
REVIEW
published: 08 September 2021

doi: 10.3389/fpsyt.2021.716619

Frontiers in Psychiatry | www.frontiersin.org 1 September 2021 | Volume 12 | Article 716619

Edited by:

Kurt Leroy Hoffman,

Autonomous University of

Tlaxcala, Mexico

Reviewed by:

Pablo R. Moya,

Universidad de Valparaiso, Chile

Jan Svoboda,

Academy of Sciences of the Czech

Republic (ASCR), Czechia

Christopher Pittenger,

Yale University, United States

*Correspondence:

Swarup Mitra

swarupmi@buffalo.edu

Abel Bult-Ito

abultito@alaska.edu

Specialty section:

This article was submitted to

Molecular Psychiatry,

a section of the journal

Frontiers in Psychiatry

Received: 28 May 2021

Accepted: 16 August 2021

Published: 08 September 2021

Citation:

Mitra S and Bult-Ito A (2021)

Bidirectional Behavioral Selection in

Mice: A Novel Pre-clinical Approach to

Examining Compulsivity.

Front. Psychiatry 12:716619.

doi: 10.3389/fpsyt.2021.716619

Bidirectional Behavioral Selection in
Mice: A Novel Pre-clinical Approach
to Examining Compulsivity

Swarup Mitra 1* and Abel Bult-Ito 2,3*

1Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, NY, United States,
2Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, United States, 3OCRD Biomed LLC,

Fairbanks, AK, United States

Obsessive-compulsive disorder (OCD) and related disorders (OCRD) is one of the most

prevalent neuropsychiatric disorders with no definitive etiology. The pathophysiological

attributes of OCD are driven by a multitude of factors that involve polygenic mechanisms,

gender, neurochemistry, physiological status, environmental exposures and complex

interactions among these factors. Such complex intertwining of contributing factors

imparts clinical heterogeneity to the disorder making it challenging for therapeutic

intervention. Mouse strains selected for excessive levels of nest- building behavior exhibit

a spontaneous, stable and predictable compulsive-like behavioral phenotype. These

compulsive-like mice exhibit heterogeneity in expression of compulsive-like and other

adjunct behaviors that might serve as a valuable animal equivalent for examining the

interactions of genetics, sex and environmental factors in influencing the pathophysiology

of OCD. The current review summarizes the existing findings on the compulsive-like mice

that bolster their face, construct and predictive validity for studying various dimensions

of compulsive and associated behaviors often reported in clinical OCD and OCRD.

Keywords: OCD, artificial selection, spontaneous compulsive-like phenotype, behavioral heterogeneity, face-

predictive-construct validity, desformylflustrabromine, OCRD

INTRODUCTION

The prevalence of obsessive-compulsive disorder (OCD) ranges from 1 to 3% (1, 2) including
a lifetime prevalence of 1.6% (3) to 2.3% (4) and a 12-month prevalence of 1.2% in the
United States (US) (4), and a point prevalence of 3.3% in India (5) and 1.7% in Greece (6).
It was first described as a psychiatric condition about 100 years ago (7, 8). The World Health
Organization has indicated OCD to be the leading global cause of morbidity (9) that has
however declined in the recent times due to refinements in the understanding of the prevalence
of the condition. Previously OCD has been considered among the top 20 causes of years of
life spent with disability for patients between 15 and 44 years of age (10). In 1990, costs
related to OCD in the US were estimated to be $8.4 billion (11). Costs include medical care
and lost productivity related to functional disabilities. OCD has a large impact on quality of
life and functional disabilities including impairments in mental health, social and household
functioning, work outcomes and physical health (12–19). The average time from OCD onset
to initial treatment is over 7 years (20–22) adding to the patient’s burden of decreased quality
of life during a significant period of their lives. This is mainly because patients are inclined to
conceal their symptoms fearing they will appear abnormal and seek medical attention only when
other co-morbid conditions, such as anxiety and depression, exacerbate the disorder (23, 24).
Ineffective identification of specific symptoms is also one of the reasons for delayed diagnosis (25).
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OCD patients suffer from persistent obsessive thoughts
and compulsive repetitive behaviors to alleviate uncomfortable
feelings of anxiety and distress (23, 26–30). Compulsions are
typically meant to neutralize the obsessive feelings (31), but
provide only transient relief leading to reinforcement of the
behaviors and continuation of the obsession-compulsion cycle
(29). Obsessions can be thematic, such as fear of contamination,
pathological doubt, or need for symmetry/order. Compulsive
behaviors involve washing, seeking, counting, sorting, checking
and searching (23, 26–30). Some patients experience obsessions-
only symptoms without any compulsive ritualistic behaviors. An
example is that of fear of causing harm to others or self (29).
Many studies use the Yale-Brown Obsessive-Compulsive Scale
(Y-BOCS scale), an 10-item clinically administered scale (29),
to clinically characterize and identify the occurrence and types
of obsessive-compulsive symptoms (32). Further enhancements
to this scale involve the Dimensional Yale-Brown Obsessive-
Compulsive Scale (DY-BOCS) which categorizes OCD into 6
distinct dimensions (33). They are (i) aggression/checking, (ii)
sexual/moral/religious, (iii) symmetry/ordering/counting, (iv)
contamination/washing, (v) hoarding, and (vi) others (29, 33,
34). In addition, researchers have divided OCD into subgroups
based on familiality, gender, age of onset and comorbid patterns
(35–38). The specific OCD dimensions vary from study to study
(4, 29, 36, 39–41), which shows no consensus in the field. This
heterogeneity in OCD symptoms complicates identification of
candidate genes (29) and the choice of initial pharmacotherapy,
which may explain why 40–60% of OCD patients do not respond
to initial selective serotonin reuptake inhibitor (SSRI) treatment
(42, 43), requiring repeated treatments with different drugs until
a response is observed (44).

The age of onset of OCD ranges from early in childhood to
adulthood (29). Onset after 30 years of age is highly unusual
(4, 44). Approximately 30–50% of the patients have onset of
symptoms before 10 years of age indicating neurodevelopmental
aspects to the disorder (45–47). Interestingly, in childhood onset
OCD, males are more commonly affected than females with
a ratio of ∼2:1–3:1 (males: females). This ratio however shifts
to 1:1.4 among patients with onset during or after puberty
(48). Additionally, there is a significant overlap in symptom
dimensions in patient subgroups between early and late onset
cohorts. Though genetic linkage, candidate gene and genome
wide association studies in humans (49–54) have indicated
several genetic associations, the precise causative factors remain
elusive (31). This could be attributed to the heterogeneous nature
of the disorder which in turn is influenced by several factors such
as sex differences, environmental exposures, genetic variations,
neurotransmitter systems and physiological status.

The Diagnostic and Statistical Manual of Mental Disorders
5 (DSM-5) now classifies OCD within obsessive-compulsive
and related disorders (OCRD) (55). OCRD include OCD
(23, 26–30, 56), excoriation disorder (excessive skin picking)
(57–62), trichotillomania (excessive hair pulling) (57, 61, 63–
67), onychophagy (excessive nail biting) (57, 61, 68), body
dysmorphic disorder (excessive/obsessive thinking about one
or more perceived defects or flaws in one’s appearance that are
minor or not obvious to others) (69–76), and hoarding disorder

(excessive collection of objects of limited use) (77–82). The
most common comorbid disorders associated with OCD are
depression and anxiety (83–86). Other less frequently observed
comorbid symptoms include social phobia, Tourette’s syndrome,
bipolar disorder, attention deficit-hyperactivity disorder,
dysthymic disorder, alcohol use disorder, eating disorders, and
other OCRD (87–98). One of the challenges associated with such
elaborate symptom and comorbidity features of OCD is finding
a relevant animal model that enables examining the neural and
behavioral underpinnings underlying the clinical aspects of
the disorder.

OCD is most likely polygenic (29, 99, 100), although
genes of major effect cannot be ruled out, especially for
small groups of OCD patients and dimensions of OCD
(101–103). Heritability estimates for OCD vary from 26 to
65%, which may depend on symptom dimension (29, 39,
104–106). Genes involved in serotonergic, dopaminergic and
glutamatergic signaling pathways have been implicated with
pathway-specific pharmacotherapy for OCD (107–125). Genetic
linkage, candidate gene and genome-wide association studies
have identified many gene candidates that may affect OCD or
convey a susceptibility for development of OCD (29, 126, 127),
including the glutamatergic system (99, 123, 127–136). Despite
all these efforts, identifying putative genes that contribute to
OCD reliably and consistently across studies has been difficult
because OCD is a complex, heterogeneous and most likely
polygenic trait (29, 99, 100) with several genes having small
effects that are difficult to reveal at the level of individual genes
(29, 126). Thus, compulsive-like behaviors expressed in single
gene manipulations may not be mimicking OCD, or may be
relevant for only a small percentage of OCD patients (137, 138) or
identify susceptibility genes for the expression of OCD (130, 139).

While prior reviews have discussed extensively the existing
animal models of OCD, we only describe these animal models
briefly here and focus particularly on the spontaneous
compulsive-like nest-building phenotype (140–145) and
argue in favor of this model as suitable for understanding
behavioral plasticity underlying expression of compulsivity
typically reported in OCD and OCRD.

SPONTANEOUS ANIMAL MODEL FOR OCD

Spontaneous animal models use the concept of innately
occurring stereotypic behaviors, motor behaviors, or adjunctive
behaviors that are induced through behavioral manipulations
(146–148). Animal behaviors that are suggested to be relevant
to OCD (149, 150) include excessive grooming (151, 152), acral
lick (153–155) and stereotopies (156, 157) in several species
such as dogs, psychogenic alopecia in cats (158–160), repetitive
pacing in captive wild animals (161–163), feather picking in birds
(151, 164–166), repetitive behaviors, such as running, flipping
and jumping in deer mice (167, 168) and cribbing in horses (169–
173), spontaneous alteration (174), compulsive checking by mice
and rats (174), marble burying behavior (digging) in mice (140–
145, 175) and rats (149), signal attenuation in rats (176, 177), and
nest-building behavior (140–145). Most of these compulsive-like
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behaviors in these animals have limited utility because they are
quite unpredictable, have to be induced, necessitating behavioral
evaluation of an entire generation, or occur sporadically. As
an exception, excessive forms of grooming, nest-building and
digging behaviors have shown to be predictable and have face,
predictive and construct validity for understanding compulsive
behaviors associated with OCD (23, 29, 99, 140–145, 178–180).
Nest-building and digging behaviors in mice bidirectionally
selected for excessively high and low levels of nest-building
behavior remain stable across generations (181, 182).

INDUCED COMPULSIVE-LIKE BEHAVIORS

Rats and mice can be induced to express compulsive-like
behaviors by treatment with drugs such as dopamine
(D2/D3) receptor agonist quinpirole (183–186), serotonin
receptor (5HTR) agonists 5-methoxy-N,N-dimethyltryptamine
(5-MeODMT; non-selective agonist), 8-hydroxy-2-(di-n-
propylamino)-tetralin hydrobromide (8-OH-DPAT; 5HT-1AR
agonist) (187–189) and meta-Chlorophenylpiperazine (mCPP;
5HT2CR agonist) (190, 191). The drug-induced compulsive-like
behaviors provide a wealth of information on the underlying
neurobiology of the disorder. For example, mCPP exacerbates
OCD symptoms in clinical populations (192, 193). 5HT1BR
agonist-induced OCD-like mouse model (194–197) is another
model that reveals how serotonin reuptake inhibitors (SRI)
attenuate OCD-like behaviors by desensitizing orbitofrontal
5HT1BRs (195). One of the limitations of these models however
could be in expanding on the understanding of the onset of
action (198). Behaviorally induced compulsive-like behaviors
include schedule-induced polydipsia (199) and food-restriction-
induced hyperactivity in rats, stress- and fear-induced marble
burying in mice (149, 200) and water spray-induced grooming
(201). These induced compulsive-like behaviors have varying
degrees of validity (149, 200).

GENETICALLY MODIFIED MICE THAT

EXPRESS COMPULSIVE-LIKE BEHAVIORS

Mutant, gene knockout, or gene knockdown mice have been
shown to express compulsive-like behaviors that are relevant
to OCD. These have resulted in several interesting animals
systems, which have varying degrees of validity for studying
OCD (174, 199, 200, 202–205). The Hoxb8-knockout mouse was
the first transgenic pre-clinical model to study OCD. Hoxb8-
knockout leads to pathological grooming behavior which is
triggered from aberrant Hoxb8 expression in implicated brain
regions underlying OCD (206). The SAPAP3-knockout mice
display excessive self-grooming starting at 4–6 months of age
that leads to head skin lesions (178) and have dysfunction
in cortico-striato-thalamo-cortico (CSTC) circuit (23, 29, 48,
99, 179, 180) components (207–211). SAPAP3 polymorphisms
may be associated with early onset OCD (212) and grooming
disorders (213) and SAPAP3 heterozygous variants are present in
4.2% of trichotillomania/OCD patients and in 1.1% of controls
(137). Compulsive-like behavior in 5-HT2C knockout mice

includes highly organized patterns of non-food chewing (137,
214), but they also have other abnormalities (214, 215). Slitrk5-
knockout mice display compulsive-like grooming and cortico-
striatal dysregulation (216) and rare mutations in this gene
may be associated with OCD (138). Overexpression of the
Slc1a1/EAAT3 glutamate transporter increases anxiety-like and
repetitive behaviors in mice along with cortico-striatal deficits
that is decreased to normal with the treatment of fluoxetine
or clomipramine (217). This gene affects components of the
CSTC circuit (130, 205) and Slc1a1/EAAT3 single nucleotide
polymorphism have been associated with susceptibility for OCD
(130, 218). These genetic models provide critical insight on the
neurobiological aspects underlying pathophysiology of OCD.

FACE, PREDICTIVE, AND CONSTRUCT

VALIDITY OF ANIMAL MODELS FOR OCD

To mimic a human psychiatric condition, animal behaviors
should have face, predictive and construct validity (219–221).
Although OCD and other OCRD symptoms generally impair
normal functioning (12–19), OCD-like behaviors in animals do
not necessarily result in overt dysfunction, but are nevertheless
very useful to mimic compulsivity common to OCD (219–221).

Face Validity
Face validity refers to the degree of phenomenological similarity
between the animal and the disease it is expected to model (201,
221). Phenomenological identity comprises of behavioral and
or cognitive dimensions that mimic the disease symptomology
(221). Considering the species divergence, the “extent of
similarity” patterns are typically considered as qualifying criteria
for an animal model of a disorder. Obsessions cannot be
modeled in animals due to the specificity of the social and
environmental contexts in humans that drive dimensions of
obsessive thoughts (150, 201). Behaviorally, only the compulsions
are manifested and therefore can be observed in animal models.
Hence when cataloging OCD, behavioral patterns in existing
animal models refer to the expression of an otherwise normal
phenotype in an excessive and repetitive manner (149, 199,
204). The persistent and exaggerated behavioral patterns can be
linked to the clinical dimensions of compulsivity as commonly
observed in patient populations. Stereotypic grooming is the
most commonly observed dysregulated innate behavior in animal
models of compulsivity (201). Other spontaneous compulsive
behaviors include patterned jumping, circling, backflips and
summersaulting as seen in the deer mice model (222). Since the
current review focusses on the spontaneous mouse model (140–
145), we will restrict the review on the compulsive behaviors
pertaining to the model that can serve as an useful tool
to understand factors that modulate compulsivity in OCD
and OCRD.

Predictive Validity
Predictive validity relies on the therapeutic evaluation of an
animal model to assess if first line therapy in the model in
question mimics clinical potency (221). Predictive validity is
not aimed at ensuring replication of translational specificity
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with respect to human pathophysiology but rather emphasizes
on the therapeutic responses (221). A comparable response
to the first line treatment options corresponds to a human-
animal correlation of therapeutic outcomes. Predictive validity
pertaining to OCD can only be limited to pharmacological or
neurosurgical interventions since behavioral therapies such as
cognitive behavioral therapy cannot be evaluated in animals (201,
223). To this endmost animal models fulfilling predictive validity
for OCD are evaluated for chronic regimens of selective serotonin
reuptake inhibitors (SSRI), a class of drugs that show remission
in certain patient subgroups (224). Additionally, neurosurgical
methods such as deep brain stimulation has also been assessed in
the SAPAP3-knockdownmodel of OCD (211). The SSRI typically
function by blocking the serotonin transporters (SERT) thereby
prolonging the serotonin concentration at the synapses for
rewiring the neural substrates underlying behavioral anomalies
(225, 226).

Construct Validity
Construct validity refers to the comparable molecular and
physiological mechanisms between the animal model and the
disease it represents (221). Since the exact neural mechanisms
of OCD are yet to be elucidated, construct validity of a model is
reliant on correlative evidence from functional imaging studies
on human patients (201). This typically involves substrates in
the CSTC (23, 29, 48, 99, 179, 180, 227). Ovarian hormones,
or the implicated neurotransmitter systems that can explain
the behavioral correlates (face validity) and treatment response
(predictive validity) are others (175). An alternative way to
evaluate construct validity is to have animal models that
recapitulate certain aspects of cognitive anomalies such as
cognitive deficits, and reversal learning commonly observed in
OCD patients (228, 229).

BIDIRECTIONAL SELECTION FOR

SPONTANEOUS COMPULSIVE-LIKE

BEHAVIORS

The spontaneous compulsive-like mouse model was developed
through bidirectional selection for high and low levels of nest-
building from an HS/ibg outbred mouse stock population (181,
182, 230). The HS/ibg strain was derived through crossing
of eight house mouse (Mus musculus) inbred strains [A,
AKR, BLB/c, C3H/2, C57BL, DBA/2, Is/Bi, RIII; (181, 231)].
Bidirectional selection resulted in three levels of nest-building
behavior (with two replicate strains within each level). The
replicates within each level of nest-building were maintained
as separate strains, i.e., not interbred with the other replicate
strains, but subjected to the same selection regime (181, 182).
This resulted in two HA strains (HA1 and HA3) that consistently
display high and excessive levels of nesting with a 40-fold
difference in the amount of cotton used when compared to
the two LA strains (LA1 and LA2) which display very low
levels of nesting. The LA strains are therefore considered non-
compulsive. The two randomly-bred strains (CA1 and CA3)

serve as a selection control and show intermediate levels of
nesting (143, 182).

EXCESSIVE NEST-BUILDING AND

MARBLE BURYING FULFILL THE

VALIDITIES FOR COMPULSIVITY IN

HUMANS

As a naturalistic model, the spontaneously compulsive-like
mouse strains exhibit two topographies of excessiveness and
repetitiveness. They are compulsive-like nest builders (puling
excessive amounts of cotton into their cage) and diggers
(excessive burying of marbles) (140, 141, 143).

Nest Building
For small rodents such as mice, nesting is a physiological
adaptation that is critical for heat conservation, reproduction and
to thwart predators (232–236). Healthy nesting is an essential
indicator of welfare among animals and alteration in normal
nesting patterns could be indicative of change in health or welfare
(237). As nest-building is energetically costly, it canmake rodents
vulnerable to predation (238, 239). Hence it becomes imperative
from an adaptation standpoint to create a dynamic balance
between behavioral engagement and energy conservation (240).
According to the security motivation theory of OCD, individuals
engage in species-specific behaviors to handle potential danger
and no consummatory stimuli should interfere with the impulse
control of behavioral continuity (241, 242). Cotton acts as
a consummatory stimuli for the compulsive-like strains that
exhibit almost negligible latency to initiate nest-building when
introduced to cotton for the first time showing rapid, forceful
and repeated movement of the front paws and mouth for
extended periods of time (140, 141, 143). Since latency to nesting
is considered as a good indicator for motivation (240) such
excessive and repetitive patterns of nest-building fails to prioritize
conserved behavioral patterns mimicking loss of impulse control
which is often reported in human OCD patients (243–245).
This perseverant action leads to pulling of excessive amount of
cotton through the cage top metal bars over prolonged periods
of time leading to uncontrolled hoarding of nesting material
(140, 141, 143). Both the sexes of the HA strains accumulate
massive amounts of cotton in the cages that are incorporated
into a functional nest and in most animals, the cotton fills
the entire cage. This is in stark contrast to the normal nesting
phenomenon in the control strains (CA strains) which appears
to be focused on energy conservation and the building of a
functional nest that typically have the minimal amount of nesting
material required (140, 141, 143). The small nest-builders (LA
strains) do not collect sufficient amounts of cotton to build a
functional nest (181, 182, 234). Therefore, nest-building in the
big nest-builders (HA strains) recapitulates several dimensions of
compulsive behaviors with repetitiveness and excessiveness that
shows face validity for understanding OCD.

With greater knowledge of the neurobiological underpinnings
mediating nesting behavior it is evident that learning and
memory play a significant role in expression of this phenotype.
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The hippocampus and prefrontal cortex are brain regions
typically implicated in nest-building. Studies have indicated that
lesions in the hippocampus or PFC disrupt nest formation
(246–249). Further, disrupting GABAergic signaling in the
neuropeptide Y interneurons of the PFC augments nest-building
phenotype (250). Similarly, perturbing serotonin signaling results
in poor nest construction (251). Nest-building also integrates
intricate sequences of discrete motor learning that involves
alterations in physical actions often in a stereotypic manner. Such
perseverant action parallels reward based training paradigms
indicating involvement of brain substrates underlying motor
and motivational behaviors (252). Dopaminergic activation in
reward circuitry is one of the molecular hallmarks of nesting
behavior which integrates incentive and reinforcing phenotypes
(252). Nest-building therefore encompasses sensorimotor, goal-
directed and reward based neural mechanisms involving
several neurotransmitter systems. Since, aberration of the
abovementioned regions and neurotransmitter mechanisms
has been documented in several studies investigating clinical
populations (253–259), nest-building can be considered as a
relevant and suitable behavioral phenotype to address some
aspects of compulsivity in humans.

Marble Burying
Burying and digging are core behavioral attributes in rodents
(260). These behavioral repertoires often involve stereotypic
actions that align to more specific outcomes. For example,
burying allows displacement of noxious or non-noxious objects
while digging involves displacement of substrates (261). Marble
burying behavior is one of the most widely studied models
to assess compulsive-like phenotypes (140, 143, 262–265). The
concept of marble burying utilizes the natural tendency of mice
or rats to bury harmless or noxious objects in the bedding
provided to them (174). Since studies (266–268) have shown
that rodents typically do not tend to avoid the marbles, or
get habituated after repeated exposures, marble burying is a
good indicator of a compulsive-like but not an anxiety-like
phenotype (140, 267, 268). The compulsive theory of marble
burying is based on the fact that non-reactivity of the marbles
fails to provide stimuli for ending the investigation leading
to frustrated burying of objects that gets stereotypic in nature
(149). Marble burying can be mapped to the inability to realize
task completion in OCD patients (241), thereby establishing its
face validity. Similar to nest-building, marble burying requires
hippocampal and cortical regions for functional outcomes (260,
269). Marble burying also integrates motor regions such as the
striatal components for executing repetitive locomotor actions
mediating the compulsive digging behavior (267, 268, 270, 271).
Further, several neurotransmitter systems have been implicated
in influencing the behavior (272–276). The compulsive-like HA
strains demonstrate a persistent compulsive-like marble burying
behavior (140, 143). Most mouse models tested for marble
burying as an indicator of compulsive-like behavior typically
bury on an average 10–12marbles (222, 277, 278). It is interesting
to note that such burying attributes often correlate to anxiety-like
and not compulsive-like responses. On the contrary, compulsive
burying in the HA strains comprise of aggravated and stereotypic

digging of the marbles averaging 18–20 marbles (140–145, 279).
Upon completion of digging, mice often appear agitated with
rapid locomotor movements and perform frenzy investigation of
the apparatus. Further, the HA strains engage in burying behavior
throughout the entire duration of the test despite marbles being
buried. The non-compulsive-like LA strains on the other hand
bury 6–8 marbles on an average which is often accompanied by
freezing behavior and lower locomotor activities, while the CA
control strains bury 10–13 marbles with intermediate motoric
activity (140, 141, 143). The non-compulsive-like LA strains
therefore conform to a more anxiety-like phenotype that can be
characterized as risk aversion (280, 281), while the control strains
lie intermediate on the spectrum.

This abnormal behavioral excessiveness exhibited through
nest-building and marble burying in the spontaneous
compulsive-like mouse strains qualifies these mice to be a
suitable naturalistic model to investigate behavior and the
nervous system by proxy. The presence of non-compulsive-like
LA and control strains further strengthens the phenotypic
rigor in terms of establishing a behavioral gradient across
strains to better understand the behavioral anomaly expressed
as a function of genetic selection and variation. Further,
nest-building and marble burying behaviors are malleable to
genetic (181, 182), pharmacological (140, 142, 145, 279) and
environmental (181, 182) manipulations serving as important
tools for dissecting neural substrates mediating functional
outcomes. Nest-building behavior draws a parallel with hoarding
in human patients as reported earlier, while marble burying can
recapitulate failure of task completion that falls in the realm of
compulsive checking as seen in many OCD patient subsets (241).
Excessive nest-building and marble burying in the compulsive-
like HA mouse strains can also form disparate compulsive-like
traits (145) that can be utilized to better understand disparate
compulsive traits in patient subgroups. Moreover, the degree
of nest-building in the HA strains always exhibits consistent
and positive correlation with marble burying providing a basis
for comparison of behavioral traits through sex, treatment and
physiological differences (140–145, 279).

ADJUNCT BEHAVIORS IN THE

SPONTANEOUS COMPULSIVE-LIKE

MOUSE MODEL

Apart from expressing variable compulsive-like behaviors,
the nest-building mouse strains exhibit an array of other
adjunct phenotypes that vary among the three nesting
phenotypes and between replicates within each phenotypes
which is also influenced by sex differences (143). Such variable
expressions pertain to anxiety-, depression- and cognitive-like
domains (143). Comorbidities are a critical component of the
symptomatic repertoires in OCD patients. These comorbid
symptoms vary within clinical subgroups and often make
prognosis cumbersome (88). Most animal studies so far have
focused on dissecting compulsive-like behaviors as a function
of behavioral, genetic, pharmacological and circuit-based
manipulations (see sections Spontaneous Animal Model for
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OCD, Induced Compulsive-Like Behaviors, and Genetically
Modified Mice That Express Compulsive-Like Behaviors above).
Characterization of associated phenotypes have been largely
unexplored in various model organisms for OCD. We have
exhaustively identified the domain specific behavioral expression
profile of the nesting mouse strains. In general, the compulsive-
like HA strains show less anxiety on anxiety-like assessments
in open field and elevated plus and zero mazes (140, 141, 143).
Interestingly, anxiety-like responses in the compulsive-like mice
vary based on sex, strain differences and on the difficulty level
of the tests allowing to identify distinct behavioral patterns
across variable emotional dimension of affective behaviors.
For example, the male HA strains exhibit strain differences
when (141) evaluated on elevated plus maze but show no
such replicate strain variation when tested for the open field
(143). Moreover, HA2 females and HA1 males show a negative
correlation between specific compulsive-like traits and anxiety-
like responses. Nest-building in the HA2 females and marble
burying in the HA1 males correlate with increased anxiety in
the elevated plus maze indicating a complex genetic architecture
driving functional outcomes that parallel clinical heterogeneity
(143). The non-compulsive-like LA strains on the other hand
exhibit anxiogenic responses in the anxiety-like evaluations of
open field and elevated mazes (140, 143). For cognitive-like
tests as determined through novel-object recognition, one of
the CA female strains has higher object recognition memory
when compared to the respective males. No differences are
observed for the HA and the LA strains. For depression-like
forced swim behavior, the strains display a significant sex and
sex by strain interaction effects (143). At the biochemical level,
the compulsive-like HA strains and the non-compulsive-like LA
strains mount higher corticosterone levels than the selection
controls (143). These variations could be attributed to genetic
drift or founder effects (181, 182). Such complex behavioral
expression could be essential in understanding the symptomatic
framework and underlying neural substrates of OCD subgroups.
Several heritability studies have pinpointed toward a lack of
single identifier gene and often report an interaction of multiple
gene networks that overlaps with environmental factors resulting
in discrete expression of primary symptoms and associated
comorbidities (29). Thus, it becomes imperative to examine
an animal model that displays both primary and secondary
behavioral attributes that is structured upon genetic variations
due to bidirectional selection.

STRAIN AND SEX DIFFERENCES IN

SPONTANEOUS MOUSE MODEL:

RECAPITULATING CLINICAL

HETEROGENEITY

OCD most likely has a polygenic basis. Family studies,
segregation analysis studies, candidate gene studies and
genome wide association studies have consistently reported and
established heritability and genetic mechanisms as important
causative factors of OCD. Family studies have indicated that
early onset OCD has a familial basis (282, 283). Family studies

with adult probands have revealed that OCD is familial with
increased risk of occurrence among relatives of patients with
childhood onset OCD (284–286). Around 100 candidate gene
studies have focused on the genetic variants predominantly
within neurotransmitter pathways (127). One of these candidate
gene studies has shown that OCD might be associated with
polymorphisms in serotonin system related genes such as
5HTTLPR (serotonin-transporter linked polymorphic region)
and HTR2A (5-hydroxytryptophan receptor 2A) (287). The
same study also pinpointed genetic variations in monoamine
oxidase and catechol-o methyl transferase genes only in male
patients and dopamine system related genes such as DAT-1
(Dopamine active transporter 1 gene) and DRD3 (Dopamine
receptor D3) (287). In addition, other genome wide association
studies have identified various genes that code for essential
neurobiological substrates (53, 288–290), which are critical
for neuronal transmission and plasticity, such as DLGAP1
(guanylate kinase-associated protein) and BTBD3 (BTB domain
containing protein 3). Despite such exhaustive attempts, these
GWAS studies have yielded unreliable results with no specific
hits and minimal replication of the aforementioned genes
that can be conclusively tied to the pathophysiology of the
disorder. Interestingly, a recent study identified large-effect size
causes pertaining to de novo coding variants as risk factors for
OCD (291).

Earlier onset of OCD in males when compared to females
(292), bimodal distribution of onset in females and exacerbation
of symptoms during various reproductive phases (293) point
toward the role of steroid hormones in OCD. Sex hormones are
mainly steroids that are produced by the gonads (294). The most
relevant are female sex hormones estrogen and progesterone, and
the male sex hormone testosterone. These hormones regulate
and influence global sexual functions like pregnancy, pubertal
changes and sexual behavior (295). Estrogen and progesterone
have neuromodulatory effects in the central nervous system
either through intracellular action or via neurotransmitter
systems (296–298). These sex steroids further metabolize into
neurosteroids, which have anti-convulsive (299), anti-depressant
(300) and anti-anxiety (301) properties through modulation of
GABA and glutamate receptors (302). The emphasis of sex
steroids in influencing onset and exacerbation of OCD symptoms
are more relevant to female OCD patients. This is mainly because
women are at risk of developing the disorder during various
reproductive phases (303).

Nesting can be attributed to polygenic mechanisms and often
exhibit a complex genetic architecture (181, 182). There are
several genomic regions that are associated with the behavior
and often exert dominance and additive effects (181, 304–
306). Realized heritability for nest-building is 0.30 (181, 182).
This is in the same range as heritability estimates for OCD
that range from 26 to 65%, which may depend on symptom
dimension (29, 39, 104–106). Replicate diffferences within the
same nesting phenotype, i.e., HA, control, and LA strains,
for other behaviors and traits are most likely due to founder
effects and/or genetic drift (181, 182). Therefore, comparing
nest-building phenotype and other behaviors and traits across
replicate strains and nesting phenotypes can be important to
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understand how polygenic mechanisms contribute to variation
in compulsive expression and the implicated neural framework.
Further, such strain comparisons can form the basis for
dissecting how compulsivity diverges based on individual genetic
variation largely contributing to clinical heterogeneity. Strain
comparisons also allow drug response variations that can form
the basis to examine differential treatment response rates often
seen across patient subgroups. Such evaluations will enable a
holistic approach toward understanding the pathophysiology.
To this end we have conducted studies that have unveiled
substantial understanding of how strain differences contribute
to divergent phenotypic and drug response profiles in the
compulsive condition.

For compulsive-like behaviors, the HA strains respond only
to first line treatment options (140). There is dose-dependent
attenuation of compulsive-like nesting and marble burying
behaviors in the HA males treated with chronic fluoxetine
and clomipramine (140), and fluvoxamine (145). However,
desipramine, a tricyclic antidepressant which is not effective in
treating OCD (307–310), also shows no significant effects on
compulsive-like nesting and marble burying (140) indicating
specificity and predictive validity of first line treatments for
attenuating the compulsive-like phenotypes. Using an alternative
first line drug results in differential behavioral outcomes
pertaining to the compulsive-like domains. On being subjected
to chronic regimen (2 weeks) of fluvoxamine a dose-dependent
attenuation of nest-building is observed only in the HA1
but not in the HA3 males (145). For compulsive-like marble
burying trait, fluvoxamine shows comparable results with overall
dose-dependent decreases in marbles burying in both the
strains. Currently there is no consensus on the best treatment
option for OCD (30). Relapse rates with SSRIs are high in
clinical populations (311). Medication differences have also been
observed with these first-line treatments such as in children
with OCD and comorbid tics, which reduces the efficacy of
SSRI treatment (312). It is however unclear if the same effect
is persistent in adults (313). Among various factors, compulsive
traits and associated co-morbid symptoms can result in non-
responsiveness to treatments in the OCD condition (88, 314).
Hence, a trait and dosage specific response to first-line therapies
in the HA strains cannot be ruled out.

To better understand the role of strain and sex differences
we have demonstrated that the HA strains exhibit strain and
sex differences in expression of behaviors (143). When tested
in the proestrus stage of the estrus cycle when the estrogen
levels are thought to be higher in circulation, the HA1 and
HA3 females exhibit less compulsive-like nest-building than the
males, exhibiting a sex difference in expression of compulsivity.
This sex difference is however retained only in the HA1 strains
for marble burying behavior (143). The HA strains exhibit no
strain differences in the open field. However, in the elevated
plus maze the HA3 males explore the open arms more than
the HA1 males while the female HA strains exhibit no such
differences (143). Further, open arm explorations of both the
HA females and HA1 males in the plus maze follow a negative
correlation with the compulsive-like nest-building and marble
burying behaviors (143). Such behavioral expression patterns

are critical in delineating the different aspects of emotionality
associated with anxiety that could be driven by sex and genotype
interactions in the compulsive condition.

ROLE OF PHYSIOLOGICAL STATE IN

MODULATING COMPULSIVITY

There is limited understanding as to how the physiological status
that is largely driven by hormonal fluctuations influence OCD
pathophysiology, which is especially relevant in women. With
greater susceptibility of females for certain psychiatric disorders
limited investigations have been conducted with contradictory
results (315). One study has shown more prevalence of OCD
during menopause (316), while another has demonstrated that
the symptoms are more related to menarche and decrease during
menopause (317). Acute conditions, such as surgical menopause,
is more abrupt and can mimic natural menopause (318) leading
to more drastic depletion of ovarian hormones precipitating
mood and anxiety disorders (318). Interestingly, anti-compulsive
effects of estradiol, allopregnanolone and progesterone have
been established in animal studies (148, 263, 319, 320). When
subjected to acute ovariectomy, exacerbation of compulsive-like
and anxiety-like behaviors are observed in the compulsive-like
female mice, but not in the CA control and LA strains, with a
trait specific variation in compulsive-like behavior among the two
female HA strains (141). This inter strain effect is abolished in
the compulsive-like nest-building phenotype but not for marble
burying once the ovariectomized strains were treated with either
17β-estradiol (E2) or progesterone (P4). Acute E2 administration
attenuates compulsive-like nesting and marble burying, while
P4 administration show no effect on these behaviors (141). For
the anxiety-like measures a strain specific response to E2 and
P4 administration is observed (141). Overall these behavioral
attributes adhere to a complex heterogeneity (321–323) and
reveals the interaction of genetic variation and sex hormones.

The post-partum condition is often associated with mood
fluctuations and psychopathology and can precipitate OCD
symptoms (324, 325). Physiologically, the brain undergoes
dramatic shifts in hormonal milieu. This is often characterized
by activation of oxytocinergic system in the paraventricular
nucleus (PVN) and supraoptic nucleus (SON) regions of the
hypothalamus due to suckling action (326–328). This leads to
secretion of prolactin in the duct system. Since, both oxytocin
and prolactin have functional roles in affective behaviors (329,
330), hindering the lactation process can alter cellular plasticity
leading to mood disorders. This disruption can be further
aggravated in patients with existing mental conditions such as
OCD (331). However, the influence of post-partum condition on
OCD symptomology is not known. Further, the neurobiological
mechanisms underlying the interaction of post-partum phase
and compulsivity is also unexplored. Using the HA1 strain we
have also furthered the understanding of the role of oxytocin in
influencing compulsive-, anxiety- and depression-like behaviors
in post-partum condition. We have shown that oxytocin due
to lactation is anti-compulsive during the post-partum phase
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and blocking oxytocin receptor exacerbate compulsive-like nest-
building and marble burying behaviors during lactation (144).
This behavioral modulation by oxytocin correlate with altered
serotonin immunoreactivity in the dorsal raphe nucleus and
enhanced responsiveness to fluoxetine. This indicates cross-talk
between the oxytocin and the serotonergic signaling pathways
during the compulsive-like condition and shows that suckling
action may be beneficial during the post-partum condition (144).
These findings provide critical insight into the putative role of
oxytocin during physiologically challenging conditions such as
post-partum phase warranting further investigation on the role
of SSRI effectiveness.

EFFECT OF NEW PHARMACOTHERAPIES

AND PSYCHOSTIMULANTS IN THE

SPONTANEOUS MOUSE MODEL

There is evidence of cholinergic involvement in OCD (332,
333). OCD patients typically report less smoking behavior
when compared to other neuropsychiatric disorders (334).
It has been hypothesized that nicotine further activates the
hyperactive fronto-striatal circuit resulting in exacerbation
of symptoms. This is mainly through glutamate release by
nicotinic receptor activation (334). This theory has however
been challenged by other studies which have shown significant
clinical improvements in OCD patients augmented with nicotine
(335). Since cholinergic projections innervate the orbitofrontal
cortex (336), which is one of the implicated regions in OCD
(229, 337), further investigation is required to understand the
modulatory role of cholinergic system in obsessive-compulsive
behaviors. It was not until recently that cholinergic involvement
was investigated in animal models of OCD. Selective ablation of
striatal cholinergic interneurons results in repetitive behaviors
concomitant with ritualistic social exploration in a transgenic
mouse model (338). Congruently, we recently demonstrated
that positive allosteric modulation of nicotinic receptor α4β2
subtype by a novel drug, desformylflustrabromine (dFBr),
attenuates compulsive-like but not anxiety-like behaviors in
the compulsive-like mouse model (142). The anti-compulsive
dose-dependent effect of dFBr is observed in both acute and
chronic administration regimens (142) indicating that targeting
the α4β2 nicotinic receptor subtype could result in rapid
remission of compulsivity and is a potential therapeutic area that
requires attention.

Psychostimulants influence the pathophysiology of
psychiatric disorders. With a surge in the unregulated usage of
psychostimulants (339), animal models of psychiatric disorders
should be investigated for their potential modulatory effects on
behavioral expression. Considering the clinical heterogeneity
among patient populations as discussed, it is feasible that
psychostimulants will have differential effects among various
patient subgroups. Caffeine is the most commonly used
psychostimulant consumed by over 90% of the adult population
and have several health enhancing effects (340). However,
caffeine also causes cardiovascular disorders, sleep disturbances,
and has an abuse liability (341). The specific role of caffeine

in influencing obsessions and compulsions remains to be
determined. In fact, OCD patients with comorbid bipolar
disorders become easily addicted to caffeine indicating possible
interactions between caffeine and OCD traits (342–345).
Acute exposure to a high dose of caffeine reduces both nest-
building and marble burying behavior in the compulsive-like
HA strains (279). On the contrary, a chronic exposure of a
high dose of caffeine increases nest-building behavior without
influencing marble burying indicating trait and drug response
heterogeneity (279).

CONCLUSION

One of the greatest challenges in OCD research has been
to pinpoint neurobiological substrates and devise effective
therapeutic measures targeting the same. Clinical heterogeneity
(346) further compounds the problem resulting in higher
drug resistance rates (37). Animal models to this end have
been resourceful for identifying candidate genes that account
for behavioral anomalies (203) and drugs of therapeutic
value. However, much of the pre-clinical knowledge has not
been successfully translated to the clinic. It is important to
acknowledge that OCD is caused by a conglomeration of various
factors (29). Hence, it becomes essential to account for those
variables while selecting and testing an animal model. For
example, strain comparisons can be critical in understanding
heterogeneity in behavioral expression and drug responses that
correlate to compulsive responses in humans. Rodent models
such as the spontaneous compulsive-like nest-building mice
exhibit variation in intensity of compulsive-like phenotypes.
Many studies on animal models of OCD do not consider females
when testing for face, predictive and construct validity. Sex
differences play a vital role in the disease dimensions pertaining
to onset, symptom patterns and associated comorbidities
thereby accounting partially, if not completely, toward clinical
heterogeneity. Further, physiologically challenging conditions
such as puberty, pregnancy, post-partum and menopause
modulate OCD. Future studies on both animals and humans
should therefore consider sex differences and take into
consideration the physiological stages for better evaluation of
these factors in disease pathophysiology.

The spontaneous compulsive-like mice (HA strains)
exhibit consistent, predictable and reproducible compulsive-like
phenotypes across both sexes and provide a basis for investigating
variables that might influence disease pathophysiology. Due
to the established role of environmental influence in OCD,
specific triggers such as prenatal infections, trauma and stress
should be incorporated while subjecting animals to behavioral
tests. For example, a multitude of studies have indicated
that maternal immune activation result in exacerbation of
compulsive-like marble burying behavior in offspring (347–
349). Further, inflammation interacts with genetic factors to
potentiate behavioral impairments (350). Greater precedence
is therefore needed to devise such model systems that look at
gene-environment interactions in compulsive-like expression.
The spontaneous compulsive-like mouse strains (HA strains),
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which were developed through bidirectional selection for nesting
(181, 182), provide the unique opportunity to tap the interaction
of such environmental and genetic factors (140–145) as we have
reviewed here.

OCD is often associated with social impairments and has
been consistently reported in patient cohorts (351). It could
therefore imply that in certain patient subsets the brain
circuitries pertaining to social interaction and compulsivity
is affected. Animal models should be evaluated for such
complex paradigms where two or more behavioral domains
are tested simultaneously. One study with the naturalistic
deer mouse model showed deficits in social interactions that
correlated with compulsive-like phenotypic expression (352). In
another study, clomipramine exposure to immature rats resulted
in increased anxiety, inflexibility in alternation and reversal
learning, working memory deficit and hoarding (353). Similar
exhaustive investigation with the spontaneous compulsive-
like mouse model on multiple behavioral domains can reveal
overlapping brain regions effected in OCD.

It is also critical to look beyond the boundaries of
the rudimentary behaviors that have been defined in the
literature. Inch-worming, a novel pattern of digging, has
been reported in BTBR mice that can recapitulate compulsive
behaviors in humans (354). With persistent digging commonly
observed across the HA strains, micro-behaviors within a
general behavioral domain can elucidate several aspects of
repetitiveness. Time spent digging and patterned digging could
provide a better representation of the behavioral attributes
mediating compulsivity. Certain subsets of the compulsive-like
HA mice also exhibit compulsive-like food shredding phenotype
that is repetitive in nature (unpublished data). Such food
grinding/shredding in captivity has been suggested to represent
compulsive-like behavior (355, 356) and varies considerably
based on environmental factors such as diet and enrichments.
Food shredding is observed in a subset of mice of the compulsive-
like strains and the role of genetics, such as founder effects
and genetic drift (181, 182), cannot be ruled out. Hence food
shredding can be utilized as a novel compulsive-like phenotype
to understand the role of gene-environmental interactions.

Like every other model of compulsive-like behaviors
the spontaneous mouse strains also have some limitations. The
compulsive-like HA strains do not exhibit pathological grooming
behavior, a phenotype common to several spontaneous, gene
knockout and drug-induced OCD models. Moreover, the
putative polygenic factors driving such transgenerational
compulsive-like phenotypes are unknown. This however does

not take away the importance of these strains in providing
critical insight into the heterogeneity of repetitive behaviors
and differential drug responses that are modulated by gene,
environment and sex interactions. Further, identifying genes
regulating these repetitive nesting and burying behaviors through
modern genomic approaches can divulge new targets previously
unidentified and linked to the pathophysiology of OCD.

Finally, we have demonstrated in this review that artificial
bidirectional selection for a normal behavior, i.e., nest-building
behavior, resulted in the creation of a spontaneous, stable and
predictable compulsive-like phenotype that has face, predictive,
and construct validity for studying various aspects of OCD
in humans. Specifically, construct validity (201) has been
established by desipramine having no effect on compulsive-
like nest-building behavior (140) and the involvement of the
serotonergic (140, 145, 357), cholinergic (142), estrogenic (141),
oxytocinergic (144), and GABAergic neurotransmitter pathways
(357). In addition, the use of these selected strains resulted in the
identification of an entirely new class of drugs for attenuating
compulsivity, i.e., drugs that affect the nicotinic receptor α4β2
subtype as shown with dFBr, a positive allosteric modulator
of these receptors (142). Importantly, dFBr is effective within
2 h and reduces compulsive-like behaviors up to 90% (142).
Therefore, the use of artificially selected mouse strains for
compulsive-like behaviors represent an alternative strategy to
study OCD and OCRD that has great potential.
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