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Abstract: Ovothiols are histidine-derived thiols isolated from sea urchin eggs, where they 

play a key role in the protection of cells toward the oxidative burst associated with 

fertilization by controlling the cellular redox balance and recycling oxidized glutathione.  

In this study, we show that treatment of a human liver carcinoma cell line, Hep-G2, with 

ovothiol A, isolated from Paracentrotus lividus oocytes, results in a decrease of cell 

proliferation in a dose-dependent manner. The activation of an autophagic process is 

revealed by phase contrast and fluorescence microscopy, together with the expression of 

the specific autophagic molecular markers, LC3 II and Beclin-1. The effect of ovothiol is 

not due to its antioxidant capacity or to hydrogen peroxide generation. The concentration 

of ovothiol A in the culture media, as monitored by HPLC analysis, decreased by about 

24% within 30 min from treatment. The proliferation of normal human embryonic lung 

cells is not affected by ovothiol A. These results hint at ovothiol as a promising bioactive 

molecule from marine organisms able to inhibit cell proliferation in cancer cells. 
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Abbreviations 

Ovo A, 5-histidylcysteine sulfoxide synthase; LC3, Microtubule-associated protein 1A/1B-light 

chain 3. 

1. Introduction 

The marine environment is characterized by a high biodiversity of species, which accounts for the 

enormous chemical diversity representing a great potential source of bioactive molecules. This has led 

to the discovery of several hundreds of novel compounds, whose biological properties and 

biotechnological applications are being intensively investigated [1,2]. 

Among these, a new class of sulfur-containing amino acids, thiohistidine derivatives, termed 

ovothiols, have been isolated as disulfides in three different forms, A, B and C, differing in the degree 

of methylation. In particular, ovothiol A is unmethylated, whereas ovothiol B and C are mono- or  

di-methylated at the aminoacidic amino group, respectively. These metabolites are present in ovary, 

eggs and biological fluids of various marine invertebrates and some fishes [3–9]. Ovothiols have also 

been found in human pathogens, such as Leishmania major and Trypanosoma cruzi [10,11], and in 

some microalgae [12].  

Recently, a renewed interest in ovothiols has been raised from the identification and characterization 

of a 5-histidylcysteine sulfoxide synthase (OvoA), the enzyme that catalyzes the first step of their 

biosynthesis [13–15]. In silico analysis of homologous OvoA enzymes revealed that they are encoded 

in more than 80 genomes from proteobacteria to animalia.  

The wide occurrence of ovothiols in various organisms points to their involvement in different 

biological processes. Indeed, ovothiols have been reported to play a key role in sea urchin, since they 

protect the embryo from the high oxidative burst at fertilization, reacting with hydrogen peroxide with 

a rate constant five times greater than glutathione [6,7]. Moreover, it has been suggested that ovothiols 

are involved in the protection of some pathogens from oxidative stress during infection [16] and in the 

regulation of the redox control of chloroplasts [12]. In vitro studies revealed that ovothiols are potent 

antioxidants; they react with a variety of radicals with efficiency comparable to that of ascorbic acid 

and the tocopherol analogue, trolox [17]. Starting from ovothiols, many derivatives have been 

synthesized and their antioxidant properties examined in in vitro systems [18–21]. One of these 

compounds has been shown to be a potent agent in mammalian cerebroprotection [22]. Further 

biological activities have been poorly investigated.  

In the present study, the biological activity of ovothiol A disulfide (Figure 1) purified from sea 

urchin Paracentrotus lividus eggs has been tested on a human liver carcinoma cell line, Hep-G2. 

Treatment with increasing concentrations of ovothiol A resulted in a decrease of cell viability with a 

concomitant occurrence of autophagy, as assessed by fluorescence microscopy and the expression of 

specific autophagic molecular markers. 
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Figure 1. Structure of ovothiol A disulfide. 
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2. Results  

2.1. Isolation of Ovothiol A 

Ovothiol A was isolated from eggs of the sea urchin, Paracentrotus lividus, by the procedure 

previously developed with some modifications [4]. The homogenate was freed from protein by 

treatment with acidic ethanol overnight and from the lipid component by ethyl ether extraction and 

then fractionated by ion exchange chromatography with HCl gradient elution. The 4 M HCl eluates 

showing a broad absorption centered at 260 nm were neutralized to pH 8 and allowed to stand in air to 

get the conversion of any ovothiol A into the disulfide. Further purification by ion exchange 

chromatography with 2 M HCl elution afforded pure ovothiol A disulfide (reverse phase HPLC 

analysis, detection at 254 and 280 nm), identified by the comparison of the elutographic, absorption 

and mass properties (RT 9 min, eluant A, A280/A254 = 1, ESI (+) MS m/z 401 [M + H]
+
) (Figure 2) 

with those of an authentic sample, previously isolated from sea urchin oocytes and characterized by 
1
H-NMR and 

13
C-NMR spectra (see the Experimental Section for 

1
H-NMR and 

13
C-NMR data) [3,4].  

Figure 2. Analysis of ovothiol A purified from sea urchins. (A) Elutographic profile of 

ovothiol A obtained by ion exchange chromatography purification of the sea urchin 

extracts. Detection at 254 (black trace) and 280 (red trace) nm. Inset: UV-Vis absorption 

spectrum of ovothiol A; (B) Mass spectrum of ovothiol A. 

 



Mar. Drugs 2014, 12 4072 

 

 

Figure 2. Cont.  

 

2.2. Anti-Proliferative Effects of Ovothiol A in the Hep-G2 Cell Line 

To assess whether ovothiol A was able to interfere with cell proliferation, Hep-G2 cells were 

incubated in the presence of different concentrations of ovothiol A for 24 h. The crystal violet dye 

assay was employed to measure the viability and proliferation of cells after incubation. Ovothiol A was 

cytotoxic in a dose-dependent manner with a maximum effect in the range of 50–100 μM (Figure 3A). 

At 24 h, the decrease in cell viability was of 24% and 52% at 50 and 100 μM, respectively, compared 

to untreated controls. Similar effects were obtained on the treatment of Hep-G2 cells with comparable 

concentrations of ovothiol C, isolated from Sphaerechinus granularis eggs [4] (data not shown).  

Figure 3. Ovothiol A induces a dose-dependent cytotoxicity in Hep-G2 cells.  

(A) Cells were treated for 24 h with increasing doses of ovothiol (10–200 μM) or positive 

controls (quercetin and sorafenib at 25 μM and 20 μM, respectively), and cell viability  

was measured by the crystal violet assay. Values are presented as the mean ± SD compared 

to untreated cells. Symbols (a, b, c, d, e, f, g) indicate significance: p < 0.001 with  

respect to untreated (a) and treated cells (b = ovothiol 10 μM; c = ovothiol 50 μM;  

d = ovothiol 100 μM; e = ovothiol 200 μM; f = quercetin 25 μM, g = sorafenib 20 μM)  

(one-way ANOVA test); (B) Representative images of cells treated with ovothiol A at  

100 μM (optical microscope Axiovert 200 M Zeiss; 400×, bright field). The arrows indicate 

the presence of vacuoles in treated cells. 

 

← m/z = 401.0 
 B 
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Figure 3. Cont. 

 

A representative picture of the effects of ovothiol A on Hep-G2 proliferation is shown in the 

micrographs reported in Figure 3B. The limited number of dead cells with the concomitant presence of 

vacuoles and an altered cell morphology was suggestive of the activation of an autophagic process. 

Quercetin and sorafenib, whose capacity to induce autophagy has been previously documented, were 

employed as positive controls (Figure 3A,B) [23,24]. 

2.3. Sea Urchin Ovothiol A Activates Autophagic Processes in the Hep-G2 Cell Line 

The presence of vacuoles within Hep-G2 cells treated with ovothiol A (Figure 3B) suggested  

the activation of an autophagic process. To verify this hypothesis, we used multiple assays to detect 

autophagy and to avoid false-positive results [25]. Hep-G2 cells were stained with Cell-ID™ Green 

autophagy dye (Vinci-Biochem, Vinci, FI, Italy), a fluorescent reagent able to specifically incorporate 

autolysosomes [23]. Immunofluorescence staining indicated the presence of autolysosomal vacuoles in 

cells incubated with ovothiol A (Figure 4A), with a maximum effect in the range of 100–200 μM 

(46%–47%). As positive controls, we treated Hep-G2 cells for 24 h with 25 μM quercetin, 20 μM 

sorafenib and 1 μM rapamycin, (Figure 4A, panels e,f,g and e’,f’,g’). The vacuoles stained by  

Cell-ID™ Green were clearly visible under phase contrast microscopy (Figure 4A, top panels). The 

result of the Cell-ID™ Green assay overlapped with the quantification obtained by measuring the 

fluorescence emitted by vacuoles (FITC) and by normalizing with that deriving from nuclei (Hoechst, 

Vinci-Biochem, Vinci, FI, Italy) through a spectrofluorimetric reading (data not shown). 

The activation of an autophagic process was confirmed by immunoblots, which showed the 

increased expression of microtubule-associated protein 1A/1B-light chain 3 (LC3) II and Beclin-1 

bands after 24 h of ovothiol A incubation (Figure 4B). Densitometric analyses of the relevant bands are 

reported in Figure 4C. The former is a lipidated form of the soluble LC3 I and is a factor essential for 

autophagosome formation [26]; the latter, Beclin-1, is the mammalian orthologue of yeast Atg6, which 

interacts with several cofactors to form core complexes, thereby inducing autophagy [27].  

To assess whether the cytotoxicity measured in Figure 3A was a consequence of the autophagic 

process triggered by ovothiol A, we employed chloroquine, a compound largely accepted in the 

literature as an autophagy inhibitor [28–31]. As reported in Figure 5, the co-treatment with chloroquine 

for 24 h protected Hep-G2 cells from ovothiol-induced cell death at the concentrations at which 

ovothiol was effective.  
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Figure 4. Ovothiol A induces autophagy in Hep-G2 cells. (A) After stimulation for 24 h 

with increasing doses of ovothiol (50–200 μM) or positive controls (quercetin, sorafenib 

and rapamycin, at 25, 20 and 1 μM, respectively), autophagy was detected and measured 

using a specific kit, as described in the Materials and Methods Section. At least 100 cells in  

two independent fields were counted using a phase contrast microscope, and the presence 

of positive autophagic cells was evaluated by fluorescence in the same fields. The figure 

shows representative images of cells treated with ovothiol, quercetin, sorafenib and 

rapamycin at the indicated concentrations (optical microscope Axiovert 200 M Zeiss; 400×, 

phase contrast in a–g and fluorescence FITC in a’–g’). Numbers on the bottom of panels  

a’–g’ indicate percentage (means ± SD compared to untreated cells of two separate 

experiments) of positive autophagic cells; (B) Western blot analysis of LC3 I, LC3 II and 

Beclin-1 expression in Hep-G2 cells treated for 24 h with indicated doses of ovothiol, 

quercetin and sorafenib. Bands are representative of one out of three separate experiments 

performed; (C) Densitometric analysis of blots shown in Panel B (optical density of LC3 

II/α-tubulin, left and Beclin-1/α-tubulin, right). Values are presented as the mean ± SD 

Symbols indicate significance: p < 0.05 (*), p < 0.01 (**), p < 0.001 (***) with respect to 

untreated cells. 
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Figure 4. Cont. 

 

 

Figure 5. Ovothiol A induces autophagy-dependent cell death in Hep-G2 cells. Cells were 

pre-treated with 20 μM chloroquine for 1 h followed by the addition of the indicated doses 

of ovothiol A (10–200 μM) for 24 h. Cell viability was measured by the crystal violet 

assay. Symbols indicate significance: p < 0.05 (*) and p < 0.005 (***) between ovothiol A 

and chloroquine plus ovothiol co-treated samples. 
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2.4. Ovothiol A Recovery in the Culture Media of the Hep-G2 Cell Line 

Hep-G2 cell cultures treated with 200 μM ovothiol A were examined for the presence of  

ovothiol A, compared to untreated control cells. At different times, culture media and cellular pellet 

extracts were examined by HPLC for the presence of ovothiol A. After 10 and 30 min of incubation, 

ovothiol A in culture media was reduced to 80% and 76% compared to 0 min (Figure 6).  

Figure 6. Ovothiol A levels decrease in the incubation medium. The HPLC trace of  

the Hep-G2 culture medium following treatment with 200 μM ovothiol; (A) T = 0 min;  

(B) T = 30 min. Detection at 254 (black trace) and 280 (red trace) nm. Highlighted is the 

peak corresponding to ovothiol A. 

 
 

(A) (B) 

The analysis of cell lysates even after 30 min of incubation failed to reveal the presence of 

appreciable (detection limit < 10 μM) amounts of ovothiol A, nor of its reduced thiol form. The 

possibility that the loss of ovothiol A was due to sequestration into the cell membrane was ruled out by 

solubilization of the cellular debris after the removal of the lysates with SDS, followed by HPLC 

analysis, which, however, did not show appreciable amounts of the compound. 

2.5. ROS Production in the Hep-G2 Cell Line 

To assess whether the effects induced by ovothiol A were related to its antioxidant capacity, the 

level of ROS in Hep-G2, after treatment with ovothiol A at the highest concentration employed in 

previous experiments, was measured. As reported in Figure 7, when cells were incubated with the ROS 

indicator, DCFH-DA, no significant fluorescence decrease was observed compared to untreated cells, 

ruling out any antioxidant action of ovothiol A. As controls, we employed H2O2 (10 mM) and 

quercetin (25 μM) as oxidant and antioxidant agents, respectively, to demonstrate that Hep-G2 can 

sense different ROS concentrations. 

Similarly, we excluded the possibility that the cytotoxicity associated with the treatment with 

ovothiol A could derive from the generation of H2O2 following the interaction between ovothiol A and 

cell culture medium components, an artifact previously described for several naturally occurring 

molecules [32,33]. By means of the ferrous oxidation-xylenol orange (FOX) assay (Experimental 

Section), the formation of H2O2 was measured after the incubation of 200 μM ovothiol A in culture 

medium in the absence of cells. No detectable amounts of H2O2 were produced after 30–60 min (data 

not shown). 
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Figure 7. Ovothiol A does not decrease ROS levels in Hep-G2 cells. Cells were treated for 

30 and 60 min with the maximal dose of ovothiol (200 μM), 25 μM quercetin and H2O2  

10 mM (5 and 15 min positive control). ROS levels were measured by the DCF assay as 

described in the Materials and Methods Section. Bar graphs represent the mean (expressed 

as the percent of untreated) ± SD. Symbols indicate significance: p < 0.001 (***);  

(*) p < 0.05 with respect to untreated samples. 

 

2.6. Ovothiol A Is Not Cytotoxic on Immortalized Fibroblast 

WI-38 are diploid human embryonic lung cells often used as an example of non-malignant cells with 

respect to the cancer cell line [34,35]. In fact, WI-38 are diploid cells with a normal karyotype, a finite 

lifetime and a cell division cycle that is normally regulated. Since we tested the effect of ovothiol A on a 

cell line where cell division is dysregulated, we selected WI-38 as a possible normal counterpart of 

Hep-G2 cells. 

When incubated in the presence of increasing concentrations of ovothiol A, no significant 

cytotoxicity (<10%) was observed, even at the highest concentration tested (Figure 8). Paradoxically, 

treatment with 10 μM ovothiol A slightly, but not significantly, increased cell proliferation, suggesting 

the activation of a hormetic process frequently occurring when drugs and natural compounds are tested 

at low concentrations [36,37]. This possibility may be explored in the near future. 

Figure 8. Ovothiol does not induce cytotoxicity in WI-38 cells. Cells were treated for  

24–48 h with increasing doses of ovothiol A (10–200 μM), and cell viability was measured 

by the crystal violet assay. Values are presented as the mean ± SD compared to untreated cells. 
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3. Experimental Section 

3.1. Animals 

Sea urchins were collected during the breeding season in the Gulf of Naples from a location that it 

is not privately-owned nor protected in any way, according to the authorization of Marina Mercantile 

(Italian Republic presidential decree 1639/68, 09/19/1980 confirmed on 01/10/2000). The field studies 

did not involve endangered or protected species. All animal procedures were in compliance with the 

guidelines of the European Union (Directive 609/86). The animals were transported in an insulated box 

to the laboratory within 1 h after collection and maintained in tanks with circulating sea water until 

testing. To induce gamete ejection, sea urchins were injected with a KCl 0.5 M solution through the 

peribuccal membrane. Eggs were washed with sea water and filtered through gauze to remove pieces 

of spicules. The collected eggs were centrifuged at 2000× g for 10 min, and the precipitate containing 

the eggs was kept at −20 °C until use. 

3.2. Chemicals and Reagents 

Crystal violet, formalin, acetic acid, dimethylsulfoxide (DMSO), chloroquine and Dowex
®

 50WX2, 

200–400 mesh, were purchased from Sigma-Aldrich (Milan, Italy); H2O2 was from Carlo Erba Reagents 

(Milan, Italy); rapamycin was from Enzo Life Science, PBS (phosphate-buffered saline) tablets and 

DCFH-DA (dichlorofluorescein-diacetate) were purchased from Life Technologies (Monza, Italy). 

3.3. Isolation of Ovothiol A Disulfide 

Sea urchin eggs (10 g) were homogenized in ethanol–1 M HCl 80:20 v/v (65 mL) and left overnight 

at room temperature under stirring in the air. After centrifugation at 14,000× g for 15 min at 4 °C, the 

supernatant was recovered. The pellet was washed three times with acidic ethanol, and the combined 

supernatants, concentrated to a small volume, were extracted three times with ethyl ether (50 mL) 

freed from peroxide by passage over an alumina column. The aqueous layer was taken to a small 

volume and loaded onto a Dowex 50WX2, column (1 cm × 22 cm). Elution was sequentially carried 

out with water, 0.1 M, 0.5 M HCl. The column was then eluted with 4 M HCl, and the collected 

fractions were monitored spectrophotometrically in the 200–350 nm range. Fractions exhibiting the 

UV spectrum typical of ovothiol (see Figure 2) were collected, concentrated to a small volume and 

oxidized in the presence of air, for 4 h at pH 8. After acidification to pH 2, the sample was  

re-chromatographed on the same Dowex column. Fractions exhibiting the UV spectrum of ovothiol 

were collected and taken to dryness, affording a colorless, glassy solid (2.5 mg). The purity of the 

compound was checked by LC-MS analysis run on LC/MSD Agilent 1100 VL: RT 9 min, 1% formic 

acid taken to pH 4.5, with ammonia as the eluent (Eluent A), m/z 401 ([M + H]
+
). 

1
H (

13
C) spectra 

were run at 400 (100.1) MHz on a Bruker Instrument. 
1
H-NMR spectrum (D2O): δ 3.44 (2H × 2, d,  

J = 7.5 Hz, βCH2), 3.94 (3H × 2, s, N-Me), 4.29 (1H × 2, t, J = 7.5 Hz, αCH), 8.95 (1H × 2, s, H-2). 
13

C-NMR spectrum (D2O): δ 25.5 (CH2), 34.0 (CH3), 54.5 (CH), 130.0 (C), 134.8 (C), 141.1 (CH), 

173.3 (C). 
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3.4. Cell Culture and Viability 

The Hep-G2 cell line, derived from a human hepatocellular carcinoma [38], and WI-38 from  

ATCC [39] were maintained in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% 

fetal bovine serum (FBS; Lonza, Belgium), 1% L-glutamine, 1% penicillin, 1% streptomycin  

(Life Technologies) at 37 °C, in a 5% CO2 humidified atmosphere and harvested at approximately 90% 

confluence. For viability experiments, cells were plated in a 48-multiwell plate at a density of  

3–5 × 10
4
/mL in a total volume of 0.5 mL and allowed to adhere for 24 h. Subsequently, cells were 

treated for 24 h with ovothiol A at the concentrations indicated. 

Cell viability was determined by the crystal violet assay [40]. Briefly, medium was carefully 

removed and the cells gently washed with PBS. After fixing with 10% formalin for 15 min to room 

temperature, 0.1% crystal violet (w/v) was added and the cells incubated at room temperature for  

30 min. Prior to the dye solubilization, cells were photographed in bright field (magnification 400×) 

using an inverted microscope (Axiovert 200 Ziess, Jena, Germany). After washing, cells were added 

with 10% acetic acid to solubilize the dye, and the absorbance was measured spectrophotometrically  

at 590 nm. Experiments have been done in triplicate and were repeated 3 times. 

3.5. Measurement of Autophagy 

Autophagic cell death was monitored by using the Cell-ID™ Autophagy Detection Kit  

(Vinci-Biochem, Vinci, FI, Italy) using quercetin and sorafenib as the positive control [23,24]. The 

Cell-ID™ Green autophagy dye is used as a selective marker of autolysosomes and earlier autophagic 

compartments. One day prior to staining, cells (3 × 10
4
) were seeded in a 24-multiwell plate and 

allowed to grow for 24 h under cell culture conditions. After incubation with ovothiol A (10–200 μM) 

for 24 h, Hep-G2 cells were washed with assay buffer and incubated with the autophagy detection 

marker diluted 1:500 in DMEM without phenol red (Life Technologies, Milan, Italy) supplemented 

with 5% FBS for 30 min. Cells were rinsed with assay buffer and observed by fluorescence 

microscopy (Zeiss Axiovert 200, Milan, Italy). Those observed in the same field were counted both in 

phase contrast and fluorescence to evaluate the presence of vacuoles. Experiments were performed 

twice in duplicate, and 100 cells per well were counted. 

3.6. Immunoblots 

After treatments, cells (0.5 × 10
6
) were resuspended in lysis buffer, as reported [29], and following 

the measurement of protein concentration, total protein lysates (20 μg) were loaded on a 4%–12%  

pre-cast gel (Novex Bis-Tris pre-cast gel 4%–12%; Life Technologies, Milano, Italy) using MES  

(2-(N-morpholino)ethanesulfonic acid) buffer, according to the manufacturer’s protocol. Immunoblots 

were performed following standard procedures and using as primary antibodies anti-LC3 (Cell 

Signalling; Milano, Italy), anti-Beclin-1 (GeneTex, Prodotti Gianni Milano, Italy) and anti-α-tubulin 

(Sigma-Aldrich, Milan, Italy). PVDF membranes were finally incubated with horseradish  

peroxidase-linked secondary antibody against mouse or rabbit (GE Healthcare, Milano, Italy) and 

immunoblots developed using the ECL Plus Western Blotting Detection System Kit (GE Healthcare, 
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Milan, Italy). Band intensities were quantified measuring optical density on a Gel Doc 2000 Apparatus 

(Bio-Rad Laboratories, Milan, Italy) and Multi-Analyst Software (Bio-Rad Laboratories, Milan, Italy). 

3.7. Intracellular ROS Measurement 

ROS production was assayed using 2′-7′-dichlorofluorescein diacetate (DCFH-DA; Life Technologies, 

Milan, Italy), a non-fluorescent product that freely permeates cells. Hep-G2 cells were stimulated 5 and 

15 min with H2O2 10 mM (positive control), 200 μM ovothiol A or 25 μM quercetin (30–60 min) and 

incubated at 37 °C in 5% CO2. After several washes with PBS, cells were incubated for 30 min  

with 10 μM DCFH-DA at 37 °C in 5% CO2. When DCFH-DA penetrates membrane, the diacetate  

group is hydrolysed by cellular esterase, and then, DCFH is oxidized to a fluorescent molecule,  

2′-7′-dichlorofluorescin (DCF), by intracellular peroxides. After incubation, fluorescence was 

spectrofluorimetrically determined (FL-500; Bio-Tek Instruments, Milan, Italy) with an excitation 

setting of 485 ± 20 nm and an emission setting of 530 ± 20 nm. Experiments have been done in 

quadruplicates and repeated 2 times. 

3.8. Ferrous Oxidation-Xylenol Orange (FOX) Assay 

Cell culture medium (RPMI/10%FCS) was incubated for 30–60 min in the presence of PBS 

(control) or ovothiol A in a 96-well microtiter plate (total volume 0.2 mL). Subsequently, 0.1 mL of  

the incubated medium was mixed with 0.9 mL of FOX reagent (1:9 v/v of 1 mM xylenol orange,  

2.5 mM Fe(NH4)2(SO4)2 and 4.4 mM 2,6-di-tertbutyl-4-methylphenol in methanol). After 30 min, 

samples were centrifuged in a microfuge at maximal speed for 5 min, and the absorbance of the 

supernatants was determined spectrophotometrically at 560 nm. Results were expressed as hydrogen 

peroxide equivalent [41]. Experiments have been done in triplicate and repeated 3 times. 

3.9. Analysis of Ovothiol A in Cell Cultures 

Hep-G2 cells (1.2 × 10
6
 cells) were cultured in the absence and presence of 200 μM ovothiol A and 

collected after incubation at different time intervals. The culture media are recovered by centrifugation 

and directly analyzed by HPLC for ovothiol A quantitation. The cellular pellets are suspended in PBS, 

sonicated and the supernatants examined by HPLC analysis. Experiments were run in duplicate. HPLC 

analyses were run on an LC10AD instrument equipped with binary pumps and a Shimadzu  

SPD-10AVP detector set at 254 nm and 280 nm. A Phenomenex Synergi Sphereclone octadecylsilane  

(25 cm × 0.46 cm, 4 μ particle size) column was used with Eluent A, at a 0.7 mL/min rate. 

4. Discussion 

The results of this study provide evidence that ovothiol A has an anti-proliferative effect on the 

human hepatocellular carcinoma Hep-G2 cell line, leading to the activation of autophagy, a complex 

and well-controlled catabolic process, which usually allows cells to survive stress signals, like nutrient 

deprivation, by recycling its own cytoplasmic components through lysosomal pathways [31]. This 

process, called “macroautophagy” or simply “autophagy”, is different from other forms of catabolic 

recycling, involving proteasome and chaperone pathways (microautophagy). Autophagy is not only a 
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process allowing cells to resist metabolic stress, because, if cells do not recover this gap, they die with 

a form of programmed cell death (PCD Type 2), genetically and morphologically different from apoptosis 

(PCD Type 1) and necrosis (Type 3) [42,43]. The morphological changes that define autophagy include 

a slow formation of double-membrane-formed vacuoles, which incorporate parts of the cytoplasm 

subsequently digested by lysosomal hydrolases (reviewed in [31]). As a matter of fact, the presence of 

vacuoles within Hep-G2 cells after treatment with ovothiol A has suggested the occurrence of autophagy. 

From a mechanistic point of view, autophagy includes several steps: initiation, vesicle nucleation, 

elongation process, docking and fusion, vesicle breakdown and degradation. The phagophore (also 

called the isolation membrane) sequesters material in double-membraned vesicles in autophagic 

vacuoles. Vesicle nucleation activates the mammalian PI3K multiprotein complex, which includes 

Beclin-1. The elongation process may involve the conjugation of phosphatidylethanolamine to LC3, 

leading to the conversion of the soluble form LC3 I to the lipidated form LC3 II, essential for 

autophagosome formation. Autophagosomes undergo maturation by fusion with lysosomes to create 

autolysosomes, where the inner membrane and the luminal content of the autophagic vacuoles are 

degraded by lysosomal enzymes (see [44] for a review). The fluorescence staining of autolysosomes, 

together with the increased expression of the two autophagic markers, LC3 II and Beclin-1, clearly 

demonstrate that ovothiol A induces these autophagic steps in Hep-G2 cells. Considering that the BH3 

domain of Beclin-1 is bound to and inhibited by Bcl-2 or Bcl-XL, a functional relationship between 

autophagy and apoptosis could be envisaged. The use of chloroquine enforces this concept. This 

molecule is known as an antimalarial drug that inhibits lysosomal acidification and is used in 

autophagy-related studies as an inhibitor, since it impairs autophagosome-lysosome fusion and 

lysosomal degradative activity [31]. The presence of chloroquine abolished the cytotoxicity induced by 

ovothiol A, demonstrating that cell death is dependent on autophagy. Considering the relationships 

between autophagy and cancer [45], the ovothiol A-induced autophagy does not protect cell survival, 

but contributes to cell death, at least in the Hep-G2 cell line.  

Since autophagy is an intracellular lysosomal degradation process, induced under stress conditions, 

the role of ROS, generated from mitochondria or external sources, is usually assessed [46]. However, 

our data excluded that the effect of ovothiol A on Hep-G2 cells was due either to its antioxidant 

capacity or to H2O2 generation.  

Our HPLC data indicated that the concentration of ovothiol in the culture medium decreased by 

about 20% within 30 min, suggesting that the effective concentration of the compound is significantly 

lower than the administered concentration. On the other hand, the amounts found inside the cells were 

below the detection limits, and also, the possibility of sequestration into the cell wall was ruled out. It 

is possible, therefore, that the failure to detect ovothiol A inside the cells is due to its interaction with 

other cellular components, e.g., redox exchange with intracellular thiols, or with free cysteine residues 

of proteins, as demonstrated for glutathione [47,48]. The finding that both ovothiol A and ovothiol C  

have the same effect on Hep-G2 cells demonstrated that methylation did not affect the bioactivity of 

these compounds. 

A possible weakness of this work may be represented by the relatively high concentrations of 

ovothiol A applied to Hep-G2 cells. However, two main considerations support the view of a significant 

effect of ovothiol A: (1) we demonstrated that “normal” cells, such as WI-38 (Figure 8), are resistant to 

the doses applied to Hep-G2 cells, suggesting that the biological effects exerted by ovothiol A on  
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Hep-G2 cells are not due to non-specific cytotoxicity, but it is the result of the activation of well-defined 

cellular processes (autophagy); (2) preliminary data [49] on at least two additional cell lines showed 

that the cytotoxic effect of ovothiol A was measured at lower concentrations (10–25 μM) compared to 

Hep-G2. Future efforts will be devoted to ameliorate the pharmacological properties of ovothiol A.  

Other bioactive molecules, isolated from plants, animals, marine organisms and microorganisms, 

have been shown to induce autophagy [50–52]. Our results that ovothiol A induced autophagy of  

Hep-G2 cell line are relevant, considering the great interest in the connection between autophagy and 

cancer cell metabolism [53].  

5. Conclusions 

This study enforces the enormous importance of the marine environment as a source of potential 

pharmacological compounds. Indeed, we clearly demonstrated that ovothiol A, isolated from sea 

urchin eggs, induced the autophagy-dependent cell death of human hepatic cancer cells, being inactive 

on normal cells. Several pharmacological inhibitors and small interfering RNAs, able to affect key 

steps in the autophagic process, represent potential anticancer drugs. Future studies will be directed to 

investigate the potential therapeutic effects of ovothiol A.  
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