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This review concerns how the primary inflammation preceding the generation of certain key damage-associated molecular
patterns (DAMPs) arises in Alzheimer’s disease (AD). In doing so, it places soluble amyloid 3 (AB), a protein hitherto
considered as a primary initiator of AD, in a novel perspective. We note here that increased soluble A is one of the
proinflammatory cytokine-induced DAMPs recognized by at least one of the toll-like receptors on and in various cell types.
Moreover, AB is best regarded as belonging to a class of DAMPs, as do the S100 proteins and HMBGT, that further
exacerbate production of these same proinflammatory cytokines, which are already enhanced, and induces them further.
Moreover, variation in levels of other DAMPs of this same class in AD may explain why normal elderly patients can exhibit
high AB plaque levels, and why removing A or its plaque does not retard disease progression. It may also explain why
mouse transgenic models, having been designed to generate high AB, can be treated successfully by this approach.

Abbreviations

AD, Alzheimer’s disease; BACE1, B secretase; DAMP, damage-associated molecular pattern; EOAD, early onset human
AD; HMGB]1, high-mobility group box 1; LOAD, late onset human AD; PAMP, pathogen-associated molecular pattern;
PD, Parkinson'’s disease; POCD, post-operative cognitive dysfunction; TLR, toll-like receptor
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Introduction

Despite its dominance of the publications on the pathogen-
esis of Alzheimer’s disease (AD), the amyloid theory is yet to
provide any positive clinical outcome, and still contains
uncertainties. Others (Castellani and Smith, 2011; Mullane
and Williams, 2013; Castello et al., 2014) have extensively
summarized the amyloid theory and the difficulties it has
encountered. These include the presence of abundant
amyloid in sections from many cognitively normal older
brains, and the failure, to date, of being able to replicate in
humans, the anti-amyloid immunotherapy that performed
well in mice. Recently, we (Morris ef al., 2014) extensively
reviewed the complexities, inconsistencies and controversies
that have now surrounded the amyloid theory, and dis-
cussed the bias of preclinical AD models towards the
amyloid hypothesis. We also illustrated how extensive data
cited in support of the amyloid hypothesis, including
genetic links to disease, can be interpreted independently of
a role for amyloid B (AB), and summarized the case for the
validity of the argument for proinflammatory cytokines
having a central role, and therefore being a valid pharma-
cological target. Here we expand this section of our recent
review (Morris et al., 2014) by going back to the roots of our
understanding of innate immunity while still providing a
role for AB. For this role of AB to become clear, we first
consider the cytokine output of the innate immune system,
and the pathogen-associated molecular pattern (PAMP) and
damage-associated molecular pattern (DAMP) terminology
that allows a workable framework for describing how this
output is triggered through this primitive, but ever present,
immune system recognizing its surroundings.

The immune system, for decades concerned with adap-
tive immunity against pathogens, is now, through innate
immunity, recognized as being allied to the inflammatory
response. This has brought together the basis of the patho-
genesis of infectious disease, sterile inflammatory states
such as AD and Parkinson’s disease (PD), and also stroke
and traumatic brain injury (TBI) (Arvin etal.,, 1996;
Tarkowski etal.,, 2003; Esiri, 2007; Clark etal., 2010;
Eikelenboom et al., 2011; Howcrotft et al., 2013). The general
perception of inflammation as a complex interaction of cel-

lular responses orchestrated by chemokines and cytokines
rightly includes TNF and IL-1. But being termed proinflam-
matory cytokines often leads this closely linked pair to be
regarded simply as biomarkers for the presence of inflam-
mation, whereas their pleiotropy includes many roles in all
tissues, including such diverse roles as physiological cerebral
transmitters, particularly in brain homeostasis (Stellwagen
and Malenka, 2006; McAfoose and Baune, 2009), which is
otherwise unrelated to inflammation. As recently reviewed
(Clark and Vissel, 2014), TNF and IL-1 closely mimic each
other, and occur together, but for various reasons, including
that anti-TNF antibody also reduces IL-1 (Brennan etal.,
1989), TNF dominates the literature.

The ubiquity and importance
of TNF in biology, innate immunity
and disease

The polypeptide TNF is arguably the centrepiece of the
mammalian innate immune system. Yet it is extremely well
preserved in phylogeny, huTNF recognizing and being very
widely recognized, even by corals (Quistad et al., 2014). The
ubiquity of TNF in biology is demonstrated by the presence
of many more entries in PubMed than any other proinflam-
matory cytokine, let alone Alzheimer’s or Af. It is one of
the pillars of normal physiology, including metabolism. The
fundamental roles of lower concentrations of TNF and
related cytokines in normal physiology, involving all organs
but not least in the brain (Vitkovic et al., 2000a,b), nowa-
days outnumber references to their proinflammatory and
immunological roles. For instance, TNF and IL-1B are
released during physiological neuronal activity and, as
reviewed (Marin and Kipnis, 2013), play a crucial role in
regulating the strength of normal synaptic transmission.
TNE, of itself rather than through the inflammatory cascade
it can trigger, is also involved in normal transmission via
modulating excitatory neurotransmission (Pickering etal.,
2005), trafficking of AMPA receptors (Ferguson et al., 2008),
homeostatic synaptic scaling (Stellwagen and Malenka,
2006), long-term potentiation (Cumiskey et al., 2007) and
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maintaining normal background levels of neurogenesis
(Bernardino et al., 2008). Mitochondrial function depends
on TNF (Sanchez-Alcazar et al., 2000), as does regulation of
the neurotransmitter, orexin (Zhan et al., 2011), which, as
recently reviewed in a brain disease context (Clark and
Vissel, 2014), controls sleep, motor control, focused effort,
appetite and water intake. TNF also regulates neuronal
type 1 inositol trisphosphate receptors, which are central to
neuronal Ca™ homeostasis, and thus the ionic signalling
cascades on which normal function of these cells depends
(Park etal., 2008). Likewise, glycine receptors, which are
structurally related to GABA receptors and have a similar
inhibitory role, are influenced by proinflammatory
cytokines (Chirila et al., 2014). Clearly, all these functions
are susceptible to TNF and/or IL-1 being outside their
homeostatic range.

Yet TNF is much more than normal physiology. An
awareness of TNF began with its detection in the serum of
mice receiving Gram-negative bacterial endotoxin, that is,
LPS, several weeks after they were infected with Bacillus
Calmette-Guérin (BCG), an attenuated strain of Mycobacte-
rium bovis. On transfer to mice bearing transplanted sarco-
mas, this novel protein caused necrosis of these tumours as
effectively as did LPS, but contained no LPS (Carswell et al.,
1975). The argument that excessive TNF and IL-1 both con-
trolled pathogens and generated disease was first put
forward, in collaboration with Carswell, with respect to
malaria (Clark ef al., 1981) and sepsis (Clark, 1982). Exces-
sive production of TNF and related cytokines was soon rec-
ognized as mediating the rapid response of non-specific, or
innate, immunity against malaria parasites, and subse-
quently many other pathogens, as well as the pathogenesis
of the diseases these organisms induce (Clark et al., 1981;
Rook et al., 1987; Clark and Cowden, 1989; Raziuddin et al.,
1994; Peper and Vancampen, 1995; Arsenijevic et al., 1997;
Bhutta et al., 1997; Nakane et al., 1999). TNF has also key
roles in physiological functions (see later). Its control over
insulin signalling, reviewed in an AD context (Talbot and
Wang, 2014), will extend greatly its known influence in the
brain and elsewhere, in both normal and disease states
(Chiu et al., 2008; Chiu and Cline, 2010).

Cloning of TNF (Aggarwal et al., 1985) and LPS protec-
tion experiments based on this technology (Beutler et al.,
1985) produced data consistent with the above predictions.
Thus, the groundwork on these cytokines mediating disease
was in place before the first proposal that TNF and IL-1 were
associated with inflammation (Nawroth et al., 1986). Soon
I'TNF, when trialled against tumours in patients (Sherman
etal., 1988; Spriggs etal., 1988), caused side effects that
mimicked not only the disease seen in influenza and malaria
but also the aphasia seen in stroke and AD. As we have
discussed previously (Clark et al., 2010), proinflammatory
cytokines are enhanced very early in AD. For example, using
a novel high-sensitivity proteomic neuroimaging technique,
increased plasma levels of clusterin (apolipoprotein J),
proved to be intimately associated with onset, progression
and severity of AD (Thambisetty etal., 2010). Increased
clusterin follows even slightly enhanced levels of pro-
inflammatory cytokines such as TNF and IL-1 (Hardardottir
et al., 1994). For all these reasons, it is essential to appreciate
what generates TNF in AD. The recognized steps of TNF
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generation in innate immunity, and thence disease, are dis-
cussed next.

What controls the TNF response in
innate immunity and disease?

The earlier observations tie together much diverse physiology
and disease pathogenesis, so pose many important questions.
For example, why should the same array of functionally
related primitive cytokines, dominated by TNF, be generated
in strikingly different circumstances? Our interest in this
question arose from trying to understand spectacular protec-
tive outcomes of systemic exposure of mice to a then inex-
plicably wide array of agents, infectious and otherwise, weeks
prior to infection with haemoprotozoan parasites (Clark
etal., 1976; 1977; Clark, 1979a,b). Intriguingly, such protec-
tion was functionally related to the onset of the non-specific
systemic disease, akin to that seen in bacterial and viral infec-
tions, caused by these parasites (Clark et al., 1981). At a major
symposium in 1989, within the topic of the evolution of
immune recognition, Janeway (1989) offered the argument of
a primitive ability, retained in humans, of effector cells to
recognize what he termed a range of ‘pathogen-associated
molecular patterns’ on or secreted by infectious agents. The
name stuck, and the now-familiar acronym PAMP, came into
use. Five years later this concept was incorporated into a
proposal that the immune system may have evolved to dis-
tinguish between danger and non-danger, as distinct from
self and non-self (Matzinger, 1994; 2002; Gallucci and
Matzinger, 2001). These authors saw PAMPs as a type of
DAMP, and part of an overall damage-associated scheme
(Seong and Matzinger, 2004). Hence, a disparate collection of
signals triggering the same functional outcome fits within a
framework that encompasses their ability to trigger the
release of proinflammatory cytokines, with the capacity to
kill pathogens through innate immunity, but also, in excess,
to cause disease.

Thus, infectious agents provide triggers, collectively
termed PAMDPs, for release of TNF, and the rest of the proin-
flammatory cytokine cascade. Other triggers, either of host
origin or exogenous, and usually termed damage-associated
molecular patterns, or DAMPs, ultimately function in the
same way as PAMPs. In effect, host function is inadvertently
harmed in lieu of often non-existent pathogens. Others have
elected, with commendable simplicity, to use the term alarm-
ins to encompass both PAMPs and DAMPs (Oppenheim et al.,
2007; Chan etal., 2012). Activation occurs when they are
seen by the pattern recognition receptors (PRRs) (Janeway,
1989), the toll-like receptors (TLRs) (Poltorak et al., 1998)
being one of the best described PRRs families. Many PAMPs
and DAMPs important in instigating disease onset are seen by
TLR4, on the cell surface, and others, typically those arising
from modified RNA and DNA, are recognized intracellularly
by TLRY, on the endoplasmic reticulum. In either case the
outcome is very similar from a disease pathogenesis perspec-
tive. TLRs were well summarized recently in a myocardial
context (de Haan et al., 2013), a text that also notes that
DAMPs can be usefully divided into the constitutive and
inducible, or secondary, groupings used here.



PAMPs implicated in chronic
neuroinflammatory diseases

A key precursor of the present concept of PAMPs was the
insight gained by early experience with the functional
subtleties of BCG, which led to the original awareness that
TNF exists, as outlined earlier. BCG is a pathogen, albeit
attenuated, so by definition a source of PAMPs, and LPS is a
PAMP derived from Gram-negative bacterial cell walls.
Patients convalescing from typhoid (Neva and Morgan, 1950)
and malaria (Rubenstein et al., 1965) are tolerant to LPS,
whereas chronic, non-resolving infections, such as caused by
BCG in mice, cause a LPS-sensitive state (Suter et al., 1958). A
now historic set of experiments on this post-BCG LPS-
sensitive state in Lloyd Old’s laboratory, as recently recounted
(Carswell-Richards and Williamson, 2012), led to the isola-
tion of a peptide they termed TNF (Carswell et al., 1975). This
proved to be an invaluable tool in understanding details of a
wide range of physiology, as well as innate immunity.
Acute severe infectious diseases, as well as sterile condi-
tions such as stroke and TBI, can be forerunners to delirium,
a transient AD-like condition associated with acute proin-
flammatory signals, and aptly described as the extreme end
of the sickness behaviour spectrum (Cunningham and
Maclullich, 2013). From an exceptionally large dataset,
dementia, a related longer lasting state, proved to be more
common in patients with more systemic infections, that is,
exposure to PAMPs (Dunn et al., 2005). Another comprehen-
sive study found the rate of cognitive decline in AD to be
higher in patients who experienced more systemic inflamma-
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tory events associated with increased serum levels of TNF
(Holmes et al., 2009). Likewise, others have recently compiled
an intriguing overview of the influence of pathogenic
microbes and the largely gut-located microbiome on the
pathogenesis of AD and other chronic CNS disease (Hill ef al.,
2014). As they note, new technologies now allow the balance
between pathogens and homeostatic commensals to be
monitored. The work on Helicobacter pylori (Alvarez-Arellano
and Maldonado-Bernal, 2014), including the reported benefi-
cial effects of its eradication on S5 year survival in AD
(Kountouras et al., 2010), is a specific example. Clearly, these
groups’ studies are readily expressed in PAMP terminology.
Consistent with the accepted multifactorial origins of AD,
any of these PAMPs, or the DAMPs discussed below, can also
be expected to increase the rate of cognitive decline through
influencing TLR-dependent production of TNF and similar
CNS-active cytokines (Figure 1).

MicroRNAs (miRNA) and
mitochondrial DNA (mtDNA)as
DAMPs in AD

Many miRNAs, small non-coding RNAs, are increased in the
CSF and plasma in AD (Lukiw, 2007; Cogswell et al., 2008;
Lukiw et al., 2012b; Alexandrov et al., 2014). This down-
regulates complement factor H, a repressor of the innate
immune response (Lukiw and Alexandrov, 2012a), thus
enhancing this response, a key contributor to AD pathogen-
esis. As reviewed (Alexandrov etal., 2014), miRNA146a is
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Figure 1

Late onset AD (LOAD). A representation of the array of DAMPs and PAMPs that, through triggering TLRs, can initiate release of proinflammatory
cytokines. These cause changes that include enhancement of HMGB1, S100 proteins and soluble forms of AB in late onset AD, three secondary
DAMPs that independently further enhance levels of the cytokines that induced them. Thus, chronic functional change and damage occurs within
the brain.
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up-regulated in the anatomical regions of the brain affected
by AD, but not in the thalamus and brain stem of the same
brain, and is induced by IL-1 and TNE as well as by AB42
peptides, which act as DAMPs to induce TNF (Rowan et al.,
2007). In addition, let-7, one of the most abundant of the
hundreds of the miRNAs expressed in the human brain, and
increased in the CSF in AD, has been reported to act, through
activating TLR7, a reliable TNF trigger (Lehmann et al., 2012).
These authors also observed that introducing let-7b into the
CSF of mice resulted in neurodegeneration in intact, but not
TLR7-deficient, mice. Intrauterine transfection with TLR7
restored activity.

Circulating mtDNA increases with age, which is associ-
ated with AD and PD, and the degree of increase is a familiar
trait (Pinti et al., 2014). mtRNA is increased in human plasma
soon after trauma (Lam et al., 2004), and has a bacterial
DNA-like capacity to act as a danger signal, being similarly
hypomethylated, and therefore sensed by TLR9 (Zhang et al.,
2009). This is in keeping with its pathogen ancestry (Margulis
and Chapman, 1998; Emelyanov, 2001) identifying it as a
PAMP that has evolved into a DAMP, but normally harmless
provided that it remains in the mitochondrion, without
access to TLRY. It is considerably more sensitive to oxidative
stress than is mammalian nuclear DNA (Strand et al., 2014).
Oxidatively degraded mtDNA is a particularly aggressive
DAMPs, proposed to participate in neurodegenerative pro-
cesses (Mathew et al., 2012). Others have reported that occu-
pancy of several TLRs simultaneously enhances oxidative
stress (Lavieri efal., 2014), consistent with this increased
DAMP potency of mtDNA.

Increased CSF levels of mtDNA have recently been corre-
lated with severity in paediatric TBI cases (Walko et al., 2014).
It is yet to be investigated whether mtDNA variants associ-
ated with AD and PD (Coskun et al., 2012) differ in their
degradation rates. Likewise, uncertainty still surrounds CSF
levels of mtRNA in AD. They have been argued to be reduced
(Podlesniy et al., 2013), but other have proposed that techni-
cal error has left the question unresolved (Sondheimer et al.,
2014).

Toxic metals and excess a-synuclein
production generating DAMPs in AD

In brief, the evidence is consistent with lead (Pb) turning
mammalian nuclear DNA into a DAMP. As discussed else-
where (Clark and Vissel, 2013), Pb hypomethylates DNA that
then recognizes TLRY, and generates TNF (Guo et al., 1996;
Cheng etal., 2006). Fetal exposure to Pb also leads, via
chronic TNF generation, to amyloid deposition later in life
(Basha et al., 2005; Bihaqi ef al., 2011). As reviewed (Wang
etal.,, 2008), the case for epigenetic involvement in the
pathogenesis of AD is well known: any discernible inherit-
ance of late onset AD is non-Mendelian, concordance rates in
monozygotic twins are low and levels of folate and homo-
cysteine in the AD brain fit abnormal methylation homeo-
stasis. Others have independently expanded these concepts
in AD (Mastroeni et al., 2010; 2011; Bakulski et al., 2012;
Bihaqi et al., 2012) and PD (Iraola-Guzman et al., 2011; Kaut
etal., 2012).
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We (Clark and Vissel, 2013) have also discussed the pub-
lications on mercury and cadmium which show that lead is
not the only contaminant metal associated with DNA
hypomethylation (Hanna et al., 2012; Goodrich et al., 2013),
an inflammatory response (Gardner et al., 2009; Olszowski
etal., 2012), and AP accumulation (Song and Choi, 2013;
Notarachille et al., 2014). We also summarized the implica-
tions of increased intraneural levels of soluble a-synuclein in
human AD brains being a much better correlate with cogni-
tive impairment than are levsl of the soluble forms of Af or
phosphorylated tau (Larson et al., 2012). The actual process
of generating excessive a-synuclein hypomethylates the DNA
of the cell producing it (Desplats et al., 2011). These authors
examined the intracellular location of o-synuclein as well as
of Dnmt1, the major DNA methylation enzyme, in neurons
from PD and dementia with Lewy bodies brains, and reported
a cytoplasmic, rather than nuclear, location of this protein in
neurons that overexpress it. Crucially, this cytoplasmic
o-synuclein sequestered Dnmt1, reducing its levels by almost
50% in the nucleus, where it normally keeps DNA highly
methylated. Consequently, a 30% decrease in local global
DNA methylation occurred. Hence, the events leading up to
increased soluble o-synuclein (Larson et al., 2012) give DAMP
activity to this DNA, leading to up-regulation of proinflam-
matory cytokines when sensed by TLRO.

High-mobility group box 1 (HMGB1),
$100 proteins and A: three potent
secondary DAMPs

Certain DAMPs incriminated in generating neuroinflamma-
tory disease can themselves be induced by proinflammatory
cytokines of infectious or sterile origin. They may therefore
be termed secondary DAMPs (de Haan et al., 2013), and can
also be regarded as positive feedback DAMPs, being further
generated by the proinflammatory cytokines they themselves
induce. This would thereby perpetuate and worsen disease, as
happens in AD. Some mediators such as HMGBI1 are consti-
tutive in cells and, before they encounter the TLRs or other
PRRs that enable them to display their proinflammatory
potential, require relocating from their usual physiological
niche by proinflammatory cytokines (Wang et al., 1999b) or
by tissue damage. HMGB1 is a non-histone nuclear protein
that, when extracellular, functions as a proinflammatory
cytokine generator (Andersson efal.,, 2000), exacerbating
inflammation. It is released in sepsis (Wang et al., 1999a;
Andersson and Tracey, 2003), malaria (Alleva et al., 2005) and
influenza (Alleva et al., 2008), and on recognition by TLR4
and the receptor for advanced glycation end products (RAGE)
enhances inflammation through inducing cytokines such as
TNF (van Zoelen et al., 2009). HMGBI1 is essential to the chain
of events that mediates cognitive impairment in sepsis survi-
vors (Chavan et al., 2012) and memory impairment (Mazarati
et al., 2011). It is released during trauma (Cohen et al., 2009),
and involved in post-operative cognitive dysfunction (POCD)
(He et al., 2012). When injected i.c.v. HMGB1 worsens, and
anti-HMGB1 monoclonal antibody ameliorates, infarction in
experimental cerebral ischaemia in rats (Liu efal., 2007).
Recently, HMGB1 has proved to be a long-lasting component



of the inflammatory response of stroke (Schulze et al., 2013).
Increased extracellular HMGB1 has a well-documented
involvement in a range of chronic inflammatory CNS states,
including AD (Fang et al., 2012).

The S100 proteins are constitutive calcium-binding mol-
ecules present in cytoplasm, where they have homeostatic
roles, but when released to the extracellular compartment
they operate as proinflammatory danger signals, that is, as
DAMPs. They are induced (Yen etal., 1997) and released
extracellularly by proinflammatory signals, for instance from
astrocytes by TNF (Edwards and Robinson, 2006), and there-
fore are also pro-inflammatory (Ryckman et al., 2003; Simard
et al., 2013). S100B is increased in the CSF in the early stages
of AD (Peskind et al., 2001), and S100A9 and S100A12 are
enhanced in autopsy brains of both familial and sporadic AD
(Shepherd et al., 2006). S100 proteins are well represented in
the publications on TBI, stroke and PD. For example, S100B is
increased in CSF of paediatric TBI cases (Berger et al., 2002), as
are mtDNA and HMGB1 (Walko et al., 2014), as discussed
earlier. It is regarded as a DAMP in PD (Sathe et al., 2012).
Indeed, as discussed (Foell et al., 2007), the S100 proteins are
standard DAMPs, by the same criteria as are HMGB1 and
mtDNA.

The soluble AB proteins, a term encompassing a range of
oligomers, are normally present in cells (Selkoe et al., 1996;
Ghiso etal.,, 1997). They have various physiological func-
tions including synapse elimination in brain development
(Wasling et al., 2009) and in the normal hippocampus (Puzzo
etal., 2011). Although when in excess soluble AP is often
regarded as the initiator of AD, it is not specific to this con-
dition, being documented in lead exposure (Basha etal.,
2005; Bihaqi etal., 2011) and in post-stroke patients (Lee
etal., 2005). As reviewed recently (Knowles etal., 2014),
many more proteins than previously suspected are inher-
ently unstable, and can therefore misfold. Such prefibrillar
states, analogous to AP oligomers, can be expected to allow
PRRs to sense chemical groupings not normally accessible to
the cellular environment, and therefore merit investigation
as DAMPs in disease pathogenesis (Stefani and Dobson,
2003). To date some 50 conditions, including AD and the
spongiform encephalopathies, have been associated with
such aggregations (Chiti and Dobson, 2006; Knowles et al.,
2014). Indeed, the finding that this phenomenon was
common to these two diseases apparently inspired the idea
of AP plaques causing AD. As recorded (Schnabel, 2011), this
recognition of the histological similarities of scrapie prions
and plaque in AD (Prusiner etal., 1983; Prusiner, 1984;
Masters, 1985) arose from the meeting of like minds who saw
similarities between histological features as implying similar
function. The idea received encouragement from the ability
of products of the amyloid cascade to kill neurons directly
(Yankner et al., 1989), with its scope eventually widening to
encompass a direct capacity to impair synapse function
(Beyreuther et al., 1993). Coming at a time when AD research
needed direction, these ideas quickly dominated the field,
and still have formidable momentum, despite increasing
criticism and repeated trial failure. Once it became evident
that the plaque formed from aggregated Af was inert in
terms of disease pathogenesis (Holmes et al., 2008), the focus
of amyloid research transferred to the soluble oligomers of
this peptide.

Amyloid (3 is one of the secondary DAMPs

Nevertheless, as the progenitor of amyloid plaque, soluble
AB has a front-row seat in the experimental world of AD
pathogenesis, with HMGB1 and the S100s well to the rear.
The built-in bias towards AP in the transgenic APP-based
models (below) has also muddied the waters. Soluble AP
has been referred to as a constitutive DAMP (Shichita et al.,
2012), because when enhanced it exacerbates levels of
proinflammatory cytokines, mainly through activating TLR4
(Reed-Geaghan et al., 2009; Stewart et al., 2010; Vollmar et al.,
2010). It is, without doubt, also generated to excess in the
various infectious diseases in which amyloid plaque is histo-
logically evident, such as neuroborreliosis (Miklossy et al.,
2006), cerebral Chlamydia infections (Little et al., 2004) and
HIV dementia (Soontornniyomkij et al., 2012). Important
cerebral functional consequences of AB-induced inflamma-
tion have been documented for some time (Wang et al., 2005;
Rowan etal., 2007), and new data continue to emerge
(Lourenco et al., 2013).

Clearly, AB production is controlled by proinflammatory
cytokines, as well as generating them. Studies on the
secretases have, as reviewed (Gandy, 2005; Zhang and Song,
2013), demonstrated this. For example, genetically inhibiting
TNF signalling (He efal., 2007), or administering thalido-
mide, an inhibitor of TNF (He et al., 2013), reduces both B
secretase (BACE1) and A load. TNF also up-regulates BACE1
(Yamamoto et al., 2007; Zhao etal., 2011) and vy secretase
(Liao et al., 2004), another secretase variant involved in AB
enhancement. Moreover, a 3,6 dithio variant of thalidomide,
which inhibits TNF production, prevents (Gabbita etal.,
2012) and reverses (Tweedie et al., 2012) disease in mouse
models of AD. Likewise, glucagon-like peptide-1 (GLP-1),
which has several mimetics in routine clinical use against
type 2 diabetes mellitus, enhances o secretase (ADAM10)
(Ohtake et al., 2014). This shifts the cleavage of the amyloid
precursor protein away from the AP producing B-secretase
pathway and towards the growth-signalling pathway, reduc-
ing the brain levels of AB. Data generated 10 years ago with
exendin-4, a GLP-1 mimetic (Perry et al., 2003), are consistent
with this. The GLP-1 mimetics have been well reviewed as
plausible AD treatments (Greig et al., 2004; Holscher and Lji,
2010) and have complex functions that can broadly be
described as anti-inflammatory, including, as recently
reviewed (Clark et al., 2012; Clark and Vissel, 2013), counter-
ing the insulin resistance generated by an inflammatory
milieu. These mimetics protect against (McClean et al., 2011)
and reverse (McClean and Holscher, 2014) experimental AD,
and are in clinical trials (NCT01255163, NCT01843075).

POCD as an illustrative microcosm

As discussed, the inflammation-induced, inflammation-
generating nature of these three secondary DAMPs provides
parallel positive feedback mechanisms operating to enhance
the original inflammatory cascade in AD (Figure 1). Post-
surgery patients provide a convenient example of how the big
picture has been missed. Transient delirium is common in
intensive care units, and is, as noted earlier, an extreme mani-
festation of the sickness behaviour caused by systemic
inflammation (Cunningham and Maclullich, 2013). A char-
acteristic of post-surgery patients, particularly the more
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elderly, is the persistent self-propagating inflammatory syn-
drome, in which case it is referred to as POCD, with changes
analogous to those seen in AD (Newman etal.,, 2007;
Steinmetz et al., 2009). Indeed, in some studies the conver-
sion rates to dementia are up to 70% in patients who are 65
years or older (Vanderweyde et al., 2010).

The publications on POCD show how a field can be
obscured by focusing on individual jigsaw pieces rather than
constructing the wider picture. For example, at least three
groups have explored both inflammatory cytokines and
HMGBI1 in POCD (Terrando et al., 2010; He et al., 2012; Lin
et al., 2014). Notably, all three groups considered HMGBI1 in
isolation from S100s or AP. Likewise, while others (Linstedt
et al., 2002; Rohan et al., 2005; Leiendecker et al., 2010; Li
et al., 2012; Lili et al., 2013) showed increased S100s in POCD,
two of these co-assaying for an inflammatory cytokine (Li
et al., 2012; Lili et al., 2013), and none for HMGB1 or AB. In
the same vein, others have published on AB in POCD (Xie
and Tanzi, 2006; Ji et al., 2013; Reinsfelt et al., 2013; Xu et al.,
2014), but few discuss inflammatory cytokines (Ji et al., 2013;
Reinsfelt et al., 2013), and none, so far as we are aware,
co-investigated HMGB1or S100s. All this is consistent with
the concept, based on mouse studies (Terrando et al., 2010),
of preventing POCD by pre-emptively treating at-risk surgical
patients with anti-TNF antibody.

The bias built into transgenic AD
models and caused by injecting
soluble AB

Could mouse transgenic models, which encouraged the argu-
ment that anti-amyloid immunotherapy approaches were
ready for human trials (Janus et al., 2000; Morgan et al.,
2000), have led researchers astray? The same question mark
may hang over the impressive outcome in which ultrasound
scanning, rather than passive or active antibody, was recently
used to remove AP and restore normal function in another
mouse strain commonly used as an AD model (Leinenga and
Gotz, 2015). Because these genetically modified mouse strains
overexpress human ABPP and therefore Af, any other second-
ary DAMP, such as HMGB1 or S100s, would become relatively
insignificant (Figure 2), allowing A removal, by whatever
method, to be sufficient to block the secondary DAMP step in
the pathogenesis pathway. Whereas these mouse models are
an argument in favour of anti-amyloid immunotherapy for
early-onset human AD (EOAD), which is characterized by
mutations that lead to high AB expression (Kowalska, 2003),
the same does not hold for the much more common, spo-
radic, late onset form of the disease, in which there is no
reason to presume, as in mouse models and EOAD, that
secondary DAMP function is dominated by Af rather than
shared with HMGB1 and S100 proteins.

It has become common practice (Maurice et al., 1996; Kim
etal., 2014) to strengthen the amyloid case by transiently
reproducing aspects of AD by injecting soluble A into experi-
mental animals. As with transgenic mice, such experiments
have limited relevance to the clinical disease without HMBG1
and S100 proteins, the other two secondary DAMPs we have
discussed, being brought into the equation.
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Figure 2

Model of AD induced by i.c.v. injection of Af in mice. Partial mimicry
of LOAD, but the pathway is artificially biased towards of an end
result that is AP dependent, and therefore responds to therapy that
reduces a TNF cascade that was initially induced by the injected A.

Total PAMP plus DAMP
determines outcome

We have made the case that PAMPs and DAMPs may start the
chain of proinflammatory events leading to the pathogenesis
of the chronic neurodegenerative diseases, including being
incorporated into the AD pathogenesis pathway. A most pres-
cient publication has proposed a damage signal hypothesis of
AD pathogenesis in which long-term activation of the innate
immune system was central (Fernandez etal., 2008). In
essence, the authors reasoned that what matters is not
whether a particular danger signal is present, but whether the
total sum of their activity and persistence, and thus the
chronic level of the proinflammatory cytokine they induce,
are sufficient to initiate and drive neurodegenerative disease.
Although much more is known nowadays about the range of
possible DAMPs, including the presence of Af in their ranks,
the idea that the danger signals discussed earlier all converge
to provide harmful levels of the same proinflammatory
cytokines (Fernandez ef al., 2008) still rings true. Our aware-
ness of the details of outcomes when a number of TLRs are
activated simultaneously is, however, still in its infancy
(Rosenberger et al., 2014).

AB in perspective

One consequence of the prolonged enthusiasm for AP has
been a relative ignorance in this field of the other secondary
DAMPs, such as HMGB1 and S100s, which are increased in
AD but remain little tested in this context. Until all three are
given equal consideration, there seems little rationale for
implying that Af is more potent than the other two. Never-
theless, plaque is certainly an instructive histological foot-
print from which to infer long-term DAMP activity by soluble
AB. For example, the presence of excessive plaque in the
absence of cognitive loss (Schmitt ef al., 2000) may indicate



that few if any other PAMPs or DAMPs were up-regulated in
that individual. Hence increased AP alone may, in this cir-
cumstance, have been insufficient to raise the net load of
proinflammatory cytokines above threshold required for
disease onset. If, on the other hand, HMGBI1 and the S100s —
as well as other inflammation-enhancing DAMPs of which we
are as yet unaware — are plentiful, immunotherapeutically
removing soluble AB, no matter how diligently or on how
grand a scale, as in recent random trials (Doody et al., 2014;
Salloway et al., 2014), is unlikely to be helpful to AD patients
because the contributions from other secondary DAMPs
ensure that the total proinflammatory cytokine load remains
high enough to maintain illness.

We propose that, as one of the secondary DAMPs able to
further enhance inflammatory cytokine levels, soluble AB has
a middle-ranking role in AD pathogenesis, no more or less
essential than those of HMGB1 or the S100 proteins. This
questions the continuing stream of literature assuming oli-
gomer versions of AP are the primary initiators of AD patho-
genesis, either implying direct harmfulness or acting via the
proinflammatory cytokines it induces. As noted earlier, even
the post-Af proinflammatory cytokine step is still often
omitted from the AD pathogenesis narrative, even though
the capacity of AP to act as a DAMP, a link first recognized in
2005 (Wang et al., 2005), is now clear. As noted earlier, A is
recognized by various TLRs (Reed-Geaghan etal., 2009;
Stewart et al., 2010; Vollmar et al., 2010) and the field is
continuing to expand (Lourenco et al., 2013). Particularly
telling recent evidence is that etanercept, the anti-TNF agent
used off-label via an apparent i.c.v. equivalent route for treat-
ing AD and stroke (Tobinick and Vega, 2006a; Tobinick et al.,
2006b; 2012), has been reported to prevent memory deficits
caused by administering AP to mice i.c.v. (Detrait et al., 2014).
Notably, publications ignoring the effects of post-AR TNF
includes new evidence on GABA from reactive astrocytes
impairing memory in mouse models of AD (Jo et al., 2014).
TLR4s, which sense A, are on astrocytes (Gorina et al., 2011)
and oligomeric Ab induces high levels of TNF in these cells
(White ef al., 2005).

Even so, understanding the secondary DAMP character of
AB, in line with that of HMGB1 and the S100 proteins, requires
an awareness that the proinflammatory cytokines that
mediate the harm caused by AB had also been instrumental in
inducing AB (Liao et al., 2004; He et al., 2007; 2013; Yamamoto
etal., 2007; Zhao et al., 2011). Given these shared positive
feedback functions of HMGB1, S100 and A for proinflamma-
tory cytokines, it is intriguing to consider the history of AD
research priorities, and the number and influence of conse-
quent publications, if either or both of these other two DAMPs,
as well as AB, had left histologically spectacular plaques as a
persistent footprint of their past formation.

Parallel circumstances in
related conditions

This review is not complete without noting the parallel world
within the publications on the AD-related conditions, stroke
and TBI (Hua et al., 2007; Cohen et al., 2009; Hyakkoku et al.,
2010; Su et al., 2011; Tsai et al., 2011; Shichita et al., 2012).

Amyloid (3 is one of the secondary DAMPs

Indeed, a narrative largely parallel to ours could be con-
structed, focusing on either stroke or TBI, with a similar
degree of reference to the other two neurodegenerative states
as all three conditions are now described in terms of the
innate immunity cytokines and have an appreciable body of
publications on HMBG1, S100 proteins and AB. Thus, the best
way to advance rational treatment of this close knit trio of
neurodegenerative conditions seems to be to focus on what
they have in common, despite their disparate clinical origins.
As reviewed (Clark and Vissel, 2013), a range of studies point
to efficacy of anti-TNF agents and GLP-1 mimetics, which, as
TNF induces insulin resistance, ameliorate consecutive
harmful steps in those brain disease states with excess
TNE, whatever their traditional, clinically based, disparate
nomenclatures.

In summary, a clear perspective on the role of soluble AB
in AD is most rationally gained by visualizing it in the
company of other secondary DAMPs, such as HMBG1 and
S100 proteins, rather than in isolation. When this is per-
formed, the presence of high amyloid levels in many cogni-
tively normal older brains, and the failure to replicate in
humans the anti-amyloid immunotherapy, successful in
transgenic mice, can be better understood.
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