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Abstract: The use of imagined speech with electroencephalographic (EEG) signals is a promising
field of brain-computer interfaces (BCI) that seeks communication between areas of the cerebral
cortex related to language and devices or machines. However, the complexity of this brain process
makes the analysis and classification of this type of signals a relevant topic of research. The goals of
this study were: to develop a new algorithm based on Deep Learning (DL), referred to as CNNeeg1-1,
to recognize EEG signals in imagined vowel tasks; to create an imagined speech database with
50 subjects specialized in imagined vowels from the Spanish language (/a/,/e/,/i/,/o/,/u/); and
to contrast the performance of the CNNeeg1-1 algorithm with the DL Shallow CNN and EEGNet
benchmark algorithms using an open access database (BD1) and the newly developed database (BD2).
In this study, a mixed variance analysis of variance was conducted to assess the intra-subject and
inter-subject training of the proposed algorithms. The results show that for intra-subject training
analysis, the best performance among the Shallow CNN, EEGNet, and CNNeeg1-1 methods in
classifying imagined vowels (/a/,/e/,/i/,/o/,/u/) was exhibited by CNNeeg1-1, with an accuracy
of 65.62% for BD1 database and 85.66% for BD2 database.

Keywords: imagined speech; electroencephalography; brain-computer interface (BCI); deep learning;
convolutional neural networks (CNN); vowels

1. Introduction

Brain-computer interfaces (BCI), also referred to as human-machine interfaces, are sys-
tems that use brain signals to control computers or hardware devices [1–3]. These systems
can use invasive or noninvasive recording methods, where the latter stand out because
they do not require surgical interventions [4]. Research on BCI is aimed at developing
technological solutions in fields like motor and cognitive rehabilitation [5]; assistance in
the recovery of compromised communication and/or physical skills [4]; control of video
games [6]; augmentative assistance platforms [7–9], among others, aimed at improving the
user’s quality of life and well-being.

Imagined speech (IS) is an innovative technique for BCI applications using voluntary
signals. [10–12]. Imagined speech is the internal pronunciation of phonemes, words, or
sentences, without the movement of the phonatory apparatus or any audible output [13].
In this sense, previous imagined speech works with conventional machine learning (ML)
methods for imagined vowel recognition (/a/,/e/,/i/,/o/,/u/), have chosen to use time,
frequency, or time-frequency transformations as the feature vector. Among the features
that have been used for imagined vowel recognition (/a/,/e/,/i/,/o/,/u/) with ML
are: statistical descriptors (average power, mean, variance, and standard deviation) [14];
common special patterns (CSPs) filtering, and adaptive collection (AC) [15]; Discrete
Wavelet Transform (DWT) [16,17]; eigenvalues of the covariance matrix [18]; and mixed
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features such as descriptors (mean, variance, standard deviation, and skewness) and Sparse
Regression Models [19].

Thus, to improve imagined speech signal recognition we propose to: increase the
electrode density in the frontotemporal brain area of the left hemisphere according to
Hickok and Poeppel’s model [20]; acquire EEG signals with cognitive imagined speech
tasks under controlled artifact conditions (blinking and eye movement), environmental
noise, and lighting; and implement several DL CNNs specialized in classifying pairs of
patterns so they together can perform multiclass classifications. Accordingly, the objectives
proposed for this work are: first, to develop a new DL based algorithm, referred to as
CNNeeg1-1, for EEG signal recognition in imagined vowel tasks. This algorithm should
perform a multiclass classification based on the specialization of a set of CNNs for the
recognition of imagined vowel pairs. Second, to develop an imagined speech database with
50 subjects (BD2), under artifact-controlled conditions using electroencephalographic sig-
nals from the somatosensory areas in the left hemisphere of the brain, for Spanish imagined
vowels (/a/,/e/,/i/,/o/,/u/). Finally, contrast the performance of the newly developed
CNNeeg1-1 algorithm with the DP Shallow CNN and EEGNet reference algorithms for
databases BD1 and BD2, with analysis of the intra-subject and inter-subject learning.

The remainder of this article is organized as follows: Section 2 is an overview of
previous research in speech imagery with EEG for vowels; Section 3 presents the CNN
algorithm developed in this research, as well as the materials and methods used; Section 4
describes the results obtained with the algorithms CNNeeg1-1, Shallow CCN, and EEGNet,
Section 5 presents the discussion of the process and the results obtained in classifying vowel
imagery speech signals (/a/,/e/,/i/,/o/,/u/). Finally, Section 6 presents the conclusions
of this re-search.

2. Related Work

There are different methodologies for the non-invasive capturing of brain signals such
as magnetoencephalography (MEG) [21,22], functional magnetic resonance imaging [23,24]
and electroencephalography (EEG) [25,26]. The advantages that electroencephalography
has over the other methods are its low cost, portability, and high time resolution [27]. The
stages of a BCI processing system with EEG are: signal acquisition, preprocessing, feature
extraction, classification, and device control [7].

Among the types of noninvasive EEG signals used for BCI control are evoked poten-
tials and voluntary signals [28]. The first require external stimuli and include signals such
as: Event Related Potential (ERP), Evoked Potential (P300), Movement Related Cortical
Potential (MRCP), and Steady State Evoked Potentials (SSEP) [28]. On the other hand,
voluntary signals are produced autonomously by the user such as: sensorimotor rhythms
(SMR), slow cortical potentials (SCP), motor imagery (MI), and non-motor cognitive sig-
nals [28]. The studies conducted with MI sought to mimic motor intention (without using
the muscular system), mainly using event-related desynchronization or event-related syn-
chronization (ERS/ERD) signals [3,8]. However, MI requires a high degree of training
to mitigate the effects of user attention and the consequent mental fatigue [4,9]. Within
the context of voluntary signals, BCI systems are being developed based on high-level
cognitive processes such as: mental mathematical operations, visual counting, musical
imagination, imagined speech, among others [1,28]. One of the advantages of these new
methods is the number of tasks that can be classified. However, these new methods are
limited by the current knowledge in the field of neuroscience, cognitive science, artificial
intelligence, among others.

Some classifiers that have been used for imagined vowel recognition (/a/,/e/,/i/,/o/,
/u/) are summarized in the following table (Table 1):

In addition, it is noteworthy that the complexity in the processing of EEG signals
is mainly due to: their voltage range (µV), their low signal to noise ratio (SNR), their
non-linearity, non-temporality, and low spatial resolution given by the EEG electrodes.
According to these characteristics, conventional ML methods are limited for the recog-
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nition of this type of signals [29,30]. This poses an important challenge in the design of
new algorithms to identify the characteristics of the EEG signal [31,32] and, to select or
design the proper classifiers [33,34]. In conclusion, an ideal method should be able to
automatically recognize the inherent characteristics of the EEG signal with its nonlinear
and nonstationary properties.

Table 1. Machine learning classifiers used for imagined vowel recognition (/a/,/e/,/i/,/o/,/u/).

Classifiers Accuracy Subjects Electrodes

Support Vector Machine with Gaussian kernel (SVM-G) [15] 77% 5 19

Relevance Vector Machine with Gaussian kernel (RVM-G) [15] 79% 5 19

Linear Relevance Vector Machine (RVM-L) [15] 50% 5 19

Bipolar Neural Network [14] 44% 13 19

Support Vector Machine (SVM) [16] 21.94% 15 6

Random Forest (RF) [16] 22.72% 15 6

Extreme Learning Machine (ELM) [19] 57–82% 5 64

Extreme Learning Machine with Linear Function (ELM-L) [19] 60–85% 5 64

Extreme Learning Machine with Radial Basis Function (ELM-R) [19] 62–85% 5 64

Support Vector Machine with Radial Basis Function Kernel (SVM-R) [19] 50–55% 5 64

Linear Discriminant Analysis (LDA) [19] 55–80% 5 64

SVM [17] 22.23% 15 6

Random Forest [17] 23.08% 15 6

rLDA [17] 25.82% 15 6

In consequence, a DL method has been proposed. DL is a subset of the field of ML,
which learns input data representations through multiple layers of neural networks, whose
architectures are based on human brain neural models [35–37]. Among the advantages of
DL is the ability to automatically identify the characteristics of a signal [38,39].

Some DL architectures that have been used for imagined vowel recognition with EEG
are summarized in the following table (Table 2):

Table 2. Classifiers with DL used for imagined vowel recognition (/a/,/e/,/i/,/o/,/u/).

DL Architecture Accuracy Subjects Electrodes

Deep Belief Networks (DBN) [40] 80% 6 19

Deep Belief Networks (DBN) [18] 87.96% 3 32

Recurrent Neural Networks (RNN) [40] 70% 6 19

Convolutional Neural Networks (CNN) [41] 32.75% 15 6

Convolutional Neural Networks (CNN) [42] 35.68% 15 6

Shallow CNN [17] 29.62% 15 6

Deep CNN [17] 29.06% 15 6

EEGNet [17] 30.08% 15 6

Additionally, to reduce the effect of the low signal to noise ratio of EEG signals, there
are alternative DL methods using EEG signal preprocessing for imagined vowels, such as:
filtering from 2 Hz to 40 Hz, artifact detection and removal with Independent Component
Analysis (ICA), and analysis with Hessian approximation preconditioning; eigenvalues of
the covariance matrix [18]; 50 Hz LPF-IIR low-pass filters, 0.5 Hz HPF-IIR high-pass filters,
and feature vectors consisting of EEG coherence, partial directed coherence (PDC), Direct
Transfer Function (DFT) and transfer entropy [40].
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Although, DL architectures have been successfully applied to image recognition [43–45]
and speech signal recognition [46–48], their use for EEG signal recognition tasks, such as
imagined speech [49,50], remains a challenge and requires the development of novel pre-
processing techniques and the development of new DL structures and architectures [51,52].
Among the difficulties posed by DL algorithms are: CNN methods are susceptible to the
effect of artifacts present in EEG signals, generating a reduction in the accuracy of the
classifiers [27]. These methods are also affected by the reduced amount of data used in
the training process [27]; the use of brain rhythms with fixed ranges as inputs to different
CNNs can cause a decrease in classification accuracy since some of these rhythms may not
provide the information needed for the system to extract the features from the targeted
EEG signal [27]; DNN has accuracy limitations due to the number of subjects in the sample,
inter-subject analysis, and the amount of time an experiment may take [28]; DL with
Shallow CNN, Deep CNN and EEGNet are susceptible to the size of the experimental
dataset and the reduced number of tests per class [17]. Additionally, DL architectures are
susceptible to overfitting, which consists of overtraining the neural networks, generating
a decrease in classification accuracy during testing [35]. The Shallow CNN and EEGNet
architectures are going to be used as benchmarks for the proposed architecture, so they are
described in more detail in Appendices A and B.

3. Materials and Methods
3.1. Data Description

This research used the reference database developed by Coretto et al. that involved
15 subjects and the imagined vowel tasks (/a/,/e/,/i/,/o/,/u/) [16]. It also includes a
new database with 50 individuals, recorded under controlled conditions, for imagined
vowels (/a/,/e/,/i/,/o/,/u/) developed specifically for this research.

3.1.1. Reference Database (BD1)

The reference database (BD1) (http://fich.unl.edu.ar/sinc/downloads/imagined_
speech/ accessed on: 24 September 2020) is an open-access database of EEG signals,
developed by Coretto et al. which records imagined speech tasks with five vowels and five
words [16]. For this article, we used the information of imagined vowels (/a/,/e/,/i/,/o/,/u/).
This experiment was conducted with 15 Spanish-speaking higher education Argentine
students (7 females and 8 males) between 24 and 28 years of age [16].

The experimental protocol for this database consisted in asking each subject to sit on a
chair one meter away from an LCD screen. Once seated, they were shown a message on
the screen for two seconds warning them to get ready. Then, they were shown the vowel
they had to imagine for two seconds. Next, they imagined the vowel continuously for
four seconds. Finally, they were shown a message on the screen indicating them to rest for
four seconds. This procedure was repeated 40 times for each imagined vowel [16].

In this database, the signals were recorded with an 18-electrode Grass device at
a sampling frequency of 1024 Hz. The EEG electrodes were located according to the
international 10–20 system and the database contains information from six electrodes F3,
F4, C3, C5, P3, and P4 [16].

3.1.2. New Database (BD2)

This new database, created by us specifically for this study, held the information of
50 university students (20 women and 30 men) whose native language is Spanish (M = 24.76,
SD = 7.66) (https://github.com/carlos-sarmientov/DATABASE-IMAGINED-VOWELS-1
accessed on: 4 August 2021). The participants did not exhibit any medical or neurological
conditions. The experiment was approved by the Ethics Committee of the School of
Medicine at Universidad Nacional de Colombia and the subjects gave written consent for
their participation.

The experiment was conducted in the Cognition and Intelligent Systems laboratory
at Universidad Pedagógica Nacional (Bogotá-Colombia), under controlled conditions:

http://fich.unl.edu.ar/sinc/downloads/imagined_speech/
http://fich.unl.edu.ar/sinc/downloads/imagined_speech/
https://github.com/carlos-sarmientov/DATABASE-IMAGINED-VOWELS-1
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80 lm/m2 lighting and minimum environmental noise (ASTM STC 63). First, each subject
was asked to sit on a comfortable chair and an EEG neuroheadset was placed on their
heads. The neuroheadset has 14 electrodes located on the left hemisphere, covering the
language area. Two reference electrodes were located on the forehead. The electrodes were
placed according to Hickok and Poeppel’s neurological model of language related to the
sensorimotor interface and articulatory network (Broca’s area and motor cortex) related to
Brodmann areas: 4, 6, 43, 44 and 45 [20]. The electrodes were placed on the neuroheadset
in a matrix-like structure where the rows and columns of electrodes, were 18 mm apart. To
reference the neuroheadset on the head of each subject, the T3 and C3 positions were used
according to the 10–20 system (Figure 1). Once the headset was secured, a light source,
placed at one meter from the subject, was lit to indicate the moment when they should start
or finish the task of thinking about a specific vowel with imagined speech. To decrease
blinking and eye movement artifacts, subjects were asked to keep their eyes closed.

Figure 1. Location of the neuroheadset, which contains 14 electrodes (E1, . . . ,E14) covering a section
of the left hemisphere (language area). This is, the sensorimotor interface area and articulatory
network of Hickok and Poeppel (Broca’s area and motor cortex) related to Brodmann areas: 4, 6, 43,
44 and 45. C3 and T3 are reference points from the 10–20 positioning system.

For the experiment, each subject was told to imagine a given vowel continuously and
without pronouncing it while the light source was on. They were also told that, when the
light source was turned off, they had to stop imagining the vowel and relax their body.
During the experiment, the light source remained on for four seconds and then was turned
off for three seconds. The procedure was repeated 25 times for each one of the imagined
vowels. Upon completion of the 25 imagined speech tasks for each vowel, subjects rested
for 5 min to continue with the next vowel. The imagined tasks were arranged in the
following order: /a/,/e/,/i/,/o/,/u/(Figure 2).
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Figure 2. Time intervals for the imagined vowels experiment. When the light is on, the subject
imagines the vowel and when the light is off, the subject relaxes.

The signals were recorded with a 14-channel EMOTIV EPOC+ amplifier, with a
sampling frequency of 128 Hz, a 14 bits resolution with 1 LSB with 0.51 µV in monopolar
configuration. The 14 electrodes of the EMOTIV EPOC+ device were arranged on the
neuroheadset (E1, . . . , E14) paying attention to the original name of each electrode of
the device. For this experiment, the electrodes are numbered from E1 to E14 and the
relationship with the original name of the Emotiv electrodes is as follows: E1 (AF3),
E2 (F7), E3 (F3), E4 (FC5), E5 (T7), E6 (P7), E7 (O1), E8 (O2), E9 (P8), E10 (T8), E11 (FC6),
E12 (F4), E13 (F8), E14 (AF4). The two reference electrodes were placed on the subject’s
forehead (Figure 1).

The EpocSimulinkImporter acquisition software from Xcessity (Linz, Austria) was
used to export the data to Matlab’s Simulink. Signal preprocessing was performed with
Matlab R2020a. Additionally, signal processing was performed with: Matlab R2020a using
the Deep Learning Toolbox for the CNNeeg1-1 model, Jupyter Notebook (Anaconda3) with
Python 3.0 using TensorFlow and Keras for the Shallow CNN and EEGNet models. Data
analysis was carried out using the Statistical Package for the Social Sciences (SPSS) Version
25 software (Armonk, NY, USA).

3.2. Deep Learning Methods with Convolutional Neural Networks (CNN)

Following is the description of this research’s proposed architectures. The first one
corresponds to the new proposed method. Another two benchmark methods using CNN
reported for imagined speech are included [17].

3.2.1. CNNeeg1-1 Architecture

The proposed architecture consists of 10 signal preprocessing blocks for each one
of the 10 CNNs, used for the recognition of imaged vowel pairs and one stage for the
one-against-one function (1-1) that allows multi-class classification of imagined vowels
(/a/,/e/,/i/,/o/ and /u/). The proposed DL-based architecture is described below.

Preprocessing

The proposed architecture consists of 10 preprocessing blocks that filter and adapt the
brain signals to deliver it to each CNN. Each preprocessing block is mainly composed of a
filtering stage using Adaptive-Projection Intrinsically Transformed MEMD (APIT-MEMD)
and a signal transformation stage using spectral analysis. The brain signals recorded
were edited to keep only the intervals in which the subjects performed the corresponding
imagined speech tasks. The signals were divided in trials with 64 samples and an overlap
of 85%.

For the filtering process, the APIT-MEMD method was chosen since the signals have
nonlinear and nonstationary characteristics [53]. This method separates the multivariate
signals into so-called Intrinsic Mode Functions (IMFs). It includes the following steps [53]:

1. For each multidimensional input frame [x(t)]Tt=1 and each shift operation x(t), decom-
pose the covariance matrix as C = E

{
ssT} = WΛWT , where W = [w1, w2, . . . , wn]

is the eigenvector matrix, and Λ = diag{λ1, λ2, . . . , λn} is the eigenvalue matrix. In
this case the largest eigenvalue will correspond to the eigenvector w1.
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2. Take the first principal component and build a vector pointing in the opposite direc-
tion to w01 = −w1.

3. Using the Hammerseley sequence on a uniformly sampled sphere, build a set of K

direction vectors
{

pθk
}K

k=1.
4. Calculate the Euclidean distances from each of the uniform direction vectors to w1.

5. Relocate half of the projection vectors pθk
w1 , the closest to v1, using p̂θk

w1=
x̂

θk
w1+αw1∣∣∣x̂θk
w1+αw1

∣∣∣ ,
where α is used to control the density of the relocated vectors.

6. The other half of the uniform projection vectors, p̂θk
w1 , the closest to w01, are relocated

using p̂θk
w01 =

x̂
θk
w01+αw10∣∣∣x̂θk
w01+αw01

∣∣∣ , where α is used to control the density of the relocated vectors.

7. Project the multidimensional signal [x(t)]Tt=1 along the direction vectors found in
steps 5 and 6.

8. Find the instant of time t
θj
i corresponding to the maximum of the projected data

sets, where θj is the angle of the (n− 1) dimensional sphere and j is the index of the
direction vectors.

9. Interpolate
[
t
θj
i

(
x

θj
i

)]
to calculate the envelope curves

[
eθj(t)

]J

j=1
.

10. Estimate the mean of the envelope curves for the set of direction vectors J:

m =
1
J

J

∑
j=1

eθj(t)

11. Calculate the residue d(t) = x(t)−m(t).
12. Repeat these steps until the residue meets the conditions of an IMF for

multivariate signals.

The first two IMFs resulting from applying the APIT-MEMD algorithm to the brain
signals, (IMF1, IMF2), are chosen for this architecture. They have center frequencies of
approximately 30 Hz and 15 Hz, respectively (Figure 3). These two IMFs are added for
each one of the 14 electrodes.

With the signals obtained from APIT-MEMD, a transformation between electrode
pairs is performed according to the following equation: abs

(
FFT(Ei)− FFT

(
Ej
))

, where Ei
and Ej represent each electrode, where i, j = 1, . . . , 14, and j > i. The values are normalized
between 0 and 1. After this, each trial of databases BD1 and BD2 is converted into a
jpeg-image. The images are 15 × 32 for BD1 and 91 × 32 for BD2. The rows of these images
correspond to the frequencies and the columns correspond to the pairs-differences between
electrodes. Database BD1 results in 1888 images for each imagined vowel, for a total of
9440 images for the training and testing of the CNNs. Database BD2 produces 1274 images
for each imagined vowel, for a total of 6370 images for the training and testing of the CNNs.

CNNeeg1-1: A New Deep Learning Architecture with CNN

The proposed architecture consists of 10 CNNs using deep learning for one of the
imagined speech pairs: (/a/-/e/), (/a/-/i/), (/a/-/o/), (/a/-/u/), (/e/-/i/), (/e/-/o/),
(/e/-/u/), (/i/-/o/), (/i/-/u/), (/o/-/u/) (Figure 4).

A NVIDIA GeForce GTX 1080 Ti GPU with 11 Gbps next generation GDDR5X memory
and a large frame buffer of 11 GB was used. The algorithm was implemented with Matlab
2020a using the Deep Learning Toolbox. For the training of the CNN networks, the
stochastic gradient descent with momentum (SGDM) optimizer was used. The learning rate
chosen was 0.01. The number of epochs was 50. In this way, the values of hyperparameters
learning rate, training epochs and activation function were selected according to [17]. 70%
of the data was used for training and 30% for validation. The architecture of the CNNs is
described below.
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Figure 3. Application of the APIT-MEMD algorithm to a trial of imagined vowel signals (/a/,/e/,/i/,/o/,/u/), where the
first two IMFs (IMF1 and IMF2) are shown in the time-domain (blue) and the frequency-domain (red) for a subject in BD2.

Figure 4. CNNeeg1-1 architecture made up of 10 specialized CNNs and a one-against-one function.

The input layer for each CNN receives the information of the images obtained from
the EEG imagined vowels. It consists of a tensor of size 32 × 15 × 1 for database BD1
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and 32 × 91 × 1 for database BD2 (Table 3). Next comes the dropout layer that randomly
sets, for each input image, a mask with 25% of its elements to zero, with the goal of
minimizing the overfitting in the training process (Table 3). Layer 3 is a 2D convolutional
layer that applies a sliding convolution filter on the input. For this layer, 50 filters are
configured with a size of 5 × 5, a stride of 1 × 1, and a padding of 0; thus, the output has a
size of 28 × 57 × 50 (Table 3). In layer 4, a batch normalization is applied to improve the
training of the convolutional networks and reduce the sensitivity to network initialization.
It is applied to the 50 input channels of the layer. In layer 5, the reluLayer function is
applied, where

f (x) =
{

x, x ≥ 0
0, x < 0

(1)

Table 3. CNN model specifications of the CNNeeg1-1 architecture.

Name Type Activations Learnables Total
Learnables

1
Input

32 × 91 × 1 images with ‘zerocenter’
normalization

Image input 32 × 91 × 1 - 0

2 dropout
25% dropout Dropout 32 × 91 × 1 - 0

3
conv_1

50 5 × 5 × 1 convolutions with stride
1 × 1 and p . . .

Convolution 28 × 87 × 50
Weights 5 × 5 × 1 ×

50
Bias 1 × 1 × 50

1300

4 BN_1
Batch normalization with 50 channels

Batch
Normalization 28 × 87 × 50 Offset 1 × 1 × 50

Scale 1 × 1 × 50 100

5 relu_1
ReLU ReLU 28 × 87 × 50 - 0

6
pool_1

2 × 2 max pooling with stride 2 × 2
and padding . . .

Max Pooling 14 × 43 × 50 - 0

7
conv_2

60 11 × 11 × 50 convolutions with
stride 1 × 1 an

Convolution 4 × 33 × 60
Weights 11 × 11 × 50

× 50
Bias 1 × 1 × 60

363,060

8 BN_2
Batch normalization with 60 channels

Batch
Normalization 4 × 33 × 60 Offset 1 × 1 × 60

Scale 1 × 1 × 60 120

9 relu_2
ReLU ReLU 4 × 33 × 60 - 0

10
pool_2

2 × 2 max pooling with stride 2 × 2
and padding . . .

Max Pooling 2 × 16 × 60 - 0

11 BN_3
Batch normalization with 60 channels

Batch
Normalization 2 × 16 × 60 Offset 1 × 1 × 60

Scale 1 × 1 × 60 120

12 fc1
60 fully connected layer

Fully
Connected 1 × 1 × 60 Weights 60×1920

Bias 60×1 115,260

13 fc2
2 fully connected layer

Fully
Connected 1 × 1 × 2 Weights 2 × 60

Bias 2 × 1 122

14 softmax
softmax softmax 1 × 1 × 2 - 0

15 classOutput
crossentropyex

Classification
Output - - 0

Layer 6 is a max pooling layer where a downsampling divides the input into rectan-
gular regions. Then, the maximum value of each region is calculated (Table 3). The size of
each region was 2 × 2, with a stride of 2 × 2, and a padding of 0; thus, the output has a
size of 14 × 43 × 50 (Table 3).
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Next, a 2D convolutional layer is implemented in layer 7. For this layer, 50 filters with
size of 11 × 11, a stride of 1 × 1, and a padding of 0 are configured; thus, the output has a
size of 4 × 33 × 60. In layer 8 a batch normalization is applied to the 50 input channels
of the layer, and then, in layer 9, the reluLayer function is applied. Layer 10 corresponds
to a max pooling layer where the size of each region was selected as 2 × 2, with a stride
of 2 × 2, and a padding of 0; thus, the output has a size of 2 × 16 × 60. In layer 11, a
batch normalization is applied to improve the training of the convolutional networks and
reduce the sensitivity to network initialization, in this case applied to the 60 channels of
the previous layer (Table 3).

In layers 12 and 13, two fully connected layers are implemented, multiplying the
inputs by a weight matrix to which the corresponding bias vector is added (Figure 5).
Layer 12 has an output size of 60 and layer 13 has an output size of 2, corresponding to
the number of classes of each one of the 10 CNNs. Subsequently, in layer 14 (Table 3), the
softmax function that calculates cross entropy loss for the corresponding classes is applied.
Finally, layer 15 corresponds to the classification output layer of the corresponding CNN.

Figure 5. Intra-subject training classification accuracy for the Shallow CNN, EEGNet, and CNNeeg1-1 algorithms using
BD1 database.

Then, the classification information of the 10 CNNs, is fed to a last block called one-
against-one (1-1) [54]. The one-against-one function (1-1) has 10 inputs corresponding
to the binary classifier outputs of the 10 CNNs (Figure 4). With a voting scheme, the
predictions made by CNN (/a/-/e/), CNN (/a/-/i/), CNN (/a/-/o/), CNN (/a/-/u/),
CNN (/e/-/i/), CNN (/e/-/o/), CNN (/e/-/u/), CNN (/i/-/o/), CNN (/i/-/u/), CNN
(/o/-/u/) are combined, and the class receiving the largest share of the vote is the winner
within the imagined vowels (/a/,/e/,/i/,/o/,/u/) [54], and it is chosen as the output of
this last block.

It is important to underline that CNNeeg1-1 is composed by ten CNN-type algorithms
designed to extract the characteristics of the magnitude difference of the FFT of the EEG
signals obtained through silent speech. Such differences were calculated between pairs
of electrodes. Each CNN of CNNeeg1-1 is based on machine vision architectures with
DL [43,44] and classic CNN architectures like LetNet5 and AlexNet [35], since their ef-
fectiveness has already been shown. Speaking of the actual architecture, the first layer
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of each CNN of CNNeeg1-1 is a Dropout layer whose goal is to apply to the image a
mask with a certain percentage of ceros randomly located. This layer intends to diminish
the possible overfitting resulting from the training of each CNN. The next two blocks
contain four layers each as follows: 2D-convolution, Batch normalization, Non-linearity,
and Max-Pooling. The goal of the first block is for each CNN to learn the characteristics of
the frequency signals through their convolution with 50 × 5 × 5 spatial filters. The goal
of the second block is for each CNN to learn the characteristics of the outputs of the first
block. This process is performed through convolution with 50 × 11 × 11 spatial filters.
The parameters used in these two blocks were obtained through a swept of a value grid,
looking to maximize accuracy. With the characteristics found in the training process, the
algorithm moves on to the classification stage, made up of two Fully Connected layers and
a Softmax layer. The first Fully connected layer is made up of 60 neurons and the second
one of 2 since it must classify two types of silent speech signals. The results obtained with
the CNNeeg1-1 architecture proposed were compared with the Shallow CNN and EEGNet
architectures. These are described in Appendices A and B respectively.

4. Results
4.1. Analysis of Intra-Subject Training Results for the Shallow CNN, EEGNet, and CNNeeg1-1
Algorithms Using Databases BD1 and BD2

The intra-subject training process consists in taking the brain signals from silent
speech tasks of each one of the subjects independently, disregarding the ones from the other
subjects. The set of signals from each subject is split randomly in a training set, with 70%
of the signals, and a testing set, with 30% of the signals. This process is repeated for each
subject in each database independently. In consequence, the information of both databases
is kept apart, they do not mix.

The statistical analysis, for intra-subject training process, was done using a variance
mixed analysis of repeated measures. In this case, using BD1 database, the following results
were obtained: For Shallow CNN, a mean and standard deviation accuracy of (M = 0.3171,
SD = 0.0114) was achieved. EEGNet achieved an accuracy of (M = 0.3506, SD = 0.0133).
Finally, CNNeeg1-1 obtained an accuracy of (M = 0.6562, SD = 0.0123) (Figure 5).

For the BD2 database, the results were: For Shallow CNN, an accuracy of (M = 0.5371,
SD = 0.0606) was achieved. EEGNet obtained an accuracy of (M = 0.7068, SD = 0.0396).
Finally, CNNeeg1-1 had an accuracy of (M = 0.8566, SD = 0.0446) (Figure 6).

Mauchly’s test indicated that the assumption of sphericity was violated (X(2) = 46.546,
p < 0.05), therefore, the degrees of freedom were adjusted with Greenhouse-Geisser
(ε = 0.654). Tests for intra-subject effects show significant differences between the classifica-
tion of imagined vowels performed by the three CNN models with F (1.31,82.46) = 1017.50,
p < 0.001, η2 = 0.942. Similarly, the results show that there is a significant interaction
between the intra-subject (CNN Model) and inter-subject (database) variable related to the
accuracy F(1.31,82.46) = 64.40, p < 0.001, η2 = 0.506.

According to the inter-subject analysis, related to database type, there is a significant
difference between database BD1 (M = 0.441, SD = 0.008) and database BD2 (M = 0.700,
SD = 0.005) in imagined vowels recognition with F(1,63) = 738.12, p < 0.001, η2 = 0.921 (Figure 7).

Below we discuss the post-hoc analysis, according to Bonferroni, highlighting the
significant differences between pairs of variables in imagined vowel classification processes
in terms of accuracy. Starting with BD1 database, there are significant differences between
the Shallow CNN model (M = 0.3171, SD = 0.0114) and the EEGNet model (M = 0.3506,
SD = 0.0133) (p < 0.05) (Figure 5). Also, there are significant differences between the Shallow
CNN model (M = 0.3171, SD = 0.0114) and the CNNeeg1-1 model (M = 0.6562, SD = 0.0123)
(p < 0.05). There are also significant differences between the EEGNet model (M = 0.3506,
SD = 0.0133) and the CNNeeg1-1 model (M = 0.6562, SD = 0.0123) (p < 0.05) (Figure 7).
Thus, in this comparison the CNNeeg1-1 model (M = 0.6562) has the highest mean followed
by the EEGNet model (M = 0.3506).
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Figure 6. Intra-subject training classification accuracy for the Shallow CNN, EEGNet, and CNNeeg1-1
algorithms using BD2 database.
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Figure 7. Marginal measures in intra-subject training classification for Shallow CNN, EEGNet, and
CNNeeg1-1 algorithms using BD1 and BD2 databases.

Moving on to BD2 database related to imagined vowel classification, there are sig-
nificant differences between the Shallow CNN model (M = 0.5371, SD = 0.0606) and the
EEGNet model (M = 0.7068, SD = 0.0396) (p < 0.05) (Figure 6). Additionally, there are
significant differences between the Shallow CNN model (M = 0.5371, SD = 0.0606) and the
CNNeeg1-1 model (M = 0.8566, SD = 0.0446) (p < 0.05). Also, there are significant differ-
ences between the EEGNet model (M = 0.7068, SD = 0.0396) and the CNNeeg1-1 model
(M = 0.8566, SD = 0.0446) (p < 0.05) (Figure 7). Thus, in this comparison the CNNeeg1-1
model (M = 0.8566) has the highest mean, followed by the EEGNet model (M = 0.7068).

There are also significant differences between the Shallow CNN model with BD1
database (M = 0.3171, SD = 0.0114) and BD2 database (M = 0.5371, SD = 0.0606) for
imagined vowel recognition (p < 0.05). Also, there are significant differences in the EEGNet
model relative to BD1 database (M = 0.3506, SD = 0.0133) and BD2 database (M = 0.7068,
SD = 0.0396) for imagined vowel classification in terms of accuracy (p < 0.05). Additionally,
there are significant differences of the CNNeeg1-1 model in one case contrasting database
BD1 (M = 0.6562, SD = 0.0123) and in the other case contrasting database BD2 (M = 0.8566,
SD = 0.0446) for recognition, in terms of imagined vowel accuracy (p < 0.05). Thus, for
the three CNN models, the corresponding means for BD2 database are superior when
compared to the CNN models for BD1 database (Figure 7).

4.2. Subject’s Internal Visualization BD2 Database CNNeeg1-1

To visualize the internal representation of the CNNeeg1-1 network, the CAM (Class
Activation Mapping) method that predicts the network behavior using class activation was
used [55]. The following figures show the internal visualization for a subject in imagined
vowel tasks (/a/,/e/,/i/,/o/,/u/) using database BD2 in the layer BN_3 (Table 3). Each
figure represents, on the horizontal axis, the pair-wise differences for the 14 electrodes
from E1-E2 to E13-E14 and on the vertical axis, the corresponding frequencies. The colors
represent the CAM value for each electrode pair and each frequency, which oscillates
between 0 to 255.

Figure 8 shows a subject’s internal representation (CAM) for the task of imagining
the vowel /a/. Some of the electrode pairs that are activated the most are: E1–E7 in the
frequencies from 12 to 56 Hz; E3–E14 in the range from 56 to 60 Hz; E4–E12 ranging from
14 to 18 Hz; E7–E12, from 6 to 14 Hz and from 46 to 48 Hz; E9–E11 from 4 to 6 Hz; and
E9–E12 from 4 to 6 Hz, from 32 to 38 Hz, and from 58 to 62 Hz.
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Figure 8. Subject’s Internal representation (CAM) in imagined tasks of the vowel /a/. The horizontal
axis represents the difference between electrode and the vertical axis, the corresponding frequencies.

Figure 9 shows a subject’s internal representation (CAM) for the task of imagining the
vowel /e/. The electrode pairs that are activated the most are: E1–E2, between 36 to 38 Hz
and 52 to 58 Hz; E5–E6, between 46 to 48 Hz; E5–E13, between 26 to 28 Hz; E9–E10, 44 to
46 Hz.

Figure 9. Subject’s internal representation (CAM) in imagined tasks of the vowel /e/. The horizontal
axis represents, the difference between electrodes and the vertical axis, the corresponding frequencies.

In the case of Figure 10, the subject’s internal representation (CAM) for the task of
imagining the vowel /i/ is shown. For this case, the electrode pairs that are activated the
most are: E1–E2, between 6 to 14 Hz; E1–E11 and E1–E12, between 18 to 22 Hz; E5–E7 and
E5–E8, between 2 to 8 Hz; E7–E13, between a frequency of 26 to 30 Hz.

Figure 10. Subject’s internal representation (CAM) in imagined tasks of the vowel /i/. The horizontal
axis represents the difference between electrodes and the vertical axis, the corresponding frequencies.
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Figure 11 shows a subject’s internal representation (CAM) for the task of imagining
the vowel /o/. In this case, the electrode pairs that are activated the most are: E1–E6 for
frequencies between 30 to 32 Hz; E2–E10, between 24 to 30 Hz and 44 to 50 Hz; E4–E11,
between 52 to 54 Hz; E7–E12, between 14 to 20 Hz and 52 to 62 Hz; E7–E14, between 34 to
3 Hz.

Figure 11. Subject’s internal representation (CAM) in imagined tasks of the vowel /o/. The horizontal
axis represents the difference between electrodes and the vertical axis, the corresponding frequencies.

Figure 12 shows a subject’s internal representation (CAM) for the task of imagining
the vowel /u/. The electrode pairs that are activated the most are: E2–E10 for frequencies
between 24 to 28 Hz, 38 to 40 Hz, and 52 to 54 Hz; E2–E11 between 54 to 58 Hz; E4–E10
and E4–E11, between 14 to 18 Hz; E7–E12, between 8 to 12 Hz and 52 to 58 Hz; E7–E13,
between 8 to 12 Hz and 32 to 34 Hz; E7–E14 between 32 to 34 Hz.

Figure 12. Subjects’ internal representation (CAM) in imagined tasks of the vowel /u/. The horizontal
axis represents the difference between electrodes and the vertical axis, the corresponding frequencies.

4.3. Analysis of the Inter-Subject Training Results for the Shallow CNN, EEGNet, and CNNeeg1-1
Algorithms Using BD1 and BD2 Databases

In contrast, the inter-subject training process takes the signals of all subjects in one of
the databases used (15 subjects for database BD1 and 50 subjects for database BD2). When
one of the CNN is trained for, for example subject 1 in BD1, the training set is defined as
the data from the other 14 subjects in database BD1, except for subject 1, and the testing
set is defined as the data from subject 1. For the actual training of the CNN, 70% of the
training set is chosen randomly. Once the training is finished, the results are tested with
30% of the testing set, again chosen randomly. This process is then repeated for each one of
the remaining subjects in database BD1. The same process is carried on with database BD2
independently, that is, the information in both databases is not combined.
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The statistical analysis, for inter-subject training, was conducted using repeated mea-
sures mixed ANOVA. For the inter-subject training in the case of BD1 database, Shallow
CNN obtained a mean and standard deviation of (M = 0.2587, SD = 0.0157) in accuracy.
In the case of EEGNet, an accuracy of (M = 0.3531, SD = 0.0277) was achieved. Finally,
CNNeeg1-1 presented an accuracy of (M = 0.5008, SD = 0.0133) (Figure 13).

Figure 13. Inter-subject training classification accuracy for the Shallow CNN, EEGNet, and CNNeeg1-
1 algorithms using BD1 database.

For the inter-subject training with BD2 database, Shallow CNN achieved (M = 0.2475,
SD = 0.0245). EEGNet has an accuracy of (M = 0.4578, SD = 0.0433). Finally, CNNeeg1-1
presents an accuracy of (M = 0.6276, SD = 0.0645) (Figure 14).

Mauchly’s test indicated that the assumption of sphericity was not met (X(2) = 29.749,
p < 0.05), therefore, the degrees of freedom were adjusted with Greenhouse-Geisser (ε = 0.724).
Tests for intra-subject effects show significant differences between the classification
performed by the three CNN models for imagined speech of the vowels with
F (1,448,91,231) = 1299.262, p < 0.001, η2 = 0.954. Similarly, the results show that there is a
significant interaction between the intra-subject (CNN Model) and inter-subject (database)
variable related to the accuracy F(1,448,91,231) = 73.723, p < 0.001, η2 = 0.539.

In the inter-subject analysis, related to database type, there is a significant difference
between database BD1 (M = 0.371, SD = 0.009) and database BD2 (M = 0.444, SD = 0.005) in
imagined vowel recognition tasks with F(1,63) = 50.377, p < 0.001, η2 = 0.444 (Figure 15).

The post-hoc analysis for the inter-subject training is discussed below, according to
Bonferroni, highlighting the significant differences between pairs of variables in imagined
vowel classification (accuracy) processes. Analyzing first the results obtained with BD1
database, significant differences were found between the Shallow CNN model (M = 0.2587,
SD = 0.0157) and the EEGNet model (M = 0.3531, SD = 0.0277) (p < 0.05) (Figure 13). Also,
there are significant differences between the Shallow CNN model (M = 0.2587, SD = 0.0157)
and the CNNeeg1-1 model (M = 0.5008, SD = 0.0133) (p < 0.05). There are also significant
differences between the EEGNet model (M = 0.3531, SD = 0.0277) and the CNNeeg1-1
model (M = 0.5008, SD = 0.0133) in terms of accuracy (p < 0.05). Thus, in this comparison
the CNNeeg1-1 model (M = 0.5008) has the highest mean, followed by the EEGNet model
(M = 0.3531) (Figure 15).
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Figure 14. Inter-subject training classification accuracy for the Shallow CNN, EEGNet, and CNNeeg1-
1 algorithms using BD2 database.
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Figure 15. Marginal measures in the inter-subject training classification for the Shallow CNN,
EEGNet, and CNNeeg1-1 algorithms using BD1 and BD2 databases.

Moving on to BD2 database, there are significant differences between the Shallow
CNN model (M = 0.2475, SD = 0.0245) and the EEGNet model (M = 0.4578, SD = 0.0433)
(p < 0.05) (Figure 14). Additionally, there are significant differences between the Shallow
CNN model (M = 0.2475, SD = 0.0245) and the CNNeeg1-1 model (M = 0.6276, SD = 0.0645)
(p < 0.05). Also, there are significant differences between the EEGNet model (M = 0.4578,
SD = 0.0433) and the CNNeeg1-1 model (M = 0.6276, SD = 0.0645) in terms of accuracy
(p < 0.05) (Figure 15). Thus, in this comparison, the CNNeeg1-1 model (M = 0.6276) has the
highest mean, followed by the EEGNet model (M = 0.4578).

To complement, for inter-subject training there are no significant differences for the
Shallow CNN model with BD1 database (M = 0.2587, SD = 0.0157) or with BD2 database
(M = 0.2475, SD = 0.0245) (Figure 15). However, there are significant differences for the
EEGNet model with BD1 database (M = 0.3531, SD = 0.0277) and BD2 database (M = 0.4578,
SD = 0.0433) in terms of accuracy (p < 0.05). Additionally, there are significant differences
from the CNNeeg1-1 using database BD1 (M = 0.5008, SD = 0.0133) and using database
BD2 (M = 0.6276, SD = 0.0645, in terms of accuracy (p < 0.05) (Figure 15). Thus, for the
EEGNet and CNNeeg1-1 models, the corresponding means of BD2 database (M = 0.4577
AND M = 0.6276) are superior when contrasted with the CNN models for BD1 database
(M = 0.3531 AND M = 0.5008). For the case of the inter-subject training of the Shallow
CNN, BD1 database has a higher mean (M = 0.2587) than BD2 database (M = 0.2475), but
the difference is not significant (Figure 15).

The Tables 4 and 5 show the results of the training processes for the three CNN
algorithms (Shallow CNN, EEGNet, and CNNeeg1-1) with database BD1 (Table 4) and
database BD2 (Table 5). The tables specify the intra-subject and inter-subject training
models in terms of accuracy.

5. Discussion

This research developed a new algorithm based on Deep Learning, referred to as
CNNeeg1-1, designed for the recognition of imagined speech patterns (/a/,/e/,/i/,/o/,/u/)
based on EEG signals (Figure 4). In addition, a new imagined speech database with 50
Spanish-speaking subjects, named BD2 was created. This database was recorded under
artifact-controlled conditions. It is made up of electroencephalographic signals obtained
according to Hickok and Poeppel’s speech production model, [20] involving the dorsal
pathway between the sensorimotor interface and the articulatory network over the left
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hemisphere, in imagined vowel tasks (/a/,/e/,/i/,/o/,/u/). Finally, the performance of
the CNNeeg1-1 algorithm was compared with two reference algorithms: Shallow CNN and
EEGNet, performing an analysis of the intra-subject (Figure 7) and inter-subject (Figure 15)
training process using database BD2 (50 subjects) and database BD1 (15 subjects), using a
mixed variance analysis of repeated measurements.

Table 4. Average accuracy of the reference algorithms Shallow CNN, EEGNet, and the new algorithm
CNNeeg1-1 for the classification of imagined vowel tasks for intra-subject and inter-subject training
using BD1 database.

Shallow CNN (BD1) EEGNet (BD1) CNNeeg1-1 (BD1)

Model
Training Intra Inter Intra Inter Intra Inter

Mean 0.3171 0.2587 0.3506 0.3531 0.6562 0.5008

SD 0.0114 0.0157 0.0133 0.2774 0.0123 0.0133

Table 5. Average accuracy of the reference algorithms Shallow CNN, EEGNet, and the new CNNeeg1-
1 algorithm in imagined vowel classification tasks for intra-subject and inter-subject training using
BD2 database.

Shallow CNN (BD2) EEGNet (BD2) CNNeeg1-1 (BD2)

Model
Training Intra Inter Intra Inter Intra Inter

Mean 0.5371 0.2475 0.7068 0.4578 0.8566 0.6276

SD 0.0606 0.0245 0.0396 0.0433 0.0446 0.0644

The intra-subject training model CNNeeg1-1 with BD1 database (M = 0.6562, SD = 0.0123)
(Figure 7) and database BD2 (M = 0.8566, SD = 0. 0446) (Figure 15) in EEG imagined
vowel recognition (/a/,/e/,/i/,/o/,/u/) had an accuracy comparable or superior to other
works developed with DL for imagined vowel recognition (/a/,/e/,/i/,/o/,/u/) such
as: DBN with an accuracy of 80% with 6 subjects [18,40] and an accuracy of 87. 96%
with 3 subjects [18]; with RNN an accuracy of 70% with 6 subjects [40]; with CNN an
accuracy of 32.75% with 15 subjects [41,42] and an accuracy of 35.68% with 15 subjects [42].
In the case of Shallow CNN, Deep CNN, EEGNet, for 15 subjects, accuracies of 29.62%,
29.06%, and 30.08% respectively, have been achieved [17]. Thus, it is evidenced that
the CNNeeg1-1 model has a better performance for the recognition of imagined vowels
(/a/,/e/,/i/,/o/,/u/) compared to other DL methods.

On the other hand, studies developed with conventional techniques using machine
learning in imagined vowel classification tasks (/a/,/e/,/i/,/o/,/u/) exhibit outstanding
performance with algorithms such as: ELM, ELM-L, ELM-R, SVM-R, and LDA with
accuracies from 50% to 90% with 5 subjects and 64 electrodes [19]; SVM-G, RVM-G, and
RVM-L with accuracies from 77% to 79% with 5 subjects and 19 electrodes [15]; and with
SVM, Random forest, rLDA with accuracies of 22.23%, 23.08%, and 25.82%, respectively,
have been achieved with 15 subjects and 6 electrodes [17]. Thus, it is evident that the
CNNeeg1-1 model (Figures 7 and 15) has an accuracy that is comparable and in some cases
higher for the recognition of imagined vowels (/a/,/e/,/i/,/o/,/u/) compared to the
previously described ML methods.

The class activation mapping (CAM) method was used to observe the internal behavior
of the CNNeeg1-1 algorithm (Figures 8–12). In this study, it was possible to determine,
for a given subject, the electrodes and frequencies that are activated more intensely in
imagined vowel tasks (/a/,/e/,/i/,/o/,/u/). Thus, it is possible to determine that, for a
specific subject, some of the areas that registered the highest activity were: for the imagined
vowel /a/, the differences between electrodes E1–E7, E3–E14, E4–E12, E7–E12, E9–E11,
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and E9–E12 (Figure 8); for the imagined/e/, the differences between electrodes E1–E2,
E5–E6, E5–E13, E9–E10 (Figure 9); for imagined/i/, the differences between electrodes
E1–E2, E1–E11, E1–E12, E5–E7, E5–E8, E7–E13 (Figure 10); for the imagined/o/, the
differences between electrodes E1–E6, E2–E10, E4–E11, E7–E12, E7–E14 (Figure 11); and
for the imagined/u/, the differences between electrodes E2–E10, E2–E11, E4–E10, E4–E11,
E7–E12, E7–E13, E7–E14 (Figure 12). This indicates that there are different electrodes,
at different frequencies, located between the sensorimotor interface and the articulatory
network related to the language areas of the Hickok & Poeppel model, involved in the
tasks of imagined vowels (/a/,/e/,/i/,/o/,/u/) [20].

As a strategy to evaluate the imagined vowel (/a/,/e/,/i/,/o/,/u/) classification abil-
ity of the CNNeeg1-1 architecture (Figure 4), it was compared with two previously reported
reference architectures for imagined vowels classification: Shallow CNN (Appendix A,
Figure A1) and EEGNet (Figure A2). The results of intra-subject training with BD1 and BD2
databases indicate that there are significant differences between the three CNN models
(Shallow CNN, EEGNet, and CNNeeg1-1) with F (1.31,82.46) = 1017.50, p < 0.001, η2 = 0.942.
For the two databases in the intra-subjects training with post-hoc analysis it was found that
there are significant differences between the models for each of the corresponding pairs
(p < 0.05). This comparison evidenced that, for the case of BD1 database, the CNNeeg1-1
model obtained the highest average value (M = 0.6562, SD = 0.0123) (Figure 7). Similarly,
for BD2 database, the CNNeeg1-1 model obtained the highest average value (M = 0.8566,
SD = 0.0446) (Figure 7). The CNNeeg1-1 model not only recognizes imagined vowels
(/a/,/e/,/i/,/o/,/u/), but also performs better by showing a higher accuracy than the
Shallow CNN and EEGNet models.

For the case of inter-subject training, the results with databases BD1 (Figure 13) and
BD2 (Figure 14) indicate significant differences between the three CNN models (Shallow
CNN, EEGNet, and CNNeeg1-1) with F (1,448,91,231) = 1299.262, p < 0.001, η2 = 0.954. Post-
hoc analysis showed significant differences between the models for each corresponding
pair (p < 0.05). The comparison shows that, for BD1 database, the CNNeeg1-1 model
obtained the highest average value (M = 0.5008, SD = 0.0133, p < 0.05). Similarly, for the
case of BD2 database the CNNeeg1-1 model obtained the highest average value (M = 0.6276,
SD = 0.0645, p < 0.05). Thus, it is evident that the CNNeeg1-1 model recognizes imagined
vowels (/a/,/e/,/i/,/o/,/u/) with both databases in the inter-subject modality with a
better performance than the Shallow CNN and EEGNet architectures (Figure 15).

When comparing BD1 database and BD2 database, regarding the intra-subject training
process, for the three CNN models (Shallow CNN, EEGNet, and CNNeeg1-1) there are sig-
nificant differences between both databases with F (1,63) = 738.12, p < 0.001, η2 = 0.921. For
all three cases, the mean of each of the CNN architectures reported superior performance
for BD2 database compared to BD1 database (p < 0.05) (Figure 7). In the case of the inter-
subject training process, we found that, for the EEGNet and CNNeeg1-1 models, there are
significant differences between BD1 database and BD2 database F (1,63) = 50.377, p < 0.001,
η2 = 0.444, highlighting that the means are higher for BD2 database than for BD1 database
(p < 0.05) (Figure 15). Thus, the performance of the CNNeeg1-1 architecture is verified
by the results in the classification of imagined vowels for both BD1 and BD2 databases.
Additionally, the number of subjects in each database: 15 subjects for BD1 database and
50 subjects for BD2 database, verifies the robustness of the CNNeeg1-1 algorithm.

For this study, we sought to place the electrodes (Figure 1) taking into account the
speech production model of Hickok & Poeppel [20]. In this model, the speech production
process is related to the dorsal branch of the sensorimotor interface and the articulatory
network in the left hemisphere, the motor cortex and Broca’s area [20]. Thus, the available
electrodes (14) were located aiming to cover the corresponding area of the cerebral cortex
for the recording of BD2 database (Figure 1). In contrast, the recording of BD1 database was
done placing three electrodes on the left hemisphere (F3, C3, and P3) around to the language
area and three electrodes (F4, C4, and P4) on the right hemisphere [16]. There are significant
differences between the results obtained with both databases with the three CNN models in
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the case of intra-subject training F (1,63) = 738.12, p < 0.001, η2 = 0.921 and for the EEGNet
and CNNeeg1-1 models in the case of inter-subject training F (1,63) = 50. 377, p <0.001,
η2 = 0.444. For these cases it was found that the accuracy values in the classification of
imagined vowels is higher for BD2 database than for BD1 database (Figures 7 and 15). This
indicates that the placement of the electrodes covering the sensorimotor interface and the
articulatory network of the Hickok and Poeppel [20] model contributes to the recognition
of imagined vowels.

Comparing the BD2 database and BD1 database, we found that BD2 presents a higher
accuracy (Figures 7 and 15). One explanation for the higher performance of BD2 is given
by the controlled characteristics of the experiment such as: controlled lighting conditions
of 80 lm/m2 and controlled environmental noise conditions (ASTM STC 63). During the
recording, the 50 participants were asked to remain seated without moving their limbs,
this is reflected in the decrease of artifacts due to EMG type signals. Finally, during the
acquisition of the signals, the subjects were asked to keep their eyes closed, in order to
reduce artifacts generated by blinking and eye movement.

Regarding the preprocessing of the EEG signals, there are several DL methods that
do not perform preprocessing of imagined vowel signals before they are delivered to
the different DL architectures, but the results show generally low accuracy values in the
classification of imagined vowels [17,41]. Other DL methods perform this preprocessing
in different ways, such as: 2 Hz to 40 Hz filtering, artifact detection and removal with
ICA and analysis with Hessian approximation preconditioning [42]; eigenvalues of the
covariance matrix [18]; 50 Hz LPF- IIR low-pass filters and HPF-IIR high-pass filters of
0. 5 Hz and feature vectors with EEG coherence, partial directed coherence (PDC), direct
transfer function (DFT), transfer entropy [40], among others. EEG signals have a low
signal to noise ratio, and they are nonlinear and non-stationary. In this study, we chose to
perform a preprocessing stage using APIT-MEMD and selecting just a few IMFs. This step
is followed by the application of differences in the FFT of EEG signals between electrodes
for the Shallow CNN, EEGNet, and CNNeeg1-1 models (Figures 4, A1 and A2).

Among the DL architectures that have been used for imagined vowel recognition
are: DBN [18,40], RNN [40], CNN [41,42], Shallow CNN [17], and EEGNet [17]. All these
architectures have tended to use a single neural network with different layers for multiclass
recognition of the imagined vowels. Theses architectures have common elements such
as: 2D convolution layers, max pooling layers, nonlinearity function layers, batch norm
layers, etc. For this study, an architecture called CNNeeg1-1 was designed, which consists
of 10 CNNs and a one-against-one fusion (Figure 4). Each CNN specializes in recog-
nizing an imagined speech vowel pair: CNN (/a/-/e/), CNN (/a/-/i/), CNN (/a/-/o/),
CNN (/a/-/u/), CNN (/e/-/i/), CNN (/e/-/o/), CNN (/e/-/u/), CNN (/i/-/o/),
CNN (/i/-/u/), CNN (/o/-/u/) (Figure 5). According to the information received from
the 10 CNNs, the 1-1 function selects with the one-against-one method the imagined vowel
class (Figure 4). In this sense, the performance of the CNNeeg1-1 architecture is corrob-
orated with the results in the classification of imagined vowels for both BD1 and BD2
databases (Figures 7 and 15). Additionally, the number of subjects, 15 for BD1 database
and 50 for BD2 database, verifies the robustness of the CNNeeg1-1 algorithm.

Among the limitations of the present study are the following: the capture and pro-
cessing of brain signal data with imagined speech was performed offline. The experiment
was carried out in a single session and it is advisable to perform several sessions in future
research. It is advisable to increase the number of electrodes on the language area of the
left hemisphere in future research. In the present study, we worked with imagined vowels,
but we suggest exploring other language elements such as words. Finally, it is advisable to
design other DL architectures to increase the accuracy in data classification.

In general terms, the method based on CNNeeg1-1 for imagined vowels classification
does not require demanding training processes, as in the case of imagined motor tasks [56];
it does not require a rigorous attention process like in SSVEP [57,58], P300, or imagined
motor tasks [59]; it does not require an external stimulus like SSVEP or P300 [60,61]; and it
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does not require cognitive tasks that generate muscular or cognitive fatigue as in imagined
motor tasks [56,59]. Consequently, the CNNeeg1-1 method developed in this study has the
potential to use other language components and to be applied in such relevant fields as
BCI device control.

6. Conclusions

This study developed and tested a new algorithm called CNNeeg1-1 based on DL
for EEG imagined vowel signal recognition using two different databases: BD1, with
15 subjects and BD2, with 50 subjects. The latter was created as part of the study. Among
the factors that influenced the performance of CNNeeg1-1 are: the preprocessing stage
based on the selection of IMFs calculated with the APIT-MEMD algorithm, together with
the selection of the difference of the FFTs between electrodes; in the case of BD2 database,
the location of the electrodes over the sensorimotor interface area and articulatory network
of the left hemisphere based on the Hickok & Poeppel model; the proprietary architecture
of the CNNeeg1-1 that uses 10 CNNs specialized in the recognition of imagined vowel
pairs, feeding a one-against-one block, among others.

Additionally, the performance of the CNNeeg1-1 algorithm was compared with two
reference algorithms with DL: Shallow CNN and EEGNet using both databases. Statistical
results were presented with a mixed analysis of variance of repeated measures for intra-
subject and inter-subject training. The results show that CNNeeg1-1 outperforms both
Shallow CNN and EEGNet for EEG imagined vowel classification in intra-subject and
inter-subject training analysis with both databases. Thus, it is shown that it is possible to
classify imagined vowel with the new CNNeeg1-1 algorithm.
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Abbreviations

BCI Brain-computer interfaces
EEG Electroencephalogram
IS Imagined speech
ML Machine learning
DL Deep Learning
CNN Convolutional neural networks
BD1 Reference database
BD2 New database
APIT-MEMD Adaptive-Projection Intrinsically Transformed MEMD
CAM Class Activation Mapping
ERP Event Related Potential
MRCP Movement Related Cortical Potential
SMR Sensorimotor rhythms
ERS/ERD Event-related synchronization/desynchronization
MI Motor imagery
SVM Support Vector Machine
CSPs Common special patterns
RF Random Forest
LDA Linear Discriminant Analysis
AC Adaptive collection
DWT Discrete Wavelet Transform
DBN Deep Belief Networks

Appendix A. (Shallow CNN Architecture)

The implementation of this algorithm was performed with Tensorflow and Keras and
it was trained in the GPU described in Section 3.2.1.

The Adaptive Moment Estimator (ADAM) was used to train this network. The learning
rate was set to 0.001 and the number of epochs was 60. 70% of the data was used for training
and 30% for validation. Below, the architecture of the corresponding CNN is described.

APIT-MEMD was selected for the preprocessing of the signals for this architecture,
due to the nonlinear and non-stationary characteristics of the signals. The first two IMFs
resulting from APIT-MEMD (IMF1, IMF2) were chosen. These two IMFs were added
up for each one of the 14 electrodes. With the signals obtained from APIT-MEMD, a
transformation between electrode pairs was performed according to the following equation
abs
(

FFT(Ei)− FFT
(
Ej
))

, where Ei and Ej represent each electrode, with i = 1, . . . , 14,
j = 1, . . . , 14, and j > i. (Figure A1).

The input layer for the Shallow CNN consists of a tensor of size 15 × 32 × 1 for
database BD1 and 91 × 32 × 1 for database BD2. This layer receives the image information
obtained from the EEG imagined vowels. The conv2d layer is a 2D convolutional layer
that applies a sliding temporal convolution filter on the input. For this layer, 40 filters
of size [1 × 13] are used and the dimension of the output is 6 × 52 × 40. The next layer
(conv2d_1) is a 2D convolutional layer that applies another sliding spatial convolution
filter on the input (Figure A1). For this layer, 40 filters of size 6 × 1 are used, producing
an output of size 1 × 52 × 40. In the batch_normalization layer, a batch normalization is
applied to improve the training of the convolutional networks and reduce their sensitivity
to network initialization. In this case it is applied to the 40 input channels of the layer. In the
activation layer, the LeakyRELU function with α = 0.1 is applied. The average_pooling2d
layer performs an average pooling, where a downsampling that divides the input into
rectangular regions is developed to subsequently calculate the average value of each
region. The size of each region was 1 × 35, with a stride of 1 × 7; thus, the output has a
size of 1 × 3 × 40. Subsequently, the activation_1 layer applies the LeakyRELU function
with α = 0.1. The dropout layer randomly sets for each input image a mask with 25%
of elements in zero to minimize overfitting effects (Figure A1). In the flatten layer, a
flattening process occurs at a size of 120 and finally, the softmax function is applied, which
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calculates cross entropy loss for the 5 corresponding vowel classes of imagined vowels
(/a/,/e/,/i/,/o/,/u/).

Figure A1. Reference architectures with CNN Shallow CNN.

Appendix B. (EEGNet Architecture)

The implementation of this algorithm was performed with Tensorflow and Keras and
it was trained in the GPU described in Section 3.2.1. The training of the CNN EEGNet used
the Adam (Adaptive moment estimation) optimizer. The learning rate was set to 0.001 and
the number of epochs was 80. 70% of the data was used for training and 30% for validation.
The architecture of the corresponding CNN is described below.

The preprocessing of the signals for this architecture uses the APIT-MEMD method
and selects the first two IMFs (IMF1, IMF2). The chosen IMFs are added up for each one of
the 14 electrodes. The outputs of APIT-MEMD are processed with a transformation between
electrode pairs according to the following equation abs

(
FFT(Ei)− FFT

(
Ej
))

where Ei
and Ej represent each electrode, and i = 1, . . . , 14, j = 1, . . . , 14, and j > i (Figure A2).

The input layer for the EEGNet consists of a tensor of size 15 × 32 × 1 for database
BD1 and 91 × 32 × 1 for database BD2. This layer receives the images obtained from the
EEG imagined vowels. The conv2d_1 layer consists of a 2D convolutional layer that applies
a sliding temporal convolution filter to the input. For this layer, 8 filters size 1 × 64 are con-
figured and the output has a dimension of 6 × 64 × 8. In the batch_normalization_3 layer,
a batch normalization is applied to improve the training of the convolutional networks
and re-duce sensitivity to network initialization. The next layer, depthwise_conv2d_1,
consists of a DepthwiseConv2D convolutional layer that applies a separable Depthwise
2D convolution sliding filter on the input. For this layer, a size of 6 × 1 is configured
producing an output of 1 × 64 × 16. Next, the batch_normalization_4 layer applies a batch
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normalization to improve the training of the convolutional networks (Figure A2). In the
activation_2 layer, we apply the ELU function, where

f (x) =
{

x, x ≥ 0
α(ex − 1), x < 0

(A1)

The hyperparameter α controls the value where the function saturates for negative
layer inputs and it diminish the vanishing gradient effect. In this case, α = 1 is selected
according [17,62]. Next, the average_pooling2d_2 layer corresponds to an average pooling
layer where performs a downsampling that divides the input into rectangular regions to
subsequently calculate the average value of each region. The size of each region was 1 × 4,
so the output has a size of 1 × 16 × 16. The dropout_2 dropout layer randomly sets, for
each input image, a mask with 25% of its elements set to zero to minimize overfitting effects.
The next layer, separable_conv2d_1, applies a separable 2D convolution sliding Depthwise
filter on the input. For this layer, 16 filters of size 1 × 16 are configured producing an
output of 1 × 16 × 16 (Figure A2).

Figure A2. Reference architectures with EEGNet.

Subsequently, in the batch_normalization_5 layer a batch normalization is applied,
followed by the activation_3 layer that applies the ELU function with α = 1. Next, the
average_pooling2d_3 layer calculates the average value of each region. In this case, the
size of each region was 1 × 8, thus the output has a size of 1 × 2 × 16 (Figure A2).

Next, the dropout layer randomly sets, for each input image, a mask with 50% of
its elements set to zero to minimize overfitting effects. In the flatten layer, a flatten-
ing to a size of 32 takes place, and finally, the softmax function is applied which calcu-
lates the cross- entropy loss for the 5 corresponding vowel classes with imagined vowels
(/a/,/e/,/i/,/o/,/u/) (Figure A2).
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