl1	$0.01930(11)$	$0.01979(12)$	$0.01571(10)$	$-0.00142(8)$	$0.01083(8)$	$-0.00148(8)$
N1	$0.0149(3)$	$0.0130(3)$	$0.0136(3)$	$-0.0015(3)$	$0.0075(3)$	$-0.0013(3)$
N2	$0.0196(4)$	$0.0146(4)$	$0.0155(3)$	$-0.0048(3)$	$0.0108(3)$	$-0.0036(3)$
N3	$0.0165(3)$	$0.0160(4)$	$0.0128(3)$	$0.0018(3)$	$0.0079(3)$	$0.0001(3)$
C1	$0.0131(3)$	$0.0121(4)$	$0.0113(3)$	$0.0002(3)$	$0.0048(3)$	$-0.0004(3)$
C2	$0.0149(4)$	$0.0121(4)$	$0.0142(4)$	$-0.0013(3)$	$0.0060(3)$	$-0.0008(3)$
C3	$0.0133(3)$	$0.0136(4)$	$0.0153(4)$	$-0.0018(3)$	$0.0062(3)$	$0.0007(3)$
C4	$0.0134(3)$	$0.0150(4)$	$0.0122(3)$	$0.0010(3)$	$0.0063(3)$	$0.0002(3)$
C5	$0.0134(3)$	$0.0136(4)$	$0.0124(3)$	$0.0004(3)$	$0.0054(3)$	$-0.0007(3)$
C6	$0.0124(3)$	$0.0112(4)$	$0.0118(3)$	$0.0003(3)$	$0.0047(3)$	$-0.0002(3)$
C7	$0.0133(3)$	$0.0120(4)$	$0.0121(3)$	$-0.0004(3)$	$0.0050(3)$	$0.0003(3)$

Geometric parameters ($A,{ }^{\circ}$)

S1-C1	1.7429 (9)	N3-H2N3	0.849 (17)
S1-C7	1.7625 (10)	$\mathrm{C} 1-\mathrm{C} 2$	1.3957 (13)
F1-C3	1.3529 (11)	C1-C6	1.4093 (13)
C11-C4	1.7243 (9)	C2-C3	1.3839 (12)
N1-C7	1.3109 (11)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.966 (15)
N1-C6	1.3912 (11)	C3-C4	1.3977 (13)
N2-C7	1.3483 (11)	C4-C5	1.3910 (13)
N2-N3	1.4172 (11)	C5-C6	1.3986 (12)
N2-H1N2	0.815 (16)	C5-H5A	0.951 (14)
N3-H1N3	0.905 (15)		
C1-S1-C7	88.21 (4)	F1-C3-C4	118.78 (8)
C7-N1-C6	109.48 (8)	C2-C3-C4	122.51 (9)
C7-N2-N3	117.01 (8)	C5-C4-C3	120.30 (8)
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{H} 1 \mathrm{~N} 2$	117.3 (11)	C5-C4-Cl1	120.18 (7)
N3-N2-H1N2	119.3 (11)	C3-C4-Cl1	119.52 (7)
N2-N3-H1N3	111.1 (10)	C4-C5-C6	118.59 (8)
N2-N3-H2N3	108.3 (11)	C4-C5-H5A	119.8 (8)
H1N3-N3-H2N3	107.7 (14)	C6-C5-H5A	121.5 (8)
C2- $\mathrm{C} 1-\mathrm{C} 6$	121.92 (8)	N1-C6-C5	124.41 (8)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	128.31 (7)	N1-C6-C1	115.70 (8)
C6- $\mathrm{C} 1-\mathrm{S} 1$	109.73 (7)	C5-C6-C1	119.85 (8)
C3-C2-C1	116.83 (9)	N1-C7-N2	122.99 (9)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	118.6 (8)	N1-C7-S1	116.89 (7)

supplementary materials

$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	$124.6(8)$	$\mathrm{N} 2-\mathrm{C} 7-\mathrm{S} 1$	$120.11(7)$
$\mathrm{F} 1-\mathrm{C} 3-\mathrm{C} 2$	$118.72(8)$		
$\mathrm{C} 7-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2$	$177.55(9)$	$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 1$	$-0.18(11)$
$\mathrm{C} 7-\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 6$	$0.05(7)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1$	$176.84(8)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$0.32(13)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$-0.63(13)$
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-176.91(7)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{N} 1$	$-177.63(8)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{F} 1$	$179.88(8)$	$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{N} 1$	$0.06(10)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-0.13(14)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$0.06(14)$
$\mathrm{F} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$179.54(8)$	$\mathrm{S} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-177.75(7)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-0.45(14)$	$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 7-\mathrm{N} 2$	$0.22(10)$
$\mathrm{F} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 11$	$-0.12(12)$	$\mathrm{N} 3-\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 7-\mathrm{S} 1$	$-169.63(8)$
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 11$	$\mathrm{~N} 3-\mathrm{N} 2-\mathrm{C} 7-\mathrm{S} 1$	$11.09(11)$	
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 7-\mathrm{N} 1$	$-0.16(8)$	
$\mathrm{C} 11-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$\mathrm{C} 1-\mathrm{S} 1-\mathrm{C} 7-\mathrm{N} 2$	$179.17(8)$	
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	$-179.52(7)$	$-177.75(8)$	

Hydrogen-bond geometry (A, ${ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2 — \mathrm{H} 1 N 2 \cdots \mathrm{~N} 1^{\mathrm{i}}$	$0.816(16)$	$2.132(16)$	$2.9478(12)$	$176.9(16)$
$\mathrm{N} 3 — \mathrm{H} 2 N 3 \cdots \mathrm{~N} 3{ }^{\mathrm{ii}}$	$0.850(16)$	$2.443(17)$	$3.1382(12)$	$139.5(14)$

Symmetry codes: (i) $-x,-y,-z$; (ii) $-x, y-1 / 2,-z+1 / 2$.

