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Abstract: Quantitative measurement of b-amyloid from amyloid PET scans typically relies on localiz-
ing target and reference regions by image registration to MRI. In this work, we present a series of
simulations where 50 small random perturbations of starting location and orientation were applied to
each subject’s PET scan, and rigid registration using spm_coreg was performed between each perturbed
PET scan and its corresponding MRI. We then measured variation in the output PET-MRI registrations
and how this variation affected the resulting SUVR measurements. We performed these experiments
using scans of 1196 participants, half using 18F florbetapir and half using 11C PiB. From these experi-
ments, we measured the magnitude of the imprecision in the rigid registration steps used to localize
measurement regions, and how this contributes to the overall imprecision in SUVR measurements.
Unexpectedly, we found for both tracers that the imprecision in these measurements depends on the
degree of amyloid tracer uptake, and thus also indirectly on Alzheimer’s disease clinical status. We
then examined common choices of reference regions, and we show that SUVR measurements using
supratentorial white matter references are relatively resistant to this source of error. We also show that
the use of partial volume correction further magnifies the effects of registration imprecision on SUVR
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measurements. Together, these results suggest that this rigid registration step is an attractive target for future
work in improving measurement techniques. Hum Brain Mapp 38:3323–3336, 2017. VC 2017 The Authors Human

Brain Mapping Published by Wiley Periodicals, Inc.

Key words: reproducibility of results; Alzheimer disease; positron-emission tomography; image
processing; computer-assisted; amyloid; florbetapir; Pittsburgh compound B

r r

INTRODUCTION

Quantitative measurements of b-amyloid from Positron
Emission Tomography (PET) scans for clinical trials and
longitudinal observational studies of Alzheimer’s disease
(AD) are typically calculated using the Standardized
Uptake Value Ratio (SUVR) [Jagust et al., 2010; Salloway
et al., 2014; Siemers et al., 2016]. SUVR is a ratio of the
measured uptake in a target tissue region of interest (ROI)
divided by uptake in a reference tissue ROI that is
assumed to be free of pathology [Zasadny and Wahl,
1993]. For amyloid PET scans in studies of AD, the target
ROI typically consists of a large region of cortical gray
matter (GM). The reference ROI is typically all or part of
the cerebellum [Klunk et al., 2004], especially in cross-
sectional studies. The reference and target ROIs are typi-
cally localized using a series of registrations: 1) rigid regis-
tration between the PET scan and a corresponding
T1-weighted (T1-w) Magnetic Resonance Imaging (MRI)
scan, and 2) nonlinear registration between the corre-
sponding T1-w MRI and a common template space. ROIs
defined in the common template space are then backward-
propagated to the subject scans, and SUVR is calculated
from the mean uptake values in the propagated target and
reference ROIs. Many amyloid PET studies also use partial
volume correction (PVC), which uses MRI segmentations
to estimate and correct for varying tissue fraction per PET
voxel [Meltzer et al., 1990]. This step also requires accurate
PET-MRI alignment.

Because amyloid PET SUVR measurements play a criti-
cal role in studies of Alzheimer’s disease, their degree of
accuracy (absence of bias or systematic error) and preci-
sion (limited by random, non-systematic error) directly
impacts the power of these studies. In longitudinal studies
measuring change over time, precision of serial measure-
ments is particularly important [Schmidt et al., 2015]. Prior
works have primarily focused upon other relevant param-
eters such as use of PVC, choice of target voxels, and
choice of reference region [Brendel et al., 2015; Carbonell
et al., 2015; Chen et al., 2015; Landau et al., 2015; Schwarz
et al., 2016b]. In this work, we focus specifically on a rela-
tively under-studied measurement step: cross-modality
rigid registration. Serial measurements of amyloid PET can
show noisy or implausible within-subject trajectories such
as those that decrease over time [Landau et al., 2015;
Scheinin et al., 2009; Schwarz et al., 2016b], but imprecise
rigid registration has not been studied as a quantifiable

contribution to the imprecision in these measurements.
Unlike other sources of imprecision in PET image meas-
urements such as limited resolution, variations in cerebral
blood flow (i.e., wash-in and wash-out effects), variations
in subject positioning, and variations in scan time relative
to the injection [Schmidt et al., 2015], imprecision in regis-
tration occurs in post-processing software. Therefore, it is
a source of imprecision that could be improved, and these
improvements could be applied retrospectively to existing
data.

In this work, we quantify the amount of imprecision in
rigid registrations between amyloid PET and MRI, and we
measure the effects of this imprecision on the SUVR meas-
urements that depend on them. We then demonstrate that
this imprecision is affected by subject amyloid burden and
therefore indirectly by clinical diagnosis. Finally, we
explore how this variance is affected by different varia-
tions in SUVR calculations, such as different reference
regions and PVC.

METHODS

Subject Characteristics

Scans were drawn from two primary data sources, each
using different amyloid PET ligands: (1) Mayo Clinic stud-
ies, and (2) the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI). Mayo Clinic amyloid PET scans used [11C]
Pittsburgh Compound B (PiB) [Klunk et al., 2004], and
ADNI amyloid PET scans used [18F] AV45 (florbetapir)
[Wong et al., 2010]. The two ligands have different binding
properties, and we wanted to test our hypotheses using
both types of data. Ideally, one would use a large dataset
of subjects varying across the entire range of disease bur-
den that were imaged on the same day with both ligands,
but such a dataset does not exist. Because the Mayo and
ADNI studies use different recruitment strategies, we
wanted to ensure that the demographics and distribution
of subjects across the clinical spectrum were similar for
each dataset, that is, each ligand. Therefore, we selected
subjects (with PET scans and corresponding T1-weighted
anatomical MRI scans of acceptable quality) from each
study by matching them on age, sex, and clinical diagnosis
(clinically normal [CN], mild cognitive impairment [MCI],
and Alzheimer’s Disease dementia [AD]).

Mayo Clinic data was pooled from two sources: the
Mayo Clinic Study of Aging (MCSA) and Mayo Clinic Alz-
heimer’s Disease Research Center (ADRC). MCSA is an
epidemiological cognitive aging study in Rochester,
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Olmsted County, MN [Petersen et al., 2010; Roberts et al.,
2008]. The ADRC study recruits and follows subjects ini-
tially seen as patients in the behavioral neurology practice
at Mayo Clinic.

ADNI data used in this study were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). For up-to-date information,
see the ADNI homepage [Anon, 2013].

All studies were approved by their respective institu-
tional review boards and all subjects or their surrogates
provided informed consent compliant with HIPAA regula-
tions. In total, we used single-timepoint PET-MRI scan-
pairs of n 5 1196 subjects, with n 5 598 from each study.
Within each study, n 5 303 were clinically normal (CN),
n 5 200 had mild cognitive impairment (MCI), and n 5 95
had AD dementia (AD). Detailed characteristics of these
individuals are given in Table I.

Scan Acquisition Parameters

Mayo Clinic T1-weighted MRI were performed using
three General Electric (GE) 3T scanners (models: Discovery
MR750, Signa Excite, Signa HDx) with a sagittal 3D
magnetization-prepared rapid acquisition gradient-recalled
echo (MP-RAGE) sequence. Repetition time (TR) was �
2300 ms, echo time (TE) � 3 ms, inversion time (TI) 5 900
ms, and voxel dimensions were � 1.20 3 1.015 3

1.015 mm. [11C] Pittsburgh Compound B (PiB) PET/CT
studies were acquired using GE scanners (models Discov-
ery 690, Discovery HR, Discovery RX, GE Healthcare,
Waukesha, WI). Subjects were injected with PiB and a
low-dose computed tomography (CT) scan was acquired.
Beginning at 40 min post-injection, subjects underwent a
20-min PET scan sequence with four five-minute dynamic
frames. PET images were reconstructed using an iterative
reconstruction algorithm (256 matrix, 300 mm field of

view, 1.17 mm 3 1.17 mm 3 3.27 mm voxel size). Stan-
dard corrections for attenuation, scatter, randoms and
decay were applied and a 5 mm Gaussian post filter. The
four dynamic frame images were averaged to create a sin-
gle static PiB image. Further details have been previously
published [Jack et al., 2013]. The effective resolution of
these images has been experimentally estimated as � 8mm
[Joshi et al., 2009].

Details of ADNI-standard acquisitions have been previ-
ously published for T1-weighted MRI [Jack et al., 2010]
and for [18F] AV45 PET [Jagust et al., 2010]. Our study
used ADNI’s post-processed PET scans, which were previ-
ously smoothed to an approximate resolution of �8mm
for uniformity across sites and scanners [Joshi et al., 2009].

Common Processing

All T1-weighted MRI scans were preprocessed for B0
intensity inhomogeneity correction using Unified Segmen-
tation [Ashburner and Friston, 2005] as implemented in
SPM12 (v6470) with a population-specific in-house tem-
plate named MCSA202, and several population-specific
parameter alterations previously described [Schwarz et al.,
2016a]. Nonlinear registration parameters were calculated
between each B0-corrected MRI scan and the population-
specific template using the Advanced Normalization Tools
(ANTs) Symmetric Normalization (SyN) algorithm [Avants
et al., 2008]. These parameters were used to transform
regions of interest (ROIs) from the template space onto the
space of the MRI scan of each subject using Nearest-
Neighbor interpolation using the antsApplyTransforms tool
from ANTs. The above steps were performed only once
for each T1-weighted scan and did not vary for each per-
turbation in the simulation. For each rigid transformation
between each subject’s corresponding perturbed PET and
MRI (see below), PET images were interpolated to the

TABLE I. Characteristics of ADNI and MCSA individuals by diagnosis

CN MCI AD dementia

Characteristic
ADNI

(n 5 303)
Mayo

(n 5 303)
ADNI

(n 5 200)
Mayo

(n 5 200)
ADNI

(n 5 95)
Mayo

(n 5 95)

Age, years
Median (IQR) 72 (68, 78) 72 (68, 78) 76 (71, 82) 76 (71, 81) 74 (68, 80) 74 (67, 80)
Min, Max 56, 95 56, 95 55, 89 55, 89 55, 88 55, 88

Male gender 138 (46%) 138 (46%) 134 (67%) 134 (67%) 55 (58%) 55 (58%)
Education, years

Median (IQR) 16 (15, 18) 15 (12, 17) 16 (14, 18) 14 (12, 16) 16 (14, 18) 16 (12, 16)
Min, Max 6, 20 8, 20 9, 20 0, 20 9, 20 7, 20

APOE e4 positive 86 (28%) 89 (29%) 92 (46%) 97 (49%) 64 (67%) 64 (71%)
MMSE

Median (IQR) 29 (28, 30) 29 (28, 29) 28 (27, 29) 26 (24, 27) 23 (21, 25) 21 (17, 23)
Min, Max 24, 30 24, 30 24, 30 17, 30 19, 26 5, 29

CDR-SB
Median (IQR) 0 (0, 0) 0 (0, 0) 2 (1, 2) 1 (0, 2) 4 (4, 6) 4 (3, 7)
Min, Max 0, 1 0, 2 0, 6 0, 8 1, 10 0, 13
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space of the MRI image using Trilinear interpolation and
the antsApplyTransforms tool.

In experiments using partial volume correction, we used
an in-house implementation of two-class PVC [Meltzer
et al., 1990] using tissue-class segmentations produced
by the above application of SPM12 and a point spread
function of 8 mm.

Evaluation Criteria and Statistical Methods

To measure imprecision in rigid registration between PET
and MRI, we applied 50 different rigid (6 degrees of free-
dom) perturbations to each subject’s PET image’s header
geometry (i.e., its starting position in world coordinate
space) and examined the resulting variation in registration
parameters and their resulting SUVR measurements.
We further describe these steps below, and we provide a
flowchart in Supporting Information Figure S1.

If a hypothetical registration algorithm performed per-
fectly, it could be given a pair of input images and return for
all starting positions an identical, registered moving image
that forms a global-minimum registration for that image pair.
Our simulations were designed to examine the variation in
output registrations when given a variety of starting loca-
tions, that is, the degree to which this ideal occurs in practice.
Because it is known that the algorithm in practice requires
some degree of overlap between initial image positions, cau-
tion was necessary to ensure that our perturbations met this
condition. To this end, we first performed a single rigid regis-
tration for each pair of PET and MRI scan and altered the
header information of the PET image files such that the two
were pre-aligned. These pre-aligned scan pairs were assessed
visually to ensure that none were grossly misaligned.

We performed 50 random perturbations around each pre-
registered starting point by selecting each of the six free
parameters of the rigid perturbing transformation indepen-
dently from a uniform distribution. Translation parameters
(x,y,z) were each independently selected from a range
[210 mm,10 mm]. Rotation parameters (around each axis
x,y,z)1 were each independently selected from a range
[2108,108]. To select these ranges, we examined the distribu-
tion of each parameter from the initial PET-MRI rigid
registrations. Among these, rotation parameters up to 208 and
translation parameters up to 40 mm were frequently
observed. Because we wished to avoid gross registration fail-
ures of the perturbed input images, we selected 108 and
10 mm as conservative upper limits for each parameter. This
degree of perturbation was small enough not to cause total
registration failures and did not overestimate the true varia-
tion in subject head placement during scans. We illustrate the
upper limits of our chosen parameter ranges in Figure 1.

A consistent random seed was used to select perturba-
tions for each pair of scans from each subject, such that all
scans underwent the same set of 50 perturbations. For
each random perturbation, a file copy of the PET image
was made, and this copy was perturbed by modifying the
image header geometry (nifti format s-form/q-form
parameters) without resampling or otherwise modifying
the image voxels. These 50 geometry-perturbed files were
used to provide 50 different starting points for PET-MRI reg-
istration. PET-MRI registrations were then performed for

Figure 1.

Range of Parameter Perturbations: Our analysis perturbed the

geometry of each PET image’s header prior to performing regis-

tration with its corresponding MRI scan, and then measured the

instability of these registrations and their resultant SUVR calcula-

tions. Each translation parameter was perturbed by up to

10mm, and each rotation parameter was perturbed by up to 108

in each direction. In this figure, we illustrate the six rigid regis-

tration parameters perturbed by their maximum amounts. Each

subfigure shows a brain contour overlaid on an MRI of the same

brain, after rigid perturbation by the designated amount. [Color

figure can be viewed at wileyonlinelibrary.com]

1In this work, (x,y,z) directions map directly to a Right, Anterior,
Superior (RAS) coordinate system. Rotations were about the origin
as defined in the PET image after initial co-registration to the T1-
w image.
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each pair of original MRI scan and a header-perturbed copy
of the PET image. We then examined these outputs: (1) com-
puted registration parameters and their deviation from the
expected inverse of each perturbation, (2) coefficient of vari-
ation (CV 5 mean/standard deviation) in computed SUVR
values from these registrations using a variety of potential
reference regions, both with and without PVC.

All PET-MRI registrations were performed using SPM’s cor-
egister function (spm_coreg) as implemented in SPM12. The
spm_coreg method is so commonly employed in SUVR analy-
sis of amyloid PET [Edison et al., 2013; Klunk et al., 2015; Lan-
dau and Jagust, 2015; Lowe et al., 2009; Ng et al., 2007; Schain
et al., 2014; Schwarz et al., 2016a; Zhou et al., 2007] that we con-
sider it the standard of reference, and therefore choose it as the
primary method that we examine in this work. We used
algorithm-default registration/convergence parameters with
six degrees of freedom (rigid) registration and the default, nor-
malized mutual information cost function. We also replicated
our experiments with all per-parameter tolerances (designed
to directly set precision limits for each parameter) set to 1/4th
of their normal amounts, and this had no qualitative difference
upon any results or conclusions (data not presented). Experi-
ments were also replicated using an alternate implementation
of the spm_coreg algorithm included with FreeSurfer version 6
(see Strengths and Limitations of Current Study section). No
resampling was performed during the pre-alignment, pertur-
bation, or post-perturbation alignment steps; these only modi-
fied image header geometry information to alter each scan’s
location in world coordinate space.

SUVR computations all used a cerebral GM target ROI
consisting of those regions primarily affected by b-amyloid
deposition: parietal, cingulate precuneus, prefrontal, orbito-
frontal, temporal, and anterior cingulate [Jack et al., 2013],
measured only in those voxels segmented as GM (with

�50% confidence) in the corresponding T1-weighted image.
We used this target with five different choices of reference
region: cerebellar GM, supratentorial white matter (WM),
whole cerebellum, pons, and a composite reference includ-
ing all voxels in the whole cerebellum, pons, and supratento-
rial WM. Our supratentorial white matter ROI was defined
by a combination of the centrum semiovale, corona radiata,
and corpus callosum ROIs from the Johns Hopkins Univer-
sity single-subject WM atlas [Oishi et al., 2009], and mea-
sured only in those voxels segmented as WM (with �50%
confidence). The cerebellar GM ROI was defined by an in-
house modification of the AAL atlas, and measured only in
those voxels segmented as GM (with �50% confidence). The
pons ROI was defined by the same in-house AAL atlas, and
measured only in those voxels segmented as WM (with
�50% confidence). The whole-cerebellum ROI was defined
by an in-house lobar atlas and measured only in those voxels
segmented as either GM or WM. We illustrate these regions
in Figure 2.

For all box plots, whiskers extend from the hinge to the high-
est/lowest value within 1.5 3 the inter-quartile range (IQR).
Notches are given at values 1.5 3 (IQR/sqrt(n)), representing a
95% confidence interval around the median. Therefore, non-
overlapping notched areas indicate significant differences in
median values, with 95% confidence [McGill et al., 1977].

RESULTS AND DISCUSSION

Imprecision in PET-MRI Rigid Registration Is

Larger in Rotation Parameters and Increases

with Clinical Disease Severity

For each perturbation, we multiplied the perturbation matrix
with the transformation matrix output by the registration

Figure 2.

ROIs used during SUVR computations in this analysis. The GM Target region (pink) was used as

the target ROI (SUVR numerator) for all variants. The other ROIs pictured are the multiple

choices of reference region (SUVR denominator) that were compared. [Color figure can be

viewed at wileyonlinelibrary.com]
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algorithm. This matrix product is the result of applying the
transform from the random perturbation followed by the trans-
form from the registration that attempted to undo this pertur-
bation. Ideally, this matrix would be identity, but in practice it
gives the positional deviation caused by the perturbation and
re-registration steps. We then extracted the 6 translation and
rotation parameters from this matrix using spm_imatrix(). The
standard deviation of each parameter across all 50 iterations
was defined as its jitter or imprecision. This value measures the
variation in ending locations (in world coordinate space)
returned by the registration algorithm across the set of
perturbed starting locations, after multiplying-out the inverse
of the perturbation transforms themselves. We plot these jitter
values for each parameter in Figure 3.

In Figure 3, there was a trend where the jitter in all param-
eters increased with clinical disease severity. In the Mayo
dataset, differences between the CN and AD dementia
groups were significant for all parameters except for Y trans-
lation. In the ADNI dataset, differences between these two
groups were significant for all parameters except for X trans-
lation. Therefore, registrations for subjects with AD demen-
tia were significantly less precise than for control subjects.
Among the translation parameters, the Z (superior–inferior)
direction had the least precision in registration. Among the
rotation parameters, rotation about the X axis (pitch, the
direction of the subject’s nose moving up/down) had the
least precision. These results are unfortunate because they

are the directions in which subject positioning typically has
the least physical restriction, and thus the most variance.
Rigid registration corrects for these variations in subject
positioning, but with less precision than we expected. Over-
all, registration was more precise in estimating translation
parameters than rotation parameters.

It is important to note that each of the 50 registrations
produced per scan pair was qualitatively valid. The jitter
for each parameter (Fig. 3) was typically smaller than
0.1 mm (translation) or 0.18 (rotation). This level of varia-
tion was extremely small such that a human observer
could barely see any variation (movement) when observ-
ing animations of the 50 post-perturbation registered PET
scans resampled in the common space of the correspond-
ing MRI. Because all registrations were visually similar,
observers would not select any as comparatively better or
worse, or as failures, in an image registration QC para-
digm. We provide in Figure 4, a typical example of the
variation in PET image voxels included when automati-
cally localizing ROIs used for SUVR computation. From
this heat map of a typical Mayo subject with AD Demen-
tia, it is apparent that although no perturbed registration
was a gross failure, this variation in parameters is suffi-
cient to cause small inconsistencies in which voxels were
included in the ROIs that form SUV ratios. In following
sections, we examine the effects of this imprecision on
computed SUVR values.

Figure 3.

Standard deviation of registration parameters across 50 random perturbations of each subject’s

input PET scan. Translation parameters are given in millimeters. Rotation parameters are given in

degrees. Non-overlap of notched boxplot areas indicates significant differences in median values,

with 95% confidence. In both datasets/tracers, imprecision in all parameters increased with

clinical disease severity, i.e. tracer uptake. [Color figure can be viewed at wileyonlinelibrary.com]
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Imprecision in PET-MRI Rigid Registration

is a Source of Imprecision in SUVR

Measurements that Increases with

Clinical Disease Severity

In Figure 5, we plot the coefficient of variation (CV) of
measured SUVR values across the 50 random rigid pertur-
bations applied to each PET scan in corresponding PET-
MRI scan pairs prior to their co-registration. Because
CV 5 (standard deviation/mean), CV of SUVR values are
comparable even if the SUVR values have different ranges
(such as for different ligands, reference regions, etc.). For
results in this section, we used the standard SUVR
method: a cerebellar GM reference region, without PVC.
We present analyses with different combinations in later
sections. In both datasets, imprecision in SUVR increased
with clinical disease severity. Differences between all
groups were significant in the Mayo dataset, while differ-
ences between the CN and MCI groups, and between the
CN and AD Dementia groups, were significant in the
ADNI dataset. This was expected from the previous sec-
tion: imprecision in rigid registration parameters increased
with clinical severity, so it naturally follows that SUVR
measurements using these registrations would also
become less precise. We plot the same data on a continu-
ous axis against mean SUVR values in Figure S2 (Support-
ing Information).

The mean CV across all Mayo CN subjects was
�0.00042, that is, the standard deviation across all registra-
tion perturbations was �0.042% of their current amyloid
burden. For Mayo AD dementia subjects, this value was
�0.11%. Previous reproducibility studies have estimated
test-retest variability for similar SUVR measurements from
PiB scans as 4.4 6 4.2% for CN subjects and 8.0 6 7.0% for
AD dementia subjects [Tolboom et al., 2009]; our data sug-
gests that a fraction of this (�1%) may be due to registra-
tion imprecision, and that differences in registration
imprecision between groups may contribute to the
increased measurement variability in AD dementia.

When calculating change over time by subtracting inde-
pendent serial PiB measurements, these errors become
larger. For example, the average standard deviation (SD)
of SUVR values across Mayo AD dementia subjects was
�0.0022. When measuring SUVR change by subtracting
independently-measured values from two time points,
these errors propagate quadratically, yielding a SD of
�0.0032. The median annual rate of change in PiB PET
SUVR in MCI/AD-dementia subjects is approximately
0.048 SUVR units/year [Jack et al., 2013]. In a hypothetical
but reasonable study with a 1-year follow-up period, the
error due to imprecision in rigid registration for PiB SUVR
change-over-time measurements of AD dementia subjects
would be �6.58% of the expected annual rate of change.
Therefore, even though rigid registration imprecision

Figure 4.

Heat map of voxels included in cortical target and cerebellar GM

reference ROIs across 50 perturbed registrations for a typical

example subject. Red voxels (those in the color corresponding to

a ratio of 1) were included in the SUVR computation ROIs located

using all 50 perturbed PET-MRI registrations. Voxels in cooler col-

ors were included in a smaller fraction of registrations, i.e. were

less frequently located within these quantification ROIs. Variations

in SUVR values across perturbations are due to the varying pres-

ence/absence of these voxels within the quantification ROIs as a

result of PET-MRI rigid registration imprecision. [Color figure can

be viewed at wileyonlinelibrary.com]
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contributes only �1% of the total PiB SUVR test-retest
imprecision, this fraction is not negligible when compared
to the small annual change magnitudes that are of interest
in amyloid PET studies.

These estimates are similar for ADNI florbetapir scans.
The average standard deviation across ADNI AD demen-
tia subjects was �0.0011. When subtracting values, this
propagates quadratically for a SD of �0.0016. The annual
rate of change for ADNI florbetapir scans of MCI/AD-
dementia subjects is �1.4% or �0.022 SUVR units/year
[Landau et al., 2015]. Therefore, the error due to impreci-
sion in rigid registration for ADNI florbetapir change-
over-time measurements of AD dementia subjects is
�7.08% of the expected annual rate of change. Previous
works have shown implausible within-subject trajectories
that decrease over time in 20-25% of subjects [Landau
et al., 2015; Schwarz et al., 2016b] when using similar cere-
bellar GM reference regions. Our data suggest that reduc-
ing this registration imprecision could potentially reduce
the incidence of these implausible measurements.

Imprecision in SUVR Measurements Due to

PET-MRI Rigid Registration is Affected by

Choice of Reference Region

We present boxplots of CV’s of SUVR values with dif-
ferent typical choices of reference regions in Figure 6. For

all reference regions, the same set of perturbations was
applied prior to registration, so differences in CV across
them are only attributable only to stability of the ROI’s
mean values across variation in imprecise registrations.

In both datasets, SUVRs using whole-cerebellum refer-
ences had a lower CV, that is, superior stability under the
same varying registrations, than those using cerebellar GM
references. This difference was significant in the Mayo AD
Dementia group, and in the ADNI CN and MCI groups.
This greater stability of whole-cerebellum measurements
offers a potential, partial explanation for previous compar-
isons favoring whole cerebellar over cerebellar GM refer-
ences [Joshi et al., 2015; Schwarz et al., 2016b]. Pontine
references had the worst resistance to registration impreci-
sion among all reference ROIs in all groups, and this dif-
ference was significant in all groups except for the Mayo
AD Dementia group. Supratentorial white matter (SWM)
reference ROIs had the best stability in all groups, and this
difference vs. cerebellar ROIs was significant for all groups
except for the ADNI AD Dementia group.

This relative resistance to variance in registration may
partly explain previous comparisons favoring SWM refer-
ences for longitudinal amyloid PET [Brendel et al., 2015;
Landau et al., 2015; Schwarz et al., 2016b].

The composite reference, including all voxels from the
supratentorial WM, pons, and the whole cerebellum, had
performance in between that of the SWM (better) and the

Figure 5.

Coefficient of variation (CV) of measured SUVR values (using

the cerebellar GM reference region) across 50 random rigid per-

turbations of PET scans applied prior to rigid registration, sepa-

rated by clinical disease severity. Non-overlap of notched

boxplot areas indicates significant differences in median values,

with 95% confidence. In both datasets/tracers, imprecision in

SUVR due to imprecision in PET-MRI rigid registration increased

with clinical disease severity, i.e. tracer uptake. [Color figure can

be viewed at wileyonlinelibrary.com]
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whole cerebellum (worse). This result is not surprising:
the superior performance of the SWM was reduced by
inclusion of the cerebellar and pontine ROIs. Still, the com-
posite reference’s resistance to registration imprecision, rel-
ative to cerebellar and pontine references, could partly
explain its superior performance in some prior compari-
sons of longitudinal measurements [Schwarz et al., 2016b].

We emphasize that we are not advocating for the use of
a particular reference region based on these results. In par-
ticular, we are not advocating for the use of differing ref-
erence regions for different subjects according to clinical
severity or amount of tracer uptake. These results are only
intended to quantify the amount of imprecision in SUVR
measurements under a variety of conditions. Choice of ref-
erence region for amyloid PET SUVR measurements
should depend on multiple factors; however, these results
provide a potential mechanism to explain some results
from earlier comparisons [Brendel et al., 2015; Chen et al.,
2015; Landau et al., 2015; Schwarz et al., 2016a].

Cerebellar Reference Regions that are Eroded or

Located Further from Target Tissue are Not

More Robust to PET-MRI Rigid Registration

Imprecision

We also hypothesized that ROIs located further from ana-
tomic boundaries would be more resistant to registration

imprecision. Specifically, we hypothesized that eroding cer-
ebellar ROIs, that is, using only those voxels located in the
center of homogeneous regions, would make ROI mean val-
ues more stable when their boundaries were imprecisely
localized. We further hypothesized that SUVRs using cere-
bellar reference ROIs would be especially imprecise because
registration imprecision could cause voxels in the occipital
cortex to be included in the reference. To test these hypothe-
ses, we introduced the “bottom” cerebellar variants using
only cerebellar GM voxels located inferior to the cerebellar
WM, that is, only those furthest from the tentorium. We also
introduced “eroded” cerebellar variants, where morphologi-
cal erosion was performed on the standard cerebellar GM
reference, and on the “bottom” cerebellar GM reference,
with a radius of 5 voxels. We then repeated the experiment
from the previous section, comparing these with the stan-
dard cerebellar variants.

In both datasets, we found that these smaller, alternative
cerebellar references had significantly higher CVs (i.e., sig-
nificantly more imprecision in SUVR values under the same
amount of antecedent rigid registration imprecision) than
the standard whole cerebellum and cerebellar GM referen-
ces (Fig. 7). This data suggest that smaller reference ROIs
located further from anatomic boundaries and/or further
from the tentorium do not yield more stable SUVR values.
This may be because these regions are smaller, making their
mean values less precise. The poor performance of cerebellar
ROIs located further from the tentorium may be because

Figure 6.

CV of measured SUVR values when using five different classes of

reference region across 50 random rigid perturbations of PET

scans applied prior to rigid registration, plotted for each clinical

diagnostic severity group. Non-overlap of notched boxplot areas

indicates significant differences in median values, with 95% confi-

dence. Supratentorial white matter reference ROIs had the best

resistance to PET-MRI rigid registration imprecision, in all

groups. [Color figure can be viewed at wileyonlinelibrary.com]
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these regions are further from the center of the PET camera,
thus having a lower image signal-to-noise ratio and less-
stable mean values. Previous works have proposed that the
smaller size and peripheral location of cerebellar ROIs may
explain their worse performance vs. SWM ROIs [Chen et al.,
2015; Landau et al., 2015]. It is also plausible that more-
peripheral ROIs would be more severely displaced by iden-
tical rotations than those nearer to the center of rotation.

Imprecision in SUVR Measurements Due to

PET-MRI Rigid Registration is Larger

When Using PVC

We show in Figure 8, the same plot as in Figure 6, but with
additional corresponding variants using two-class voxel-based
PVC [Meltzer et al., 1990]. Variants using PVC consistently had
higher average CV values than those corresponding variants
not using PVC, for all clinical groups, all reference regions, and
both datasets. These differences were significant for almost all
pairs in the Mayo data (exceptions: MCI whole-cerebellum,
AD Dementia Supra-WM/Composite). In the ADNI group,
these differences were mostly not significant.

These results are not surprising because PVC inherently
relies on accurate PET-MRI registration, using each voxel’s
MRI segmentation to estimate the tissue fraction in PET
voxels. Sensitivity of PVC methods to errors in PET-MRI

registration has been reported since their inception [Melt-
zer et al., 1990]. We emphasize that it would be improper
to conclude from this data that PVC should not be used;
however, SUVR pipelines using PVC should especially pri-
oritize precision when choosing a registration method.

Conclusions

In this work, we have presented a series of experiments to
measure imprecision in PET-MRI rigid registration of amy-
loid PET scans and its effects on SUVR calculations. From
these experiments, we have presented four major conclu-
sions: (1) Imprecision in PET-MRI rigid registration contrib-
utes �1% of the total test-retest imprecision in amyloid PET
SUVR measurements, and this fraction causes subtractive
change-over-time measurements to be imprecise by �7% of
the expected reference values for annual change in subjects
with AD dementia (�6.58% for PiB, �7.08% for florbetapir).
(2) Imprecision in PET-MRI rigid registration increases with
amyloid load and thus indirectly with clinical disease sever-
ity. (3) Imprecision in SUVR measurements due to PET-MRI
rigid registration is affected by choice of reference region,
and supratentorial WM references have relatively superior
resistance to registration imprecision. (4) Imprecision in
SUVR measurements due to PET-MRI rigid registration is
larger when using PVC.

Figure 7.

CV of measured SUVR values when using cerebellar variant ref-

erence regions across 50 random rigid perturbations of PET

scans applied prior to rigid registration, plotted by clinical diag-

nostic severity group. Non-overlap of notched boxplot areas

indicates significant differences in median values, with 95%

confidence. The smaller cerebellar variant reference ROIs

located further from anatomic boundaries and/or further from

the tentorium were relatively less resistant to imprecision in

PET-MRI rigid registration. [Color figure can be viewed at

wileyonlinelibrary.com]
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We emphasize that our conclusions are not intended to
suggest that particular processing choices of reference
region, PVC, etc. be chosen. Instability of the measurements
as a result of imprecision in the antecedent rigid registration
is only one factor in such methodological choices, and these
are better left to more thorough comparisons using multiple
criteria [Brendel et al., 2015; Chen et al., 2015; Landau et al.,
2015; Schwarz et al., 2016b]. Instead, this work is designed to
highlight that PET-MRI rigid registration is a previously-
underestimated source of amyloid PET SUVR imprecision
that could be addressed by software algorithm improve-
ments to improve the statistical power of studies using
previously-acquired or future data. It suggests that software
pipelines that analyze change in serial amyloid PET scans by
simultaneously using data across serial scans to improve
per-timepoint precision (potentially at the cost of per-
timepoint accuracy) could reduce this source of imprecision
in change-over-time measurements. Future works will focus
on development and validation of such pipelines.

STRENGTHS AND LIMITATIONS OF THIS

STUDY

This study’s strength is in quantifying the imprecision
in amyloid PET SUVR measurements due to imprecision

in PET-MRI registration, using large datasets from two dif-
ferent tracers (PiB and AV45), under a variety of common
methodological choices. Relatively little attention has been
paid to accurate PET-MRI registration in amyloid PET
SUVR quantification. Our study suggests that this step
contributes to measurement imprecision, which is particu-
larly important for studies of change over time. These
findings also offer a potential explanation for previous
reports of decreased test-retest reliability in AD dementia
subjects [Tolboom et al., 2009]. It has been reported that
intra-scan motion is typically higher for AD dementia sub-
ject PET scans than for controls [Ikari et al., 2012], which is
another source of variability that would only compound
this issue. Our findings show that worse reliability in AD
dementia subjects cannot be attributed solely to increased
motion.

Although spm_coreg is only one of many tools that could
be applied for PET-MRI registration (e.g., tools in FSL,
FreeSurfer, ANTs), it is popular for amyloid PET studies
[Edison et al., 2013; Klunk et al., 2015; Landau and Jagust,
2015; Lowe et al., 2009; Ng et al., 2007; Schain et al., 2014;
Schwarz et al., 2016a; Zhou et al., 2007] . PET-MRI regis-
tration performance likely differs across these methods,
but our goal was to examine this issue as it applies to
common measurement methods of SUVR. Our results
should not be interpreted to suggest that spm_coreg is

Figure 8.

CV of measured SUVR values across 50 random rigid perturbations

of PET scans applied prior to rigid registration, plotted by clinical

diagnostic severity group, using five different reference regions, with

and without two-class partial volume correction. Non-overlap of

notched boxplot areas indicates significant differences in median

values, with 95% confidence. Variants using PVC consistently had

worse resistance to PET-MRI rigid registration imprecision than

those corresponding variants not using PVC. [Color figure can be

viewed at wileyonlinelibrary.com]
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unsuitable; comparisons between it and others are needed
to assess its relative performance.

The upcoming 6.0 release of the popular FreeSurfer
package also includes a PET processing pipeline using
mri_coreg, based on spm_coreg [Greve, 2016a]. We repeated
our simulations using mri_coreg with its recommended set-
tings [Greve, 2016a] in place of spm_coreg. Although there
were differences between mri_coreg and the original
spm_coreg, both in algorithmic features and in the values
produced for identical input pairs, we found no qualitative
differences in imprecision between the methods, and all
major findings were replicated with mri_coreg (data not
presented). The recommended use of FreeSurfer 6 for lon-
gitudinal PET data is to use longitudinal FreeSurfer for
corresponding serial MRI and independently register each
PET scan to the nearest MRI time point [Greve, 2016b].
Therefore, we expect that SUVR values produced with
FreeSurfer 6, when released, will have a similar degree of
imprecision due to independent PET-MRI registrations,
regardless of whether the longitudinal processing stream
is used.

Several methods have been proposed for amyloid PET
quantification without MRI [Fripp et al., 2008; Joshi et al.,
2015; Raniga et al., 2007; Thurfjell et al., 2014; Zhou et al.,
2014]. We did not focus on MRI-independent methods in
this work because (1) MRI is typically acquired during
PET quantification in longitudinal observational and clini-
cal trials of Alzheimer’s disease [Jagust et al., 2010; Sallo-
way et al., 2014; Siemers et al., 2016]. (2) Partial volume
correction techniques, which are generally recommended
by previous comparisons using amyloid PET [Brendel
et al., 2014; Rullmann et al., 2016; Schwarz et al., 2016b; Su
et al., 2015; Thomas, 2012], are not possible with MRI-
independent methods. MRI-independent methods do not
have a rigid PET-to-MRI registration step discussed in this
work, but they do necessarily have some form of PET-to-
PET registration to a common template for ROI localiza-
tion. It is unknown whether these registrations have a sim-
ilar degree of imprecision, but we did not examine this in
this work.

To measure parameter jitter (Evaluation Criteria and Sta-
tistical Methods and Imprecision in PET-MRI Rigid Regis-
tration is Larger in Rotation Parameters and Increases
with Clinical Disease Severity sections), we assumed that
an initial PET-MRI registration produced a reasonable
minimum. This initial registration was necessary to pro-
duce a valid starting point around which to vary registra-
tion parameters. Without it, deviations around poor initial
locations resulted in frequent gross registration failures. It
is possible that sometimes the initial registration produced
a relatively shallow local minimum, that is, some post-
perturbation solutions may have been superior. This could
have biased the parameter jitter results (Imprecision in
PET-MRI Rigid Registration is Larger in Rotation Parame-
ters and Increases with Clinical Disease Severity section).
However, the variation-in-SUVR results (Imprecision in

PET-MRI rigid registration is a Source of Imprecision in
SUVR Measurements that Increases with Clinical Disease
Severity–Imprecision in SUVR Measurements due to PET-
MRI Rigid Registration is Larger When Using PVC sec-
tions) do not depend on this assumption and were consis-
tent with the conclusions of the Imprecision in PET-MRI
Rigid Registration is Larger in Rotation Parameters and
Increases with Clinical Disease Severity section, suggesting
that these biases were negligible. Additionally, our impre-
cision estimates may be conservative because our ranges
of parameter perturbations (Evaluation Criteria and Statis-
tical Methods section) were also designed to be conserva-
tive underestimates, in order to avoid gross registration
failures.

Our experiments used two tracers for late-uptake amy-
loid PET, but did not examine other types of PET in brain
imaging such as full-dynamic acquisitions, Fluorodeoxy-
glucose or recently developed Tau ligands such as AV-
1451[Xia et al., 2013]. However, typical processing meth-
ods for these tracers also use SUVR computed via registra-
tion with MRI, so we hypothesize that SUVR calculations
using these PET images would be affected similarly. We
also did not examine other methods of PVC. Although all
PVC methods using co-registered MRI would be affected
by registration imprecision, we hypothesize that region-
based methods [Rousset et al., 1998] would be affected less
severely than voxel-based, such as that examined here.
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