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Abstract: FRET biosensors have become a routine tool for investigating mechanisms and components
of cell signaling. Strategies for improving them for particular applications are continuously sought.
One important aspect to consider when designing FRET probes is the dynamic distribution and
propagation of signals within living cells. We have addressed this issue by directly comparing an
anchored (taFS) to a non-anchored (naFS) cleavable FRET sensor. We chose a microtubule-associated
protein tau as an anchor, as microtubules are abundant throughout the cytosol of cells. We show
that tau-anchored FRET sensors are concentrated at the cytoskeleton and enriched in the neurite-like
processes of cells, providing high intensity of the total signal. In addition, anchoring limits the
diffusion of the sensor, enabling spatiotemporally resolved monitoring of subcellular variations in
enzyme activity. Thus, anchoring is an important aspect to consider when designing FRET sensors
for deeper understanding of cell signaling.

Keywords: apoptosis; caspase; FRET sensor; live cell imaging; neurodegeneration; signal
transduction

1. Introduction

Signal transduction within living cells is a very complex multilevel process which involves
organization of its multiple components into specific microdomains for efficient and tightly controlled
signaling [1]. For many signaling molecules, the site and the duration of their activity defines the
functional outcome. For instance, transient increases in the concentration of cytoplasmic Ca2+ is a key
component of synaptic activity and plasticity. On the other hand, prolonged elevation of intracellular
Ca2+ concentration is a cause of excitotoxicity which leads to neurodegeneration (reviewed by [2]).
Similarly, global activation of apoptotic proteases of the caspase family within a cell results in its
death, while it has been demonstrated that spatiotemporally limited activation of these enzymes plays
important role in differentiation of several types of cells (reviewed by [3]).

Over the past decades, Förster resonance energy transfer (FRET)—based biosensors have proved
one of the most valuable and powerful tools for assessing the signal transduction within living
cells. For instance, they have been widely used for assaying activity of enzymes, conformational
changes in proteins, protein-protein interactions, fluctuations in cytoplasmic ion concentration and
pH (reviewed by [4]). Accordingly, FRET probes are continuously being re-designed for more and
more advanced applications. One trend is targeting the sensors to different subcellular compartments,
which enables monitoring signaling events at the locations of interest (e.g., [5–10]). Another direction
is improvement of the properties of individual fluorophores and their relative orientation, i.e., FRET
efficiency per se. However, in the context of the spatiotemporal aspect of signal transduction, anchoring
of a sensor is equally important to consider.
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We have previously reported detection of caspase-6-like (VEIDase) activity at subcellular levels
using a tau-anchored FRET sensor preferentially processed by this caspase [11]. In particular, this
sensor allowed for spatial and temporal discrimination between caspase activation within the soma and
the neuritic processes of differentiated SH-SY5Y cells. We pursued the aim of investigating initiation
and propagation of the enzyme activity with higher precision. To our knowledge, the importance
of anchoring per se for the performance of FRET sensors has not gained proper attention. Here, we
directly compare the properties of two VEIDase sensors which differ only by the presence or absence
of the microtubule-associated protein tau. Our results demonstrate that anchoring of FRET sensors is
essential for high spatiotemporal resolution.

2. Materials and Methods

2.1. Design and Construction of FRET Sensors

Plasmid encoding tau-anchored VEIDase sensor (taFS-VEID) based on enhanced cyan fluorescent
protein (ECFP)—enhanced yellow fluorescent protein (EYFP) FRET was previously designed and
constructed in our laboratory [11]. Plasmid encoding corresponding non-anchored sensor (naFS-VEID)
was generated by site-directed substitution of a cytosine to thymidine 12 bases downstream from
the start codon of tau-encoding cDNA within taFS-VEID construct. This resulted in an Amber
stop codon, TAG, at the 51-end of tau-encoding sequence. The cloning procedures were performed
using QuickChange II Site-Directed Mutagenesis Kit (cat. # 200523, Agilent, Santa Clara, CA, USA)
according to the manufacturer’s instructions. The following primers were used: sense, 51-GG
CTGAGCCCCGCTAGGAGTTCGAAGTG-31, and antisense, 51-CACTTCGAACTCCTAGCGGG
GCTCAGCC-31.

2.2. Cell Culture, Treatment and Transfection

Human neuroblastoma SH-SY5Y and SK-N-AS cells (European Collection of Authenticated Cell
Cultures, Salisbury, UK) were cultured in Eagle’s minimal essential medium (MEM) supplemented
with 10% fetal bovine serum (FBS), 2 mM glutamine, 1% non-essential amino acids (NEAA), 100 U/mL
penicillin and 100 µg/mL streptomycin, from here on referred to as complete medium. The cells were
maintained in a humidified 5% CO2 atmosphere at 37 ˝C.

For live cell imaging experiments, the cells were seeded into glass bottom Petri dishes
(P35G-0-20-C, MatTek, Ashland, MA, USA), 3–5 ˆ 105 cells/dish, and allowed to attach overnight.
The following day the medium was replaced with fresh complete medium and the cells were transfected
with plasmids encoding taFS-VEID or naFS-VEID using X-treme Gene HP DNA Transfection Reagent
(Roche, Basel, Switzerland) according to the manufacturer’s instructions. SK-N-AS cells were imaged
the following day. SH-SY5Y cells were differentiated with retinoic acid (Sigma-Aldrich, St. Louis,
MO, USA), diluted to a final concentration of 10 µM in the complete medium, for 3 days following
transfection. Prior to the imaging session, the medium was buffered with 10 mM HEPES. When
applicable, staurosporine was added to the buffered medium to a final concentration of 1 µM prior
to the start of the imaging session. For western blot analysis, SK-N-AS cells were seeded into 6-well
plates (Nunclon, Rochester, NY, USA) at a density of 3 ˆ 105 cells/well and allowed to attach overnight.
Transfection was performed as described above. Next day, the cells were treated for 3 h with 1 µM
staurosporine. All the reagents were purchased from Life Technologies (Carlsbad, CA, USA) if not
otherwise indicated.

2.3. Live Cell Imaging and Image Analysis

Localization of sensors was determined using an imaging system with a Nipcov spinning disk
(CSU-22) on a Zeiss Axiovert 200 using solidstate 488 nm laser illumination (CrystaLaser, Reno, NV,
USA) and an Orca-Flash 4.0 sCMOS camera (Hamamatsu Photonics, Shizuoka, Japan). Z-stacks were
acquired using a piezo objective actuator (Piezosystem, Jena, Germany) to cover the focal planes of
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the cells and, for the SH-SY5Y cell protrusions, these focal planes were summed over the Z-axis and
images linearly adjusted to 0.1% saturation.

Time lapse imaging was performed on a Leica TCS SPI laser scanning confocal microscope
(Leica, Heidelberg, Germany) as previously described [11]. ECFP was excited with a 442 nm 10 mW
HeCd laser. Emission was collected between 455–505 nm for ECFP and 515–565 nm for EYFP/FRET,
using a long pass dichroic mirror 455. Image analysis and calculations were performed using ImageJ
version 1.50 g for Windows [12]. For acquiring FRET images, the images from the focal planes from
each individual channel were summed over the Z-axis, and intensity in the FRET channel was divided
by the intensity in the ECFP channel.

Analysis of FRET images was performed by segmenting them into cells and analyzing each
cell individually. The pixels of the cells were sorted into percentiles and the ratio value at the 10th
percentile and the mean of the 10th–90th percentile was further analyzed, representing the fraction
of pixels of the cell retaining the highest FRET and the average FRET, respectively. To correct for the
asynchronous apoptosis induction by staurosporine, the data was temporally aligned to the initiation
of FRET loss in each cell. The data was temporally interpolated to achieve optimal temporal alignment
and subsequently fitted to a mono exponential decay curve using GraphPad Prism version 6.07 for
Windows [13].

2.4. Western Blot Analysis

Cells were harvested as previously described [11]. 15 µg protein from each sample was separated
by electrophoresis on 8%–10% sodium dodecyl sulfate (SDS)-polyacrylamide gels and subsequently
transferred to nitrocellulose membranes (GE Healthcare, Little Chalfont, UK) at 350 mA for 2.5 h.
The membrane was blocked for 1.5 h in phosphate buffered saline (PBS), containing 5% dry milk (w/v)
and 0.1% Tween, followed by an overnight incubation at 4 ˝C with rabbit polyclonal anti-GFP antibody
(1:2000) (Life Technologies). Finally, the membranes were incubated for 1 h at room temperature
with horseradish peroxidase-coupled donkey anti-rabbit (1:5000) (GE Healthcare) and the proteins
were visualized by chemiluminescence using SuperSignal™ West Dura Extended Duration Substrate
(ThermoFisher Scientific, Waltham, MA, USA).

3. Results

3.1. Anchored and Non-Anchored FRET Sensors

In order to evaluate how anchoring of FRET sensors affects their properties, we employed a
tau-anchored sensor for monitoring VEIDase activity [11], here designated taFS-VEID (Figure 1A, top).
For comparison, we generated a corresponding non-anchored sensor (naFS; Figure 1A, bottom) by
introducing a stop codon at the 51-end of the tau-encoding sequence within the taFS-VEID cDNA.

3.2. Anchoring Leads to Enrichment of FRET Sensors at Specific Subcellular Compartments

To compare the intracellular distribution of anchored and soluble FRET sensors, the constructs
were transfected into human neuroblastoma SH-SY5Y cells. The cells were subsequently differentiated
towards a neuronal phenotype with 10 µM retinoic acid for 3 days, which stimulated outgrowth
of neurite-like processes. Analysis was performed by confocal laser scanning microscopy (CLSM).
Cells expressing taFS-VEID displayed intense and defined fluorescence throughout the cytoplasm,
readily detectable even within thin processes (Figure 1B, top). By contrast, naFS-VEID produced
a more dissipated fluorescent signal in the cell bodies, whereas in the processes it could hardly,
if at all, be detected (Figure 1B, bottom). Similar observations apply to the neuroblastoma cell
line SK-N-AS. These cells form protrusions prior to undergoing staurosporine-induced apoptosis.
These protrusions displayed bright fluorescence when overexpressing taFS-VEID, but not naFS-VEID
(Figure 1C). Thus, tau-anchoring favors enrichment of FRET sensors in cellular processes.
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Figure 1. Anchoring enables monitoring of FRET sensors throughout the cell including thin processes. 
(A) Schematic illustration of an anchored (taFS-VEID) and a non-anchored (naFS-VEID) FRET sensors. 
Both sensors contain a tandem VEID sequence between ECFP and EYFP. naFS-VEID was generated 
by introducing a stop codon at the 5′-end of tau-encoding sequence within the taFS-VEID cDNA; (B) 
Representative images of differentiated SH-SY5Y cells overexpressing taFS-VEID (upper panel) and 
naFS-VEID (lower panel); (C) Representative images of SK-N-AS cells overexpressing taFS-VEID 
(upper panel) and naFS-VEID (lower pannel). Note the absence of signal from taFS-VEID, but not 
naFS-VEID, in the nucleus. The epifluorecence images were linearly adjusted to display 0.1% 
saturated pixels. Scale bar 10 μm. 

3.3. Tau Anchoring Prevents Nuclear Localization of FRET Sensors 

The fluorescent signal from taFS-VEID was lacking in the nuclei of SH-SY5Y cells, as compared 
to the other compartments, and was clearly absent from the nuclei of SK-N-A-S cells. By contrast, the 
signal from naFS-VEID was more concentrated in the nuclei of these cells (Figure 1B,C). This provides 
evidence for the specificity and efficiency of the anchor within taFS-VEID, as tau targets the sensor 
to microtubules and prohibits its diffusion into the nucleus. By contrast, naFS-VEID, being composed 
of only ECFP-linker-EYFP, is free to diffuse throughout the cell and enter the nucleus, as has been 
previously observed for GFP dimers [14]. Thereby, tau anchoring provides specific detection of active 
caspases in the cytoplasm, where the apoptotic process is known to be initiated [15,16]. 

3.4. Anchoring of FRET Sensors Enables Detection of Active Caspases at Subcellular Level 

Next, we proceeded to investigate the properties of anchored and soluble FRET sensors in terms 
of detecting caspase activation at subcellular level. SK-N-AS cells overexpressing taFS-VEID or naFS-
VEID were treated with 1 μM staurosporine and imaged by CLSM with 5 min intervals. FRET was 
approximated as the ratio between the FRET and the ECFP channels. 

In the cells expressing taFS-VEID, the rates of decline in FRET varied substantially among 
different regions of the cell, including adjacent areas within the same protrusion (Figure 2A, upper 
panels). These variations were apparent when analyzing different regions of interest of a cell (see 
Figure S1A,B in the supplementary materials). By contrast, FRET dropped evenly throughout the 
cells expressing naFS-VEID and reached a steady state within approximately 10 min from the point 
of the initial decline (Figure 2A, lower panels and Figure S1C,D in the supplementary materials). This 
steady state was maintained throughout the cells until their detachment, and no local effects could 
be detected. 

Figure 1. Anchoring enables monitoring of FRET sensors throughout the cell including thin processes.
(A) Schematic illustration of an anchored (taFS-VEID) and a non-anchored (naFS-VEID) FRET sensors.
Both sensors contain a tandem VEID sequence between ECFP and EYFP. naFS-VEID was generated
by introducing a stop codon at the 51-end of tau-encoding sequence within the taFS-VEID cDNA;
(B) Representative images of differentiated SH-SY5Y cells overexpressing taFS-VEID (upper panel)
and naFS-VEID (lower panel); (C) Representative images of SK-N-AS cells overexpressing taFS-VEID
(upper panel) and naFS-VEID (lower pannel). Note the absence of signal from taFS-VEID, but not
naFS-VEID, in the nucleus. The epifluorecence images were linearly adjusted to display 0.1% saturated
pixels. Scale bar 10 µm.

3.3. Tau Anchoring Prevents Nuclear Localization of FRET Sensors

The fluorescent signal from taFS-VEID was lacking in the nuclei of SH-SY5Y cells, as compared to
the other compartments, and was clearly absent from the nuclei of SK-N-A-S cells. By contrast, the
signal from naFS-VEID was more concentrated in the nuclei of these cells (Figure 1B,C). This provides
evidence for the specificity and efficiency of the anchor within taFS-VEID, as tau targets the sensor to
microtubules and prohibits its diffusion into the nucleus. By contrast, naFS-VEID, being composed
of only ECFP-linker-EYFP, is free to diffuse throughout the cell and enter the nucleus, as has been
previously observed for GFP dimers [14]. Thereby, tau anchoring provides specific detection of active
caspases in the cytoplasm, where the apoptotic process is known to be initiated [15,16].

3.4. Anchoring of FRET Sensors Enables Detection of Active Caspases at Subcellular Level

Next, we proceeded to investigate the properties of anchored and soluble FRET sensors in terms
of detecting caspase activation at subcellular level. SK-N-AS cells overexpressing taFS-VEID or
naFS-VEID were treated with 1 µM staurosporine and imaged by CLSM with 5 min intervals. FRET
was approximated as the ratio between the FRET and the ECFP channels.

In the cells expressing taFS-VEID, the rates of decline in FRET varied substantially among different
regions of the cell, including adjacent areas within the same protrusion (Figure 2A, upper panels).
These variations were apparent when analyzing different regions of interest of a cell (see Figure S1A,B
in the supplementary materials). By contrast, FRET dropped evenly throughout the cells expressing
naFS-VEID and reached a steady state within approximately 10 min from the point of the initial decline
(Figure 2A, lower panels and Figure S1C,D in the supplementary materials). This steady state was
maintained throughout the cells until their detachment, and no local effects could be detected.
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Figure 2. Anchored FRET sensors for detection of active caspases at subcellular level. (A) Representative
ratiometric (FRET/ECFP) time-lapse images of SK-N-AS cells transfected with taFS-VEID (upper panel)
or naFS-VEID (lower panel) and treated with 1 µM staurosporine. Note the local differences in
FRET within the cells expressing taFS-VEID. The early decline in FRET in the central parts of the
taFS-VEID-expressing cells is likely reflecting liberation of ECFP from the anchorage and its resulting
ability to diffuse. Scale bar 10 µm. The video montage of the time lapse images is available as
Supplementary materials; (B) Average of temporally aligned ratio values of the fraction of pixels from
each cell retaining the highest FRET (10th percentile) is plotted over time (n = 8 for taFS and n = 5
for naFS); (C) Apoptotic stimuli induce specific fragmentation of anchored (taFS) and non-anchored
(naFS) FRET sensors. Human neuroblastoma SK-N-AS cells overexpressing either of the sensors were
treated with 1 µM staurosporine (STS) for 3 h. Total cell lysates were analyzed by western blot with
anti-GFP antibodies.

The differences in the local distribution of FRET signal between the anchored and non-anchored
sensors were further demonstrated by a dynamic unbiased quantitative analysis of the time-lapse
images (Figure 2B and Figure S2). In particular, the rate of change in FRET of the pixels retaining
the highest levels was more than twofold higher in the images acquired from the cells expressing
naFS-VEID as compared to taFS VEID (Figure 2B), reflecting the presence of distinct subcellular regions
with varying degrees of taFS-VEID fragmentation.

Thus, anchoring of FRET sensors enables detection of subtle differences in caspase activation at
subcellular level, while the spatiotemporal resolution is lost when using soluble FRET probes.
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3.5. Specific Proteolysis of VEIDase FRET Sensors

To investigate fragmentation of the FRET sensors, we analyzed total lysates of SK-N-AS cells
expressing taFS-VEID or naFS-VEID by western blot using anti-GFP antibodies. Intact taFS-VEID
and naFS-VEID sensors migrated as a ~130 kDa and a ~55 kDa band, respectively, matching their
theoretical sizes (Figure 2C). Staurosporine-induced apoptosis resulted in fragmentation of taFS-VEID
into EYFP-tau (~100 kDa) and ECFP (~25 kDa), while naFS-VEID produced a ~25 kDa fragment
representing both ECFP and EYFP. Thus, both taFS-VEID and naFS-VEID are processed specifically
within the designed linker region between the fluorophores.

4. Discussion

Over the past decades, FRET biosensors have proved to be useful tools for assessing the activity of
a variety of enzymes, and have allowed new insights into different signaling pathways. However, FRET
probes of conventional type have limited capacity for determining the important spatiotemporal
aspect of enzyme activation. Although subcellular targeting of FRET sensors has been widely
reported [5–10], the impact of localization and anchoring per se on their spatiotemporal resolution has
not been considered.

Here, we present a case study using tau-anchored (taFS-VEID) and non-anchored (naFS-VEID)
caspase (VEIDase) activity reporters. We provide evidence for the presence of an anchor as a necessary
condition for sensitive detection of subcellular variations in enzyme activation. We show that anchoring
of FRET sensors leads to their enrichment in the targeted location. In our case, tau mediates binding of
the VEIDase sensor to the microtubules of neurite-like processes while retaining the availability of
the sensor to the whole pool of cytosolic enzymes. Thus, anchoring is expected to enable detection of
FRET at the locations of interest with higher signal-to-noise ratio. Furthermore, taFS-VEID, in contrast
to naFS-VEID, was undetectable in the nuclei of neuroblastoma cells, implying that possible nuclear
VEIDase activity can be neglected when using taFS. Thereby, anchoring of FRET sensors minimizes
the impact of the activity of the enzyme in off-target compartments on the readout.

Further, we show that taFS-VEID, but not naFS-VEID, allows for detection of active caspases
at subcellular level. In particular, in neuroblastoma cells undergoing apoptosis, taFS-VEID enabled
monitoring of local differences in FRET not only within the same cell, but even within the same
protrusion. By contrast, no such differences could be observed using naFS-VEID. Accordingly, the rate
of change in the cellular regions retaining highest FRET was markedly delayed in case of taFS-VEID.
This demonstrates that anchoring enables detection of subcellular variations in the amount of active
enzymes. We suggest that restricting the diffusion of FRET sensors by anchoring is advantageous
for assessing the propagation of an enzyme activation within a cell, as in this case it is the diffusion
of an active enzyme and/or its activating signal that affects the FRET. Conversely, free diffusion of
non-anchored FRET sensors makes them uniformly available for an active enzyme throughout the cell,
leading to a rapid and global “all-or-nothing” response, which might not reflect the actual pattern of
the enzyme activation. Thus, anchoring can be expected to be advantageous not only for cleavable, but
also for conformation dependent FRET sensors (e.g., cameleons [17] and Rango [18]), and to visualize
cell signaling pathways in more detail.

5. Conclusions

In conclusion, our results illustrate the advantage of anchored FRET sensors for assessing
activation of enzymes at a subcellular level. The localization and duration of signaling is
increasingly recognized as an essential factor determining the functional outcome. Thus, obtaining the
spatiotemporal context is important for understanding the mechanisms of cell signaling pathways
both in health and in disease, as well as for drug screening. In view of this, it is advisable to consider
subcellular anchoring when designing FRET biosensors.
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Supplementary Materials: The following are available online at www.mdpi.com/1424-8220/16/5/703/s1,
Figure S1: FRET decay in soma and protrusions. Mean FRET intensity in the indicated regions of interest (ROIs)
within SK-N-AS cells overexpressing taFS-VEID (A,B) or naFS-VEID (C,D) presented in Figure 2A (see main text)
is plotted over time. The data was temporally aligned to the initiation of decline in FRET in each individual cell.
For each ROI, the value before the initial decline in FRET was set to 100%, and the lowest FRET value within the
analyzed time frame was set to 0%. ROIs 1 represent the soma in all the cells analyzed. Note, in (A,B) the rate of
decline in FRET differs depending on the ROI chosen, whereas there are no such variations between different ROIs
in (C,D), Figure S2: Dynamics of the mean FRET values between the 10th and the 90th percentiles for taFS-VEID
and naFS-VEID expressing SK-N-AS cells treated with staurosporine. Videos S1 and S2: Video montages of time
lapse image acquisitions from staurosporine-treated SK-N-AS cells expressing anchored (taFS-VEID; Video S1) or
non-anchored (Video S2) FRET sensors (see materials and methods). Scale bar 10 µm. Frame interval 5 min.
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Abbreviations

The following abbreviations are used in this manuscript:

CLSM Confocal laser scanning microscopy
ECFP Enhanced cyan fluorescent protein
EYFP Enhanced yellow fluorescent protein
FRET Förster resonance energy transfer/Fluorescence resonance energy transfer
naFS Non-anchored FRET sensor
taFS Tau-anchored FRET sensor
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