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Abstract
Background: People suffering from COVID-19 are typically considered non-infectious 
14 days after diagnosis if symptoms have disappeared for at least 48 h. We describe 
three patients who independently acquired their infection. These three patients ex-
perienced mild COVID-19 and completely recovered symptomatically within 10 days, 
but remained PCR-positive in deep pharyngeal samples for at least 38 days. We at-
tempted to isolate virus from pharyngeal swabs to investigate whether these patients 
still carried infectious virus.
Methods: Infectious virus was amplified in Vero E6 cells and characterized by electron 
microscopy and WGS. The immune response was investigated by ELISA and peptide 
arrays.
Results: In all three cases, infectious and replication-competent virus was isolated 
and amplified in Vero E6 cells. Virus replication was detected by RT-PCR and immu-
nofluorescence microscopy. Electron microscopy confirmed the formation of intact 
SARS-CoV-2 particles. For a more detailed analysis, all three isolates were character-
ized by whole-genome sequencing (WGS). The sequence data revealed that the iso-
lates belonged to the 20A or 20C clade, and two mutations in ORF8 were identified 
among other mutations that could be relevant for establishing a long-term infection. 
Characterization of the humoral immune response in comparison to patients that had 
fully recovered from mild COVID-19 revealed a lack of antibodies binding to sequen-
tial epitopes of the receptor-binding domain (RBD) for the long-term infected patients.
Conclusion: Thus, a small portion of COVID-19 patients displays long-term infectiv-
ity and termination of quarantine periods after 14 days, without PCR-based testing, 
should be reconsidered critically.
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1  |  BACKGROUND

In December 2019, a novel lung disease was first reported to 
have emerged in Wuhan, Hubei Province, China, and showed 
very severe disease courses, including some with fatal outcomes. 
The new infectious disease rapidly spread throughout China and 
other countries. As the disease progressed, it was recognized 
to be a coronavirus infection, closely related to SARS (Severe 
Acute Respiratory Syndrome) and MERS (Middle East Respiratory 
Syndrome Coronavirus).1-4 The disease has been referred to as 
COVID (Corona Virus Disease)-19 and the causative virus as 
SARS-CoV-2. The course of the disease can vary substantially in 
COVID-19 patients. Approximately 80 percent of detected infec-
tions are mild to moderate. In severe cases, respiratory distress and 
lung failure may occur. Severe courses mainly affect older people 
and individuals with underlying health conditions. However, severe 
cases can also be observed in people who are young or without 
pre-existing illness5,6 The virus is primarily transmitted via droplet 
infection (ie, when speaking, sneezing, or coughing) and when there 
is little distance to other people. Transmission via aerosols is also 
possible.7 At the time of writing this report, 225.778.167 total cases 
have been reported worldwide, with 4.648.145 deaths (source: 
COVID-19 Dashboard by the Center for Systems Science and 
Engineering [CSSE] at Johns Hopkins University [JHU]). Currently, 
contact restrictions, distance and hygiene rules, wearing a surgical 
mask in everyday life, testing for SARS-CoV-2 infection, and vacci-
nation are the most powerful tools to keep infection events under 

control. There are reports describing that infectious virus could be 
readily isolated during the first week of symptoms from a consid-
erable number of patients. To the best knowledge of the authors, 
so far no isolation of infectious virus was possible with samples of 
moderately or asymptomatically infected patients taken after day 
10, although significant loads of viral genomes were detected.8-11 
Based on these findings, a common practice is to isolate COVID-19 
patients for 14  days and to discontinue the quarantine without 
further testing given the patient is asymptomatic for at least 48 h. 
There are also reports that describe infectivity for at least 24 days 
after disease onset in patients with severe COVID-19 but showing 
no infectivity at later stages of a prolonged COVID-19 infection de-
spite positivity in RNA testing.12 Hence, because of the discrepancy 
of this finding to the experiments aimed at isolating active virus and 
the current time periods for quarantine, the timeline for discontin-
uation of transmission-based precautions is extensively debated.

This study aimed at addressing the question whether persistence 
of infectious virus particles for prolonged periods of more than 
4  weeks is restricted to patients with severe COVID-19 or might 
also occur in patients with mild symptoms as well. In the present 
study, we show that in three patients who already had overcome a 
mild symptomatic COVID-19 disease active virus particles were still 
present in deep pharyngeal area for up to 37 days. Thus, there is 
an urgent medical need to understand the pathophysiology of the 
prolonged stay of active SARS-CoV-2 particles in some patients and 
to re-evaluate the procedures for discontinuation of transmission-
based precautions of formerly infected COVID-19 patients.

G R A P H I C A L  A B S T R A C T
This study shows three long-term SARS-CoV-2 PCR-positive patients persistently producing infectious virus for up to 38 days without 
lasting symptoms. Patients displayed low antibody titers and decreased binding of IgG against sequential epitopes of spike protein in 
comparison to patients that fully recovered from mild COVID-19. WGS revealed that isolates belong to the 20A or 20C clade and viral 
eradication might be affected by two mutations in ORF8.
Abbreviations: COVID-19, coronavirus disease 2019; M, membrane protein; ORF, open reading frame; qPCR, quantitative polymerase chain 
reactions; S, spike protein; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; WGS, whole genome sequencing
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2  |  MATERIAL S AND METHODS

2.1  |  Cell culture and incubation with patients' 
swab

For this study, Vero E6 cells (ATCC® CRL-1586™) were used. Cells 
were cultured in Dulbecco's Modified Eagle's Medium (DMEM from 
BioWest) and supplemented with 2  mM L-glutamine, 100  µg/ml 
streptomycin, 100  U/ml penicillin, and 5% v/v fetal bovine serum 
(FBS superior; Sigma-Aldrich) under atmospheric conditions of 95% 
relative humidity and 5% CO2 at 37°C.

Contents of SARS-CoV-2 positive or negative patients' swabs 
were resuspended in 1 ml of Vero E6 culture medium immediately 
after collection. The swab suspension was sterile-filtered through a 
0.22 µm pore size sterile filter and added to one well of a 12-well cell 
culture plate with 1.5 × 105 Vero E6 cells per well. After 48 h, super-
natant and cells were visually checked for indications of infections, 
such as color change of medium and especially microscopic exam-
ination of generated plaques, which reflect the cytopathic effect of 
SARS-CoV-2. Supernatant was removed and added to one well of 
a 6-well cell culture plate containing 3 × 105 Vero E6 cells per well. 
Additionally, 1 ml of Vero E6 cell culture medium was added to the 
well for a final volume of 2 ml. After 48 h (96 h after initial incuba-
tion), supernatant (2 ml) of one well of a 6-well plate was split into six 
wells of a 6-well plate containing 3 × 105 cells per well and filled with 
medium for a total volume of 1 ml per well. An additional 48 h later, 
supernatant was removed and inactivated by addition of TRIzol™ 
LS Reagent (ThermoFisher Scientific) for further sequencing anal-
ysis. Cells were washed with PBS and treated with TRIzol™ Reagent 
(ThermoFisher Scientific) for quantitative RT-PCR or washed with 
PBS and fixed with 3.7% formaldehyde for immunofluorescence 
staining and confocal laser scanning microscopy (CLSM).

2.2  |  Titer quantification and plaque 
reduction assay

To determine viral titers in the supernatant of Vero E6 cells after 
inoculation with patients' swabs, supernatant after five passages 
was added as serial dilutions of 1:20–1:640 to Vero E6 cells. Cells 
were initially seeded as 2.5 × 105 cells per well in a 12-well plate and 
grown for 16 h at 37°C, 5% CO2 and 90% humidity in DMEM sup-
plemented with 2 mM L-glutamine, 100 µg/ml streptomycin, 100 U/
ml penicillin, and 10% v/v FBS before inoculation. Vero E6 cells were 
inoculated for 1 h at 37°C in aforesaid medium without FBS. After 
that, medium was removed and 1 ml/well fresh medium containing 
5% FBS was mixed with prewarmed liquid agarose (final concen-
tration of 0.4% agarose) and added to the cells. Plates were left at 
room temperature for 20 min until agar got solid. Afterward, plates 
were incubated at 37°C for 72 h. For plaque visualization, 1 ml of 
8% formaldehyde in PBS was added to each well and incubated for 
20 min at 37°C. Agarose and formaldehyde were removed and cells 
were washed with PBS. Finally, 250 µl 0.1% crystal violet solution 

(Sigma-Aldrich) in 20% ethanol was added to the cells and incubated 
for 15 min at room temperature. Crystal violet solution was removed 
and cells were washed once with ddH2O to quantify developed in-
fection plaques.

For determination of neutralizing activity of sera of vaccinated 
individuals to isolates of long-term positive patients, sera dilutions 
of 1:20–1:640 were mixed with virus (final concentration 75 PFU/
well). Virus was neutralized for 1 h at 37°C in medium without FBS. 
Afterward, the mixture was added to Vero E6 cells for 1 h at 37°C. 
An isolate of alpha-variant B.1.1.7 served as a control. Plaque quan-
tification was performed as described above.

2.3  |  RNA extraction and cDNA synthesis

RNA was extracted using Direct-zol™ RNA MiniPrep (Zymo 
Research). Reverse transcription of RNA to cDNA was performed by 
using M-MuLV Reverse Transcriptase RNase H negative (Genaxxon 
bioscience). RNA extraction and cDNA synthesis were performed 
according to manufacturer's protocols.

2.4  |  Quantitative RT-PCR

Analysis of SARS-CoV-2 gene expression via q-RT-PCR was 
achieved by using a Maxima SYBR-Green qPCR Kit (Thermo-
Scientific) and primers flanking SARS-CoV-2 N1 (nucle-
ocapsid; FWD: 5′ GACCCCAAAATCAGCGAAAT-3′, REV: 
5′-TC​T​GGTTACTGCCAGTTGAATCTG), N2 (FWD: 5′ TTAC​
AAACATTGGCCGCAAA-3′, REV: 5′-GCG​CGACAT​TCCGAAGAA-3′), 
N3 (FWD: 5′ GGGA​GCCT​TGAATAC​ACCAAAA-3′, REV: 5′-TGTA​
GCACGAT​TGCAGCATTG-3′), and RdRP (RNA-dependent RNA 
polymerase; FWD: 5 CAAGT​GGGGTAAGGCTAGACTTT-3′, REV: 
5′-ACTTAG​GATA​ATC​CCAACCCAT-3′) genes.13 Measurements 
were performed with a LightCycler 480 Instrument II and analysis 
via LightCycler 480 Software 1.5.1.62 SP3 using absolute quantifi-
cation fit points method (Roche).

2.5  |  High-throughput sequencing library 
preparation

The total RNA isolated from the cell culture supernatant was used 
for Illumina library preparation using a modified NNSR priming 
method.14 We removed the rRNA from the samples with a QIAseq 
FastSelect- rRNA HMR kit (Qiagen) using the recommended reac-
tion with the following program: 2 min, 75°C; 2 min, 70°C; 2 min, 
65°C; 2  min, 60°C; 2  min, 55°C; 5  min, 37°C; 5  min, 25°C. The 
above reaction was combined with subsequent reverse transcrip-
tion with 100 pmol NNSR_RT primer, 10 mM DTT, 0.05 mM dNTPs, 
20 Us of RiboLock RNase inhibitor, 4  µg Actinomycin D, and 200 
Us Superscript IV (Thermo Fisher Scientific) as follows: 45°C for 
30 min; 70°C for 15 min. The cDNA was purified with 1.8 volumes 
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of magnetic beads, and RNase H digest was performed as recom-
mended (NEB). After repeated bead purification, the cDNA samples 
were subjected to second-strand synthesis at 37°C for 30  min in 
a 50  µl final reaction volume containing NEB buffer 2, 0.125  mM 
dNTPs, 5 Us of 3′-5′exo-Klenow Fragment (NEB), and 200  pmol 
NNSR-2 primer. The resulting double-stranded DNA was PCR-
amplified to obtain the barcoded Illumina libraries with a NEBNext 
Ultra II Master Mix (NEB), containing 25 pmol NNSRnest_ind_N and 
NNSR_Illumina primers, each, using the following cycling conditions: 
98°C 10 s; 5 cycles of 98°C 10 s, 55°C 30 s, 68°C 30 s; 15 cycles of 
98°C 10  s, 65°C 30  s, 68°C 30  s. The resulting 400–700-bp-long 
DNA smears were isolated from 1.5% agarose gels with a Zymoclean 
Gel DNA Recovery Kit (Zymo Research), quantified with qPCR using 
a NEBNext Library Quant Kit for Illumina (NEB), and sequenced on a 
MiSeq instrument with a paired-end 2×301 setting.

The overall quality of the reads were checked with the FastQC tool.15 
Raw reads were trimmed and aligned against the reference sequence 
of SARS-COV-2 Wuhan-Hu-1 isolate (Accession number: NC_045512) 
with Trimmomatic (v0.39) and SNAP, respectively.16,17 After sorting, 
the consensus call was performed with Rsamtools and SAMtools.18,19 
The variant and phylogenetic analysis was performed with Nextclade 
(https://clades.nexts​train.org/). 20 The phylogenetic tree was visual-
ized with auspice, which is part of the Nextstrain project.20

2.6  |  Virus concentration, purification, and 
transmission electron microscopy

After inoculation of Vero E6 cells with swabs of SARS-CoV-2 PCR-
positive and -negative patients and viral amplification, 5 ml of virus-
containing cell culture supernatant was inactivated overnight by 
addition of formaldehyde to a final concentration of 4%. Virus con-
centration and purification was performed according to.21

For microscopic, negative stain visualization of viral particles, 
transmission electron microscopy (TEM) was used. A drop of 20 µl of 
sample was pipetted on a carbon-coated, glam-discharged formvar 
grid and immobilized for 30 min at RT. After two washing steps with 
25 µl ddH2O each, grids were incubated with 1% phosphotungstic 
acid in ddH2O for 10–30 s at RT. Grids were dried and analyzed using 
an EM 109 (Zeiss).

2.7  |  ELISA

Receptor-binding domain protein was produced in HEK293T cells 
and purified with Ni-NTA affinity chromatography according to 
the protocol from.22 Florian Krammer, University of Icahn School 
of Medicine at Mount Sinai, kindly provided the expression plas-
mid pCAGGS-sRBD. 50 µl at a concentration of 4 µg/ml RBD in PBS 
was used to coat 96-well microtiter plates (costar 3590, Corning 
Incorporated) overnight at 4°C. Afterward, plates were blocked for 
1  h at RT with 10% FCS in PBS. Between each step, plates were 
washed three times with PBS-T (PBS supplemented with 0.05% 

Tween). The sera were prediluted 1:100 in 10% FCS in PBS and in-
cubated for 1.5 h at RT. For detection, anti-human IgG HRP-linked 
ECL antibodies (Cytiva) were used in a 1:3000 dilution. After 1  h 
of incubation at RT, ELISA plates were developed with 75 µl TMB 
ELISA Substrate Solution (eBioscience) for 5 min, stopped with 75 µl 
1 N sulfuric acid, and analyzed directly at 450 nm on a Tecan reader 
(Tecan Group). As a negative control, sera of patients without SARS-
CoV-2 infection nor vaccination, collected 2017, were used. All val-
ues are given as absorbance at 450 nm. The dotted line, representing 
positivity cut-off, was determined in respect of negative control.

2.8  |  Peptide array

For mapping of sequential stretches of the SARS-CoV-2 proteins full-
length spike (S), nucleocapsid (N), membrane (M), and envelope (E) 
protein recognized by antibodies in sera of SARS-CoV-2 PCR-positive 
and -negative patients were used. In approximation of epitopes, 253 
(S), 52 (N), 27 (M), or 9 (E) synthetic overlapping peptides of 15 aa in 
length with an offset of 5 (S) or 8 (N, M, E) aa between each peptide, 
representing the respective proteins' sequences, were synthesized 
according to the principle of Merrfield using a MultiPep RSi auto-
mated peptide synthesizer (Intavis AG). Using a slide-spotting robot 
(Intavis AG) peptides were immobilized in a duplicate on a cellulose 
membrane (Intavis AG) attached to a 76 mm × 26 mm slide.

Slides were pre-incubated with 10% 10× Casein Blocking Buffer 
in TBS-T, pH 7.4, supplemented with 5% sucrose for blocking pur-
poses and incubated with patients' sera, 1:40 diluted in casein block-
ing buffer. For antibody detection, slides were incubated with LI-COR 
antibody anti-human-IgG-800 secondary antibody (1:10.000 diluted 
in 1:10 Casein Blocking Buffer) and bound antibodies were detected 
via an LI-COR Odyssey Infrared Imager (Biosciences). The peptide 
array was validated with sera of convalescent individuals. Sera of 
these persons were diluted to comparable ODs of the lowest mea-
sured IgG OD of the long-term infected ones (~OD 0.4) and com-
pared directly to each other in an individual approach. The results 
of these peptide arrays showed much stronger binding to defined 
epitopes in case of the adjusted convalescent sera as compared to 
the sera derived from the long-term infected patients.

2.9  |  Immunofluorescence staining and 
CLSM analysis

Incubated cells were fixed with 3.7% formaldehyde and permeabilized 
with 0.5% Triton X-100 in PBS. Afterward, cells were blocked with 1% 
(w/v) bovine serum albumin in TBS-T (20 mM Tris, 150 mM sodium 
chloride pH 8.8, 0.05% [v/v] Tween 20) and incubated with primary an-
tibody rabbit-anti-SARS-CoV-2 spike protein (40150-T62-COV2-100, 
Sino Biological; diluted 1:800 in PBS). For detection of primary 
antibodies, Cy3-coupled donkey-anti-rabbit antibody (Jackson 
ImmunoResearch Laboratories, Inc; diluted 1:400 in PBS) was used. 
Nuclei were stained with 4′,6-Diamidin-2-phenylindole (DAPI; diluted 

https://clades.nextstrain.org/).
https://20
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1:1000 in PBS). CLSM analysis was performed using a Leica SP8 con-
focal laser scanning microscope (Leica).

2.10  |  Ethics statement

The study (PEI-SARS-CoV2) was approved by the local ethics com-
mittee (Ethik-Kommission, Landesärztekammer Hessen 60314 
Frankfurt am Main) and written informed consent was obtained 
from all patients (2020-1664_2-evBO). Patients provided a written 
agreement to publish their medical data. The study was performed 
in accordance with the provisions of the Declaration of Helsinki and 
good clinical practice guidelines.

3  |  RESULTS

3.1  |  Identification of long-term infected COVID-19 
patients

A physician-led medical service (Internal Medical Service, IMS) was 
established at the Paul Ehrlich Institute (PEI) in Langen/Hessen/
Germany in April 2020 to conduct routine and occasion-based test-
ing of employees and to provide counseling and care for employees 

and families affected by COVID-19. As part of the testing, personal 
information and possible symptoms are also collected with the con-
sent of the person being tested. Formerly infected employees can 
only return to the PEI after being tested negative for SARS-CoV-2 
using PCR run on samples obtained from throat swabs. At the time 
of writing, 26 cases of COVID-19 were registered among employees 
at the PEI. Three infected employees (patients 1–3) were found to 
still be positive for SARS-CoV-2 at day 37, 33 and 31, respectively, 
after the initial PCR-based diagnosis. The local health agencies had 
already released all three employees without any restrictions from 
home quarantine 14 days after the initial diagnosis. An overview of 
the infection periods of all long-term infected patients and sample 
taking is given in the time line (Figure 1).

3.2  |  Patient´s medical history and anamnesis

Patient 1 is male and 27 years old. The patient was tested positive 
on pharyngeal SARS-CoV-2-RNA using RT-PCR with Ct  =  16 on 
11/30/2020 by a general practitioner at the Institute for Medical 
Diagnostics Bioscientia GmbH. Symptoms with tightness in the 
chest and increased temperature of up to 38°C had already existed 
2 days earlier since 11/29/2020. The symptoms lasted for 11 days 
and mainly consisted of tightness in the chest, cough, headache, loss 

F I G U R E  1  Overview of the infection periods of all long-term infected patients and of sample taking Overview about sampling times and 
performed tests

Symptoms

Quarantine

Positive PCR

Negative PCR

Inconclusive PCR

Swab collection
for SARS-CoV-2
in vitro culture

Patient 1

male
27 y/o

Patient 2

male
36 y/o

Patient 3

female
36 y/o

Ct=16 Ct=35

Ct=28 Ct=31

Ct=15 Ct=31
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of smell and taste, and toward the end of the illness, increased tired-
ness. Apart from a known hypothyroidism since 2010 under substi-
tution with iodide 200 µg once a day, the patient reported no further 
diseases. The patient did not take any antivirals, immunosuppres-
sive drugs or other medication before or during his infection. The 
last collection of material from a deep pharyngeal swab (IMS, PEI) 
and positive reactivity (Ct = 35) in the RT-PCR for SARS-CoV-2 was 
conducted on 01/06/2021 (Bioscientia). The PCR assay performed 
on 01/08/2021 already showed a negative reactivity. Thus, the pa-
tient had been documentably infected with SARS-CoV-2 for at least 
37  days. Considering the initial symptomatic stage and a possible 
SARS-CoV-2-positivity even after 01/07/2021, the probable dura-
tion of the infection was approx. 39–40  days. On 01/08/2021, a 
swab was collected for in vitro replication of SARS-CoV-2 in cell 
culture.

Patient 2 is male and 36 years old. The patient was tested pos-
itive on pharyngeal SARS-CoV-2-RNA by a general practitioner on 
12/07/2020 by RT-PCR (MVZ Dr. Helge Riegel GmbH). Ct value 
was 28.06. Prior to diagnosis, there was already symptomatology 
with sinusitis, headache, and increased temperature up to 38°C 
since 12/01/2020. Symptoms lasted over 14 days and consisted of 
nausea, loss of smell and taste, muscle pain, and increased fatigue, 
primarily at the end of the illness period. Apart from migraine, the 
patient reported no other underlying diseases. No antivirals, im-
munosuppressive drugs or other medications were administered 
to this patient before or during his infection. The last collec-
tion of material from a deep pharyngeal swab taken by the IMS 
with positive reactivity at Ct = 31 using RT-PCR for SARS-CoV-2 
(Bioscientia) was performed on 01/08/2021. The PCR analysis 
on 01/11/2021 (Bioscientia) demonstrated a negative reactivity. 
Thus, the patient had been documentably infected with SARS-
CoV-2 for at least 33 days. Including the initial symptomatic stage 
and a possible SARS-CoV-2-positivity later than 01/08/2021, the 
probable duration of infection was, therefore, approximately 39–
41 days. A swab was also collected for in vitro replication of SARS-
CoV-2 in cell culture on 01/08/2021.

Patient 3 is female and 36  years old. The patient was tested 
positive on SARS-CoV-2-RNA by RT-PCR by the IMS at the PEI 
on 12/15/2020 (Division of Virology, PEI) during routine testing. 
A validation of the positive reactivity was obtained by an exter-
nal diagnostic laboratory (sampling: IMS, analysis: Bioscientia) on 
12/16/2020 using PCR with a Ct value of 15. Interestingly, the pa-
tient did not develop any symptoms at any time that would have 
indicated an infection with SARS-CoV-2. The patient reported a lack 
of underlying diseases. The patient did not take any antivirals, im-
munosuppressive drugs or other medication before or during her in-
fection. The last collection of material from a deep pharyngeal swab 
with clearly positive reactivity using RT-PCR for SARS-CoV-2 was 
conducted on 01/14/2021 (IMS) with Ct = 31. On 01/18/2021, there 
was a reported ambiguous PCR reactivity to SARS-CoV-2, and on 
01/21/2021, only an initial weak reactivity was observed during the 
PCR run, which was evaluated as questionably negative. The PCR 
analysis conducted on 01/21/2021 then resulted in a clear negative 

reactivity. Thus, the patient had been documentably infected with 
SARS-CoV-2 for least 31 days. Including the possibility of an infec-
tion before 12/15/2020 and the unclear terminal reactivity in PCR 
analysis that was observed until 21/01/2021, the probable dura-
tion of infection was approximately 35–40 days. A swab was also 
collected for in vitro replication of SARS-CoV-2 in cell culture on 
01/18/2021.

As control, three documentably SARS-Cov-2-negative, healthy 
volunteers P4-6 were included in this study and material from swabs 
was subjected to in vitro replication following the identical proce-
dure as described for patients 1–3.

3.3  |  Detection of infectious SARS-CoV-2 in 
pharyngeal swabs of long-term COVID-19 patients

To determine whether the presence of viral nucleic acids in phar-
yngeal swabs of patients (P1–P3) who had undergone COVID-19 
weeks before, recovered, and lacked any symptoms was based on 
the presence of infectious virus, we attempted to amplify virus 
from pharyngeal swabs. For this purpose, pharyngeal swabs were 
dispensed in medium, sterile-filtered, and added to Vero E6 cells. 
Pharyngeal swabs from PCR-negative patients served as controls 
(P4–P6). To exclude any signals that may have been based on input 
material, virus amplification was performed by two passages over 
5  days or over 7  days with five passages. Titer determination via 
plaque assay after five passages revealed titers of 5.46 × 104 PFU/
ml for P1, 5.6 × 104 PFU/ml for P2, and 5.89 × 104 PFU/ml for P3. 
To detect viral replication, RNA was isolated from cellular lysates and 
from cell culture supernatant at both time points. After cDNA syn-
thesis, SARS-CoV-2-specific RT-PCR was performed utilizing three 
gene segments of the nucleocapsid (N)-gene and one of the RNA-
dependent RNA polymerase (RdRP) gene. RT-PCR analysis revealed 
in the case of isolates from P1 low Ct values (approximately 10 for 
the intracellular RNA and 18 for the extracellular RNA) after 5 days 
(Figure 2A,B). For P2 and P3, Ct values of about 10 were observed 
after 7  days for intracellular RNA and roughly 23 for extracellular 
RNA. In contrast, all negative controls showed high values of approx-
imately 40, comparable to the water control. For all positive samples, 
detection of the RdRP gene always showed the highest Ct values in 
all patients. Because the positive RT-PCR data were obtained after 
several rounds of passaging and reflect a significantly higher genome 
number as compared to the input, contamination by input RNA can 
be excluded.

To corroborate these data that indicate the presence of infectious 
replication-competent virus in the pharynx-derived material, Vero E6 
cells, inoculated with the pharynx-derived material for 7 days and four 
passages, were analyzed by immunofluorescence microscopy (CLSM) 
using spike-specific antibodies (Figure  3). The immunofluorescence 
microscopy revealed viral replication evidenced by the significant 
production of spike proteins in the case of cells infected with the iso-
lates from P1 and P2. For P3, only some cells showed spike-specific 
signals.
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Taken together, these data indicate the presence of replication-
competent infectious virus in the pharyngeal tract of all tested long-
term PCR-positive patients.

3.4  |  Detection of coronavirus particles by 
electron microscopy

To further confirm the formation of intact viral particles, virions 
were isolated by ultracentrifugation and analyzed by TEM after 

negative staining. The electron microscopy clearly showed the pres-
ence of viral particles with the characteristic morphology of corona-
viruses in the amplified isolates of all three tested patients (Figure 4). 
The size of viral particles, with a diameter of approximately 75 nm, 
the length of spike structures on the surface of these particles of 
about 15 nm, and the general morphology corresponded to SARS-
CoV-2 particles (Figure 4D). Taken together, the electron microscopy 
confirmed the findings of the RT-PCR and immunofluorescence mi-
croscopy: the pharyngeal swabs obtained from patients 1, 2, and 3 
contained infectious, replication-competent SARS-CoV-2.

F I G U R E  2  Analysis of viral RNA after 
inoculation of Vero E6 cells with patients' 
swabs. Vero E6 cells were inoculated 
with contents of swabs of either SARS-
CoV-2 long-term PCR-positive patients 
(P1-P3) or PCR-negative volunteers 
(P4-P6). Supernatants were passaged for 
5 days with a total of total passages or for 
7 days with a total of three passages. For 
detection of SARS-CoV-2 specific signals, 
primers flanking N1, N2, N3 and RdRP 
genes of SARS-CoV-2 were used. RNA 
was isolated from Vero E6 cell lysates 
(A) or from culture supernatant (B). Vero 
E6 cells without infection served as a 
negative control, cells infected with SARS-
CoV-2/2020/FR/702 served as a positive 
control
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F I G U R E  3  Immunofluorescence 
microscopy of infected Vero E6 cells. Vero 
E6 cells, inoculated with patients' swabs 
of either long-term PCR-positive patients 
(P1-P3) or –negative volunteers (P4-P6), 
were analyzed via immunofluorescence 
microscopy. Cells were stained with anti-
SARS-CoV-2 spike antibodies (red) for 
detection of virus and with DAPI (blue) 
to visualize nuclei. Vero E6 cells without 
infection served as a negative control, 
cells infected with SARS-CoV-2/2020/
FR/702 served as a positive control
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3.5  |  SARS-CoV-2 isolated from long-term infected 
patients belonged to 20A and 20C clade

To characterize the isolates in more detail and classify the isolates, 
Next-Generation Sequencing (NGS) analysis was performed. For this 
purpose, RNA was isolated after a single passage to minimize the 
risk of in vitro mutations. Based on the sequence analysis, the iso-
lates derived from P1 and P3 could be identified as belonging to the 
20C clade, whereas that of P2 belongs to the 20A clade (Figure 5A). 
(GenBank accession numbers; Patient 1: OK075089, Patient 2: 
OK075090, Patient 3: OK075091).

The detailed analysis of the whole-genome revealed eleven mu-
tations in P1 and P3 and ten mutations in P2 compared to the aligned 
strain NC_045512.2 (Table  1). These mutations include the com-
mon mutations D614G of the spike protein as well as the often co-
occurring mutations P314L in ORF1b/RdRP and T265I in ORF1a.23-26 
Additionally, the also already well-known Q57H mutation in ORF3a 

(not detected in isolate of P2) and the S686G mutation in the spike 
that was originally described in virus isolates of ferrets were identi-
fied.24,27 Besides, the more uncommon mutations H125Y in the M 
protein, the mutations V818A in ORF1b, D35Y and A51S in ORF8, 
and T95I and H245R in the spike protein could be identified. No par-
ticular abnormalities could be detected within the receptor-binding 
domain (RBD).

3.6  |  Lack of antibodies binding to sequential 
epitopes in the RBD

To study the humoral immune response of the long-term infected 
patients, the amount of SARS-CoV-2 RBD antibodies were deter-
mined by ELISA and stratified for IgG, IgA, and IgM. Sera were col-
lected at day 38 for patient 1, after 36 days for patient 2, and after 
31 days for patient 3 after initial PCR analysis. For all three patients, 

F I G U R E  4  Visualization of isolated SARS-CoV-2 particles via TEM. Supernatant of infected Vero E6 cells was collected and virus was 
concentrated for microscopic, negative stain visualization of particles. Transmission electron microscopy (TEM) showed the presence of 
SARS-CoV-2 particles in the supernatant of Vero E6 cultures infected with swabs of P1 (A), P2 (B) and P3 (C). The analyzed particles are 
showing the typical size and morphology of SARS-CoV-2 (D). Scale bar is 100 nm

(D)

100 nm

Length:15.85 nm

Length:106.22 nm

(C)

100 nm

(A)

100 nm

(B)

100 nm



    |  2061ZAHN et al.

the presence of RBD-specific antibodies was detected (Figure 6). For 
patient 1, a higher IgG response was found as compared to patients 
2 and 3. The highest IgM response was found for patient 2, whereas 

for patients 1 and 3, a moderate level was detected. A low IgA level 
was found for patients 1 and 2, and for patient 3, the level was 
moderate. Compared to convalescent sera of SARS-CoV-2 infected 
subjects, IgG and IgA antibody levels of all long-term PCR-positive 
individuals showed lower values, but higher IgM levels.

For a more detailed analysis of the antibody response, peptide 
arrays covering the S, N, M, and E protein were established, and the 
binding pattern of the sera derived from patients 1–3, from three 
negative patients, and from three convalescent plasma samples were 
determined (Figure 7). It should be emphasized that this technique 
mainly reflects binding to sequential epitopes. To identify specifi-
cally recognized peptides, the signals obtained for sera from SARS-
CoV-2 negative samples were considered as background (Figure 7A).

If the background signals were subtracted from the specific 
signals (Figure  7C), there was only one sequential epitope specif-
ically detected in the N protein by serum derived from patient 1. 
In case of the serum derived from patient 2 two linear epitopes in 
the S1 domain of the spike, one epitope derived from the N protein 

F I G U R E  5  Phylogenetic characterization of isolated RNA of infected Vero E6 cells. Sequence analysis of RNA from supernatant of 
swab inoculated Vero E6 cells identified the presence of SARS-CoV-2 RNA, belonging to Clade 20A or 20C

TA B L E  1  Identified mutations after whole-genome sequencing

Gene Mutation

M H125Y

ORF1a T265I

ORF1b P314L
V818A

ORF3a Q57H (not in P2)

ORF8 D35Y
A51S

S T95I
H245R
D614G
S686G
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and one from the M protein were identified. In contrast to this, the 
linear epitopes recognized by serum derived from patient 3 were 
completely different from the patterns observed for the other pa-
tients. Here, we identified one epitope at the C-terminal part of the 
spike S2 domain and one in the N protein (Figure 7A,C; Table 2). In 
contrast, a wide variety of sequential epitopes was recognized with 
high intensity by convalescent sera (Figure 7B) derived from patients 
who rapidly eliminated the virus (Figure 7B). These epitopes were 
not recognized by sera derived from long-term patients (Table 3). In 
the case of the convalescent sera, epitopes localized within the RBD 
were recognized. This finding is in clear contrast to the binding pat-
tern obtained for the long-term patients; here, no specific binding 
to linear epitopes covering the RBD was observed. Taken together, 
these data indicate that the pattern of sequential epitopes differs for 
sera derived from long-term infected patients and from patients that 
eliminated the infection within 10 days.

3.7  |  Reduced neutralization of isolate P1 by 
sera of vaccinated individuals

To determine how efficiently infection with isolates of long-term 
positive patients can be neutralized by sera of Comirnaty (BNT162b2, 
Biontech/Pfizer) vaccinated individuals, a plaque reduction neutrali-
zation test (PRNT) was performed and compared to neutralization of 
an isolate of the SARS-CoV-2 alpha-variant (B.1.1.7; Figure 8). First, 
neutralization tests showed different neutralizing capacities of the 
three used sera, with low (S1), medium (S2) und high (S3) neutralizing 
capacity concerning all isolates. While isolates P2 and P3 could be 
neutralized by S1 at dilutions lower then 1:320, this serum blocked 
infection with the alpha-variant and P1 at 1:80 and ≤1:80. Medium 

neutralizing serum S2 could block infection with alpha at a dilution 
of about 1:320 and P2 and P3 at a dilution of ≤1:640, and a dilution 
of 1:40 was needed to neutralize infection with P1 isolate. While S3 
neutralized infection with isolates alpha, P2 and P3 in dilutions of 
1:640, it shows slightly less efficiency neutralizing P1 with ≤1:640. 
These data suggest that isolates of P2 and P3 are more efficiently 
neutralized by sera of vaccinated individuals compared to SARS-
CoV-2 variant B.1.1.7. However, infection with isolate of P1 could be 
less efficiently blocked by all sera compared to the other isolates of 
long-term positive patients or to the alpha-variant.

4  |  DISCUSSION

The data presented in this study demonstrate that in non-
immunocompromised patients, SARS-CoV-2 infection may persist 
for several weeks. Moreover, these results indicate that the detec-
tion of viral nucleic acids even weeks after diagnosis of infection 
does not only reflect remnants of viral genomes. There were still 
infectious viral particles detectable in the pharynx as demonstrated 
by amplification and detection the intact and functional virus. Apart 
from the RT-PCR data, immunofluorescence microscopy, WGS, and 
electron microscopy unequivocally showed that infectious virus 
was present in the pharyngeal swabs of the patients, which could 
be isolated and amplified. Because the quantification of infectious 
viral particles depends on the quality of the swab, conclusions on 
the viral load in the respective patients require a critical assess-
ment. However, in all three patients, even more than 4 weeks after 
COVID-19 diagnosis the positive RT-PCR results obviously corre-
lated with the presence of infectious viral particles, reflecting an 
ongoing active infection.

A detailed analysis by NGS revealed that SARS-CoV-2 isolated 
from P1 and P3 belonged to clade 20C, whereas isolate of P2 be-
longed to clade 20A and sequence analysis revealed several muta-
tions. The 20A clade first attracted attention in beginning of 2020 
with increasing outbreaks in Europe, followed by displacement 
of other lineages in North and South America.28 It is particularly 
characterized by its D614G mutation in the spike protein, caused 
by A23403G nucleotide change.29 Clade 20C on the other hand 
represents a daughter clade of 20A, also harboring the D614G mu-
tation.30 This mutation had already been described as part of a wide-
spread variation, leading to increased infectivity due to facilitated 
ACE2-binding characteristics.23,24 This D614G mutation is known to 
be frequently accompanied by the P314L in ORF1b/RdRP that had 
also been identified in the patient 1 isolate (Table 1).25 Another com-
mon mutation that could be detected in these isolates was T265I 
in ORF1a. The threonine substitution by isoleucine at position 265 
leads to the addition of a beta-sheet structure.26 We could identify 
the Q57H mutation in ORF3a in the isolates of P1 and P3, which 
was first described in Singapore in February 2020. This mutation 
coexists in many cases with the mutation T85I in non-structural pro-
tein 2 (NSP2) that, in contrast, could not be identified in this iso-
late.24 One mutation that was originally described in ferrets and was 

F I G U R E  6  Antibody levels of long-term SARS-CoV-2 PCR-
positive patients. Anti-SARS-CoV-2 antibodies of long-term 
positive patients were measured via SARS-CoV-2 RBD-specific 
ELISA. Thereby, humoral response was differed in IgG, IgA and 
IgM levels. Collection of sera for antibody analysis were performed 
38 days (P1), 36 days (P2) and 31 days (P3) after initial PCR testing. 
SARS-CoV-2-negative, nonvaccinated patients' sera served as 
negative control. As a positive control and comparison, three 
convalescent sera of infected individuals (PC1-3) without long-
term PCR positivity were used
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supposed to lead to immune evasion before receptor binding was 
the S686G mutation in the spike protein that we could also iden-
tify as part of the analyzed sequence. A rare missense mutation that 
was detected in our study is H125Y in the M protein. It is not clear 
what impact that mutation might have in the context of stability or 
immune evasion, but it seems to be a mutation with globally increas-
ing incidence.31 Furthermore, next to the well-recognized mutations 
D614G and P314L in ORF1b a new and so far unknown mutation 
V818A in ORF1b, was detected. Because ORF8 is known to play a 
crucial role in inhibiting the type I interferon signaling pathway as 

well as major histocompatibility complex I (MHC I) degradation, it 
was interesting to detect two mutations in ORF8.32,33 As MHC I 
degradation facilitates immune evasion, it was an unexpected find-
ing that mutation D35Y that we identified in ORF8 was formerly 
described as providing protein stability and decreasing disease se-
verity.34,35 The second ORF8 mutation A51S, in contrast, is located 
within two possible CD4+ T cell epitopes.36 The consequences 
arising from this mutation had yet not been investigated. However, 
these epitope mutations could possibly affect the T cell response 
against SARS-CoV-2 positive cells and delay virus elimination by the 

F I G U R E  7  Epitope mapping of patient derived antibodies against SARS-CoV-2 peptides. 253 (S), 52 (N), 27 (M), or 9 (E) synthetic 
overlapping peptides (15 aa in length; 5 (S) or 8 (N, M, E) aa offset between each peptide) were spotted as duplicates onto microscope slides 
and incubated with sera of long-term PCR-positive and –negative patients (A). Sera from convalescent patients who were not long-term 
PCR-positive served as further control (B). Putative sequential epitopes were determined by identifying peak signals of both positive and 
negative patients, with eliminating possible epitopes detected by sera of positive patients if signals were identified even to a minor amount 
in negative patients, too. Selectively recognized specific epitopes were marked by a star (C)
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cellular immune response. In addition to these mutations affecting 
T cell epitopes, two further mutations in the spike protein were 
identified that could affect the T cell response. This includes T95I, 
a mutation occurring within a predicted CD8+ T cell epitope,37 and 
mutation H245R that might be located both within a T cell and/or B 
cell epitope.38 Therefore, it can be hypothesized that these muta-
tions contribute to impaired virus elimination, as reflected by a pro-
ductive long-term SARS-CoV-2 infection.

Moreover, we found distinct differences in relative antibody 
concentrations in serum between the three long-term patients 
as compared to reconvalescent patients. In the majority of SARS-
CoV-2 patients, IgG and IgM is detectable 2–3  weeks after onset 
of symptoms.39 For patients with no obvious emerging symptoms 
or who remained completely asymptomatic, IgG and IgM levels are 
consistently less pronounced compared to patients with noticeable 
mild, moderate, or severe symptoms.40 Patients 1 and 2 in this study 
both showed SARS-CoV-2 infections with similar symptoms, but 
only patient 1 demonstrated an IgG seroconversion that resulted in 
a considerable increase of IgG antibody titers (Figure 6), whereas IgG 
levels in patient 2 were similar to asymptomatic patient 3. Another 
striking feature of the antibody response in patient 2 are the lev-
els of IgM clearly exceeding those of IgG after 38 days of symptom 
onset, albeit IgG levels are typically higher than IgM after such time 
period.41 Furthermore, symptomatically infected patients 1 and 2 
surprisingly produced only a rather weak IgA response at all, even 
though other studies described early and rather high IgA titers be-
ginning from approximately 10 days to more than 40 days and even 
longer in symptomatically infected patients.42,43 The lowest IgA ti-
ters were observed in both symptomatically infected patients 1 and 
2, and in both cases, swab inoculation led to distinct in vitro infec-
tions (Figure 3A), whereas the highest IgA titers were measured in 
asymptomatic patient 3. Here swab inoculation caused only weaker 
infection in vitro (Figure  3B). These observations strengthen the 
hypothesis of a correlation of IgA titers with the efficacy of virus 
neutralization.

TA B L E  2  Sequential epitopes identified in infected long-term 
patients

Patient 1

Epitopes: (identified outliers)

N G-A-L-N-T-P-K-D-H-I-G-T-R-N-P

Patient 2

Epitopes: (identified outliers)

S1 S-L-L-I-V-N-N-A-T-N-V-V-I-K-V

Q-P-R-T-F-L-L-K-Y-N-E-N-G-T-I

N L-P-Y-G-A-N-K-D-G-I-I-W-V-A-T

H-I-G-T-R-N-P-A-N-N-A-A-I-V-L

M Q-R-V-A-G-D-S-G-F-A-A-Y-S-R-Y

Patient 3

Epitopes: (identified outliers)

S2 S-P-D-V-D-L-G-D-I-S-G-I-N-A-S

N T-A-S-W-F-T-A-L-T-Q-H-G-K-E-D

TA B L E  3  Epitopes restricted to infected control patient

Control inf. patient 1 Control inf. patient 2 Control inf. patient 3

Epitopes Epitopes Epitopes

S1 H-K-N-N-K-S-W-M-E-S-E-F-R-V-Y S1 C-T-F-E-Y-V-S-Q-P-F-L-M-D-L-E S1 V-L-L-P-L-V-S-S-Q-C-V-N-L-T-T

R-S-Y-L-T-P-G-D-S-S-S-G-W-T-A R-S-Y-L-T-P-G-D-S-S-S-G-W-T-A H-K-N-N-K-S-W-M-E-S-E-F-R-V-Y

Q-P-R-T-F-L-L-K-Y-N-E-N-G-T-I RBD T-N-L-V-K-N-K-C-V-N-F-N-F-N-G S-S-A-N-N-C-T-F-E-Y-V-S-Q-P-F

T-D-A-V-D-C-A-L-D-P-L-S-E-T-K S2 A-L-L-A-G-T-I-T-S-G-W-T-F-G-A R-S-Y-L-T-P-G-D-S-S-S-G-W-T-A

RBD G-P-K-K-S-T-N-L-V-K-N-K-C-V-N L-S-R-L-D-K-V-E-A-E-V-Q-I-D-R RBD T-N-L-V-K-N-K-C-V-N-F-N-F-N-G

F-N-F-N-G-L-T-G-T-G-V-L-T-E-S L-Q-S-L-Q-T-Y-V-T-Q-Q-L-I-R-A F-N-F-N-G-L-T-G-T-G-V-L-T-E-S

S1 S-V-I-T-P-G-T-N-T-S-N-Q-V-A-V N L-P-Y-G-A-N-K-D-G-I-I-W-V-A-T S1 G-T-N-T-S-N-Q-V-A-V-L-Y-Q-D-V

A-D-Q-L-T-P-T-W-R-V-Y-S-T-G-S P-T-W-R-V-Y-S-T-G-S-N-V-F-Q-T

S2 L-S-R-L-D-K-V-E-A-E-V-Q-I-D-R S2 V-T-L-A-D-A-G-F-I-K-Q-Y-G-D-C

L-I-T-G-R-L-Q-S-L-Q-T-Y-V-T-Q A-R-D-L-I-C-A-Q-K-F-N-G-L-T-V

L-N-E-V-A-K-N-L-N-E-S-L-I-D-L A-L-L-A-G-T-I-T-S-G-W-T-F-G-A

Y-E-Q-Y-I-K-W-P-W-Y-I-W-L-G-F L-S-S-N-F-G-A-I-S-S-V-L-N-D-I

M T-V-E-E-L-K-K-L-L-E-Q-W-N-L-V L-S-R-L-D-K-V-E-A-E-V-Q-I-D-R

N-V-P-L-H-G-T-I-L-T-R-P-L-L-E V-Q-I-D-R-L-I-T-G-R-L-Q-S-L-Q

Y-E-Q-Y-I-K-W-P-W-Y-I-W-L-G-F

N L-G-T-G-P-E-A-G-L-P-Y-G-A-N-K

L-P-Q-G-T-T-L-P-K-G-F-Y-A-E-G

M L-R-G-H-L-R-I-A-G-H-H-L-G-R-C
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The hypothesis of a potentially constrained efficiency of viral 
neutralization in all three patients is supported by characterization of 
linear epitopes recognized by antibodies of these patients (Figure 7; 
Table 2). No binding to linear epitopes within the RBD of the spike 
that is assumed to be crucial for neutralization was found.44 Instead, 
linear epitopes derived from the nucleocapsid protein were recog-
nized by sera from all three patients.

Plaque reduction neutralization tests revealed a potential neutral-
izing effect against infection with the three isolates similar to an in-
fection with the alpha-variant (B.1.1.7) by sera of vaccinated subjects, 
indicating a protection by vaccination. Both the three isolates as well 
as the alpha-variant are characterized by a D614G mutation in the 
spike protein that was described as enhancing viral loads and improv-
ing transmission.45,46 However, we observed differences in the effi-
ciency of neutralization by sera of vaccinated individuals (Figure 8). 
The isolate P1 required less diluted sera to be blocked compared to 
the alpha-variant and the other isolates, although we detected no dif-
ferences in gene sequences between P1 and P3. As the same PFU/ml 
was used in this approach, these results were unexpected.

Based on the data presented in this study, the assumption that 
genomic material detected by PCR in long-term positive patients is 
essentially remaining genome RNA fragments has to be critically 
reconsidered. Our findings provide strong evidence that long-term 
PCR-positive patients are possible carriers of still intact and infec-
tious virus. Considering the long positivity of these patients, stop-
ping quarantine periods after 10  days without PCR-based testing 
must be critically reconsidered because there might be a risk of virus 
transmission.
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