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Prediction of Differential Pharmacologic Response   
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Objective. There is increasing demand for prediction of chronic pain treatment outcomes using machine- learning 
models, in order to improve suboptimal pain management. In this exploratory study, we used baseline brain functional 
connectivity patterns from chronic pain patients with fibromyalgia (FM) to predict whether a patient would respond 
differentially to either milnacipran or pregabalin, 2 drugs approved by the US Food and Drug Administration for the 
treatment of FM.

Methods. FM patients participated in 2 separate double- blind, placebo- controlled crossover studies, one 
evaluating milnacipran (n = 15) and one evaluating pregabalin (n = 13). Functional magnetic resonance imaging 
during rest was performed before treatment to measure intrinsic functional brain connectivity in several brain regions 
involved in pain processing. A support vector machine algorithm was used to classify FM patients as responders, 
defined as those with a ≥20% improvement in clinical pain, to either milnacipran or pregabalin.

Results. Connectivity patterns involving the posterior cingulate cortex (PCC) and dorsolateral prefrontal 
cortex (DLPFC) individually classified pregabalin responders versus milnacipran responders with 77% accuracy. 
Performance of this classification improved when both PCC and DLPFC connectivity patterns were combined, 
resulting in a 92% classification accuracy. These results were not related to confounding factors, including head 
motion, scanner sequence, or hardware status. Connectivity patterns failed to differentiate drug nonresponders 
across the 2 studies.

Conclusion. Our findings indicate that brain functional connectivity patterns used in a machine- learning framework 
differentially predict clinical response to pregabalin and milnacipran in patients with chronic pain. These findings 
highlight the promise of machine learning in pain prognosis and treatment prediction.

INTRODUCTION

Suboptimal management of chronic pain has contributed 
to a pain- related health crisis, including the ongoing opioid 

epidemic in the US. As a result, discovery of biologic markers 
of pain to supplement self- report measures of clinical pain has 
been garnering attention, and become a priority for organiza-
tions like the National Institutes of Health (e.g., The Helping to 

ClinicalTrials.gov identifiers: NCT00760474 and NCT01173055.
Supported by Pfizer (grant A0081211) and Forest Laboratories (grant 

MD- SAV- 09).
1Eric Ichesco, BS, Scott J. Peltier, PhD, Ishtiaq Mawla, MS, Daniel E. 

Harper, PhD, Steven E. Harte, PhD, Daniel J. Clauw, MD, Richard E. Harris, 
PhD: University of Michigan, Ann Arbor; 2Lynne Pauer, MS: Pfizer Inc., 
Groton, Connecticut.

Mr. Ichesco and Dr. Peltier contributed equally to this work.
Ms Pauer owns stock or stock options in Pfizer. Dr. Harte has received 

consulting fees from Forest Laboratories, Aptinyx, and Arbor Medical 
Innovations (less than $10,000 each) and research support from Forest 
Laboratories. Dr. Clauw has received consulting fees, speaking fees, and/
or honoraria from Pfizer, Abbott, Aptinyx, Cerephex, Daiichi Sankyo, Eli 
Lilly, Lundbeck Pharmaceuticals, Pierre Fabre Laboratories, Theravance, 
Williams & Connolly, LLP, Zynerba, Astella, and Forest Laboratories (less 

than $10,000 each) and from Samumed, Tonix, and Nix Patterson, LLP (more 
than $10,000 each) and research support from Aptinyx, Cerephex, Pfizer, 
and Forest Laboratories. Dr. Harris has received consulting fees from Pfizer 
and Aptinyx (less than $10,000 each) and research support from Pfizer. No 
other disclosures relevant to this article were reported.

Upon request, and subject to review, Pfizer will provide the data that 
support the findings of this study. Subject to certain criteria, conditions 
and exceptions, Pfizer may also provide access to the related individual 
anonymized participant data. See https://www.pfizer.com/science/clinical- 
trials/trial- data- and- results for more information.

Address correspondence to Eric Ichesco, BS, Chronic Pain and Fatigue 
Research Center, Department of Anesthesiology, University of Michigan, 
Ann Arbor, MI. Email: eichesco@med.umich.edu.

Submitted for publication June 16, 2020; accepted in revised form April 
20, 2021.

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:
https://orcid.org/0000-0002-3767-2068
https://orcid.org/0000-0003-2030-3976
mailto:eichesco@med.umich.edu


ICHESCO ET AL2128       |

End Addiction Long- term [HEAL] initiative [heal.nih.gov]). Ulti-
mately, such biomarkers will aid diagnosis, forecast longitudinal 
outcomes, and predict treatment efficacy.

One clinical pain disorder where biomarker development 
has become imperative is fibromyalgia (FM), a chronic condition 
characterized by widespread pain, fatigue, hypersensitivity to 
sensory stimuli (1), and increased prevalence of multiple negative 
health outcomes. Research in the past 2 decades has shown that 
augmented pain and sensory processing in the central nervous 
system is a primary mechanism underlying pain in FM patients 
(2,3). Multiple brain loci have been identified as being related to 
FM pain, including subregions of the salience, default mode, and 
somatosensory networks (3,4). Some regions of the default mode 
network have been shown to have increased connectivity to the 
salience and somatosensory networks in FM. This type of con-
nectivity might be a marker for chronic pain intensity in this pop-
ulation (3,4).

Functional magnetic resonance imaging (fMRI) studies have 
demonstrated that aberrant pain processing in FM can be mod-
ulated with US Food and Drug Administration– approved phar-
macologic compounds, such as pregabalin, milnacipran, and 
duloxetine. However, only 30% of FM patients report clinically sig-
nificant pain improvements with any of these drugs (5– 7). Patients 
who fail to receive immediate analgesic effects may receive other 
treatments in a “trial and error” approach that is both inefficient 
and costly. The identification of tools that can predict the effective-
ness of specific pharmacologic agents used to treat pain at the 
individual patient level would be of significant clinical benefit and 
an important step toward personalized analgesia.

With the advent of sophisticated multivariate data analytic 
techniques such as machine learning, prediction of analgesic 
response from neuroimaging data has become a promising ave-
nue for biomarker development (8). Briefly, machine- learning tech-
niques “learn” the underlying data patterns (e.g., neuroimaging 
voxels) to form a model using labels (e.g., pregabalin responder 
versus milnacipran responder), which can then be applied to 
unseen or new data to make predictions. Such models have rarely 
been used in clinical pain populations to predict treatment efficacy. 
To the best of our knowledge, this study is the first to assess fMRI- 
derived biomarkers as predictors of differential analgesic response 
in chronic pain.

We built machine- learning models, using a support vec-
tor machine (SVM), from fMRI data obtained from 2 separate, 
double- blind, placebo- controlled crossover trials in FM patients, 
one with pregabalin (9) and another with milnacipran (10). These 
2 medications are thought to work differently on pain process-
ing, with pregabalin reducing pain- promoting neural activity (9) 
and milnacipran increasing pain inhibitory pathways (10). We 
reasoned that given the central mechanisms of action of the 2 
drugs, pretreatment brain connectivity (i.e., communication 
between brain structures) might be able to differentially predict 
drug responsiveness.

PATIENTS AND METHODS

Subjects. Fifty women with FM who were previously enrolled 
in 2 independent double- blind, placebo- controlled crossover 
 studies investigating the effects of pregabalin versus placebo 
and milnacipran versus placebo (9,10) were eligible for this sec-
ondary analysis (Consolidated Standards of Reporting Trials 
[CONSORT] diagrams are included in Supplementary Figures 1 
and 2, available on the Arthritis & Rheumatology website at http://
onlin elibr ary.wiley.com/doi/10.1002/art.41781/ abstract). Twenty- 
seven FM patients were enrolled in the original pregabalin study. A 
total of 14 patients were excluded (9 were excluded in the original 
study) (9). Five additional patients were excluded from the present 
study: 4 for head motion using more stringent translational or rota-
tional thresholds after assessment of brain images (see below for 
additional details), and 1 for incomplete clinical data. This resulted 
in 13 patients taking pregabalin being included in the present 
analysis. Twenty- three female patients with FM were enrolled 
in the original milnacipran study (8 were excluded as previously 
reported) (10). Brain images for the remaining 15 patients passed 
quality inspection and were included in the present analysis.

All study participants gave written informed consent. Study 
protocols and informed consent documents were approved by 
the University of Michigan Institutional Review Board and the 
sponsor of the respective studies: Pfizer for pregabalin and Forest 
Laboratories for milnacipran. All clinical symptom data from both 
trials were previously verified for accuracy and the database was 
locked before analysis. Neuroimaging data were stored, validated, 
analyzed, and assessed for quality at the University of Michigan 
independent of Pfizer and Forest Laboratories personnel. Patient 
demographic characteristics, medications, inclusion/exclusion cri-
teria, and treatment effects have been reported previously (9,10). 
Patient demographic characteristics and medications are listed in 
Table 1, while brief descriptions of the inclusion and exclusion cri-
teria are included in the Supplementary Methods, available on the 
Arthritis & Rheumatology website at http://onlin elibr ary.wiley.com/
doi/10.1002/art.41781/ abstract.

Clinical pain and mood measures. For participants 
enrolled in the pregabalin study, clinical pain was assessed using 
a 10- cm visual analog scale (VAS) bounded by the anchors “no 
pain” and “worst pain imaginable.” Subjects from the milnacipran 
study reported their clinical pain with an itemized question from 
the Brief Pain Inventory (BPI) that ranged from 0– 10, where 0 
was anchored with the words “no pain” and 10 was anchored 
with the words “pain as bad as you can imagine” (11). Depres-
sion and anxiety were assessed using the Hospital Anxiety and 
Depression Scale (HADS), a 14- item measure with each item 
rated on a 4- point severity scale (12). The HADS produces 2 
scales, one for anxiety and one for depression. The BPI, VAS, and 
HADS were administered prior to the baseline neuroimaging ses-
sion. Differences in clinical pain and mood were measured using 

http://onlinelibrary.wiley.com/doi/10.1002/art.41781/abstract
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paired- sample t- tests (predrug versus postdrug). In both studies, 
drug responders were defined as those who had a reduction in 
clinical pain of ≥20% from predrug to postdrug, since this crite-
rion provided a sufficient number of subjects who did respond to 
either drug for meaningful SVM classification (see below). In both 
studies, anxiety/depression responders were defined as those 
who had a decrease in anxiety or depression, and nonresponders 
were defined as having no change or an increase in anxiety or 
depression.

Resting- state functional connectivity MRI as pre-
dictive of drug response. Data acquisition. Functional con-
nectivity MRIs, including a 6- minute resting- state scan and a 
high- resolution T1 structural scan, were acquired for all partici-
pants at baseline. All scans were performed on a 3.0T GE Signa 

Scanner (LX VH3 release, quadrature birdcage transmit– receive 
radiofrequency coil, neuro- optimized gradients). Resting- state 
fMRI data for both studies were acquired using a custom T2*- 
weighted spiral- in sequence (repetition time [TR] 2,000 msec, 
echo time [TE] 30 msec, flip angle 90°, matrix size 64 × 64 pixels 
with 43 slices, and 3.13 × 3.13 × 3 mm voxels; 5 discarded 
dummy acquisitions). During each resting- state scan (180 vol-
umes), participants were asked to remain awake with eyes open. 
To reduce head motion, participants’ heads were secured in the 
head coil using foam padding around the sides of the head and 
a strap across the forehead. A fixation cross was displayed on 
a presentation screen. Participants were asked to lie still and 
fixate on the cross throughout the scan. It has been shown that 
cognitive tasks such as staring at a cross do not typically disrupt 
resting- state networks (13).

Table 1. Characteristics of the patients with FM, and medications taken, in the pregabalin and milnacipran studies*

Patient
Age, 
years Race BMI Medications and supplements

Pregabalin study
1 44 White 25 Augmentin, Motrin
2 29 White 21 Albuterol, erythromycin eye lotion, Extra Strength Tylenol, 

ibuprofen, Ortho Tri- Cyclen, Zantac, Zyrtec
3 25 White 23 Children’s Tylenol Plus Cough and Runny Nose, Motrin
4 43 White 25 Triamcinolone acetonide 0.5%
5 36 White 21 Amoxicillin, Augmentin, Motrin, Synthroid, Tylenol
6 42 White 27 Sudafed, Tylenol, Zyrtec
7 42 White 26 Advil, CVS Sinus Allergy, Effexor, Nyquil, Tylenol
8 39 White 25 Claritin, melatonin, NuvaRing, propionate fluticasone, Tylenol
9 44 White 30 Amoxicillin, Nyquil, prednisone, Proventil, Rocephin, Tylenol
10 59 White 29 Colchicine, Flexeril, hydrochlorothiazide, melatonin, nabumetone, 

Omacor, Prilosec trazodone
11 19 White 23 Bupropion, Concerta, Loestrin
12 19 White 26 Claritin, Concerta, Loestrin
13 39 White 25 Effexor, Excedrin ES, fluticasone propionate nasal spray, 

ibuprofen, Maxalt, Proventil HFA, pseudoephedrine, Seasonale, 
Topamax, zonisamide

Milnacipran study
1 54 White 33 Tramadol
2 26 White 36 Pregabalin, metformin
3 30 White 31 Metronidazole, Benadryl, Motrin
4 42 White 27 Ibuprofen, Sudafed
5 53 White 33 Dinox, Anacin, Aleve, ibuprofen, prednisone, Mobic, Mucinex, 

Ventolin, Airborne
6 36 African 

American
37 Amlodipine besylate, lisinopril/hydrochlorothiazide, Aleve

7 40 White 24 NuvaRing, ibuprofen, Skelaxin, Vicodin, Tylenol, Quasense
8 36 White 21 Synthroid, Tylenol, acetaminophen, Motrin, ibuprofen
9 39 White 21 Nasonex
10 50 White 29 Lisinopril/hydrochlorothiazide, amoxicillin
11 30 White 28 Xanax, Cataphlam, Aleve
12 40 White 23 Motrin
13 53 African 

American
26 Motrin, Excedrin

14 27 White 32 Levothyroxine, Singulair, albuterol sulfate, Vicodin, 
cyclobenzaprine, Maxalt, Tylenol, Cortizone shots, cephalexin

15 55 White 35 Avapro, Norvasc, Aldactazide, Detrol LA, pregabalin, Synthroid, 
Taclonex, Diprolene Gel, aspirin, Tylenol, Motrin, minocycline, 
methotrexate

* FM = fibromyalgia; BMI = body mass index. 
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Physiologic data were collected simultaneously with fMRI 
data because cardiorespiratory fluctuations are known to influ-
ence fMRI intrinsic connectivity within several brain networks. 
Cardiac data were collected for each participant using an infrared 
pulse oximeter (GE) attached to the right middle finger. Respira-
tory volume data were acquired using a GE magnetic resonance– 
compatible chest plethysmograph that was secured around 
the abdomen. Further, previously mentioned T1 high- resolution 
images were acquired using a spoiled gradient- echo inversion 
recovery sequence (for the pregabalin study: TR 10.5 msec, TE 
3.4 msec, flip angle 25°, matrix size 256 × 256 pixels with 106 
slices, and 0.94 × 0.94 × 1.5 mm voxels; for the milnacipran 
study: TR 1,400 msec, TE 1.8 msec, flip angle 15°, matrix size 
256 × 256 pixels with 124 slices, and 1.02 × 1.02 × 1.2 mm 
voxels). Inspection of individual T1 MRIs revealed no gross mor-
phologic abnormalities for any participant.

Preprocessing. Data were preprocessed and analyzed using 
FSL (www.fmrib.ox.ac.uk/fsl) and statistical parametric mapping 
(SPM) (version 8; Functional Imaging Laboratories) as well as the 
functional connectivity toolbox Conn (Cognitive and Affective 
Neuroscience Library, Massachusetts Institute of Technology) 
(14) and the GIFT toolbar (15). Following collection of func-
tional data, cardiorespiratory artifacts were corrected for using 
RETROICOR (16). Subsequent preprocessing steps were con-
ducted within SPM and included motion correction (realignment 
to the first image of the time series), registration of all images to 
the mean motion- corrected functional image, normalization to 
the standard SPM Montreal Neurological Institute template (gen-
erating 2 × 2 × 2 mm resolution images), and spatial smoothing 
(convolution with an 8- mm full- width half- maximum Gaussian 
kernel). Head motion from each participant was assessed by 
evaluating 3 translations and 3 rotations. Translational thresh-
olds were set to ±2 mm. Rotation thresholds were limited to 
±1°. Subjects were excluded from the analysis if head motion 
exceeded either of the thresholds in 1 of the 6 dimensions.

Seed- to– whole brain functional connectivity maps were gen-
erated using the Conn toolbox (14). Within the Conn toolbox, seed 
regions’ time series were extracted; white matter, cerebrospinal 
fluid, and realignment parameters were entered into the analysis 
as covariates of no interest. A band- pass filter (frequency window 
0.01– 0.1 Hz) was applied, thus removing linear drift artifacts and 
high- frequency noise. First- level analyses were performed cor-
relating seed region time series signal with averaged time series 
voxel signal throughout the whole brain, thereby creating bivariate 
Fisher Z- transformation correlation seed region– to- voxel connec-
tivity maps (one map per seed per individual). Machine- learning 
analyses were implemented using a linear SVM, performed using 
the libsvm toolbox version 3.18 (17) in MATLAB 7.5b.

Our prior studies (9,10) identified regions with functional 
connectivity patterns that were related to drug response to 
pregabalin and milnacipran. We therefore chose these as seed 
regions to test responders to the 2 drugs in a machine- learning 

framework for prediction. These seed regions encompass vari-
ous known ascending and descending pain circuits in the brain. 
Seed- to– whole brain functional connectivity maps were gener-
ated for the following regions (Supplementary Table 1, available  
on the Arthritis & Rheumatology website at http://onlin elibr ary.wiley.
com/doi/10.1002/art.41781/ abstract): the left posterior cingulate  
cortex (PCC) and left inferior parietal lobule (based on pregabalin 
study results) (9) and the bilateral periaqueductal gray,  subgenual 
anterior cingulate cortex (ACC), perigenual ACC, dorsal ACC,  
and bilateral dorsolateral prefrontal cortex (DLPFC) (based on  
 milnacipran study results) (10).

Support vector machine classification. Machine- learning 
analyses were implemented using a linear SVM, performed 
using the libsvm toolbox version 3.18 (https://www.csie.ntu.
edu.tw/~cjlin/ libsv m/) in MATLAB 7.5b. Briefly, linear SVM 
tries to separate 2 distinct classes (i.e., pregabalin responder 
versus milnacipran responder) of features (i.e., data from brain 
voxels) by creating a hyperplane that separates the 2 classes 
in the most optimal manner. SVM was implemented on brain 
connectivity maps of pregabalin responders versus milnacipran 
responders. SVM classification was performed using a linear 
kernel with parameter C = 1 (no improvement was found using a 
C parameter line search), and while it is true that a nonlinear ker-
nel may capture higher- order features, we found no advantage 
to using a radial basis function with this data set.

Leave- one- out cross- validation was used to calculate clas-
sification accuracies and predicted values. Accuracies >75% for 
identifying a drug responder were deemed clinically significant. 
SVM model weights were averaged across all leave- one- out iter-
ations to investigate the spatial distribution of the classification 
weights. Significance levels for the model weights were generated 
by permuting the treatment labels 100 times for each leave- one- 
out instance, resulting in 1,300 model weight instances for each 
voxel location for the pregabalin responder versus  milnacipran 
responder analysis, allowing significance to be calculated by the 
number of times a model weight occurred in the histogram. Sig-
nificant values (P < 0.05) were overlaid on reference anatomy, 
and the connectivity maps of the most significant areas were 
plotted to examine their relationship to the multivariate pattern. 
A chance- level classification outcome was taken to reaffirm that 
the given predictive model was specific and minimally affected by 
confounders.

To determine if predrug VAS ratings can predict responders 
to pregabalin versus responders to milnacipran with high accu-
racy, we performed a logistic regression analysis. Then, to investi-
gate if there was an additive effect on classification accuracy, we 
included predrug clinical pain ratings as a vector to the connectiv-
ity maps of each patient and performed SVM classification.

Assessment of confounders and investigation of separation 
accuracy in SVM classification. Subsequent steps were taken to 
confirm that a classifier did not possess any confounders. First, 
to confirm the specificity of the pregabalin versus milnacipran 

http://www.fmrib.ox.ac.uk/fsl
http://onlinelibrary.wiley.com/doi/10.1002/art.41781/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.41781/abstract
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classifier to responders, the model was also tested in the non-
responders. Second, since milnacipran is an antidepressant, 
we also investigated whether the classifier was specific to 
predicting changes in pain as opposed to changes in anxiety 
or depression using the HADS questionnaire (12). The model 
was first tested in pregabalin responders versus milnacipran 
responders for depression, and was then tested in responders 
versus nonresponders with regard to anxiety and depression 
(where a responder was defined as having a decrease in anx-
iety or depression and a nonresponder was defined as having 
no change or an increase in anxiety or depression). Third, to 
investigate whether subject motion influenced the classification, 
the model was tested in high- motion versus low- motion groups. 
Finally, to confirm that the classifier was not predicting differ-
ences in sequence and hardware status between the pregabalin 

and milnacipran studies, an SVM analysis was performed com-
paring baseline placebo scans for all seeds between the 2 stud-
ies. This SVM analysis was performed exactly as was described 
above for the responder versus responder analysis, except that 
the input was placebo data for all subjects from both studies 
(n = 13 for pregabalin and n = 15 for milnacipran).

RESULTS

Subject demographic characteristics, clinical pain, 
and psychological measures. There was no significant dif-
ference in age between patients in the 2 studies (mean ± SD 
35.7 ± 11.4 years in the pregabalin study and 40.7 ± 10.2 in 
the milnacipran study; P = 0.228). Pregabalin responders 
(n = 6) and milnacipran responders (n = 7) reported less pain after 

Table 2. Clinical pain, anxiety, and depression in all FM patients and responders/
nonresponders to pregabalin or milnacipran based on pain improvement*

Pretreatment Posttreatment P
Clinical pain, 0– 10- cm VAS

Pregabalin study
Responders 5.4 ± 2.5 1.6 ± 2.3 0.0003
Nonresponders 1.3 ± 1.0 1.7 ± 2.3 0.60
All patients 3.2 ± 2.7 1.7 ± 1.9 0.06

Milnacipran study
Responders 5.6 ± 1.5 2.1 ± 2.0 0.00009
Nonresponders 4.8 ± 2.4 6.0 ± 2.6 0.13
All patients 5.1 ± 2.0 4.2 ± 3.0 0.23

Pretreatment clinical pain, 0– 10- cm VAS 0.85
Pregabalin responders 5.4 ± 2.5 – 
Milnacipran responders 5.6 ± 1.5 – 

Anxiety and depression data
Pregabalin study

HADS anxiety score
Responders 9.5 ± 2.3 7.8 ± 4.9 0.31
Nonresponders 2.9 ± 2.9 2.6 ± 3.2 0.17
All patients 5.9 ± 4.3 5.0 ± 4.7 0.40

HADS depression score
Responders 6.5 ± 3.3 4.0 ± 3.8 0.22
Nonresponders 1.7 ± 2.2 2.3 ± 2.4 0.46
All patients 3.9 ± 3.6 3.1 ± 3.1 0.40

Milnacipran study
HADS anxiety score

Responders 7.0 ± 3.5 3.9 ± 3.1 0.01
Nonresponders 6.1 ± 2.5 5.6 ± 3.3 0.53
All patients 6.5 ± 2.9 4.8 ± 3.3 0.02

HADS depression score
Responders 4.9 ± 3.0 3.1 ± 2.9 0.03
Nonresponders 4.1 ± 2.5 4.5 ± 2.1 0.53
All patients 4.5 ± 2.7 3.9 ± 2.5 0.24

Pretreatment HADS anxiety score 0.16
Pregabalin responders 9.5 ± 2.3 – 
Milnacipran responders 7.0 ± 3.5 – 

Pretreatment HADS depression score 0.37
Pregabalin responders 6.5 ± 3.3 – 
Milnacipran responders 4.9 ± 3.0 – 

* Responders were defined as having a ≥20% reduction in clinical pain (on a visual analog scale 
[VAS]) following treatment. The pregabalin sample included 13 patients (46% were responders 
[n = 6]; 54% were nonresponders [n = 7]). The milnacipran sample included 15 patients (47% 
were responders [n = 7]; 53% were nonresponders [n = 8]). Values are the mean ± SD. FM = 
fibromyalgia; HADS = Hospital Anxiety and Depression Scale. 
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receiving the drug compared to nonresponders. Full results for 
clinical pain effects in responders, nonresponders, and all patients 
are shown in Table 2. Results for anxiety and depression in these 
groups (responders and nonresponders determined by clinical 
pain improvement) are included in Table 2. We focused our anal-
yses on the ability of pretreatment functional connectivity MRI to 
predict differential analgesic responsiveness.

Differential classification of response to  pregabalin 
versus milnacipran. We were unable to predict differen-
tial response to pregabalin versus milnacipran using predrug 
clinical pain ratings (62% accuracy; β = −0.065, P = 0.782). 
Whole- brain connectivity patterns to the left PCC seed differen-
tiated  pregabalin responders from milnacipran responders with 
77% accuracy (Figure 1A). Significant average model weights 

Figure 1. Baseline resting- state functional connectivity between the seed region (posterior cingulate cortex [PCC] or right lateral dorsolateral 
prefrontal cortex [DLPFC]) and whole brain differentiates patients with fibromyalgia (FM) who respond to pregabalin (PG) from patients with 
FM who respond to milnacipran (MLN) with high accuracy. A, Resting- state functional connectivity between the left PCC seed and regions 
including the precuneus, inferior parietal lobule, PCC, and left insular cortex classifies pregabalin responders versus milnacipran responders 
with 77% accuracy. B, Resting- state functional connectivity between the right lateral DLPFC seed and regions including the superior parietal 
lobule, precuneus, primary somatosensory cortex, and left insular cortex classifies pregabalin responders versus milnacipran responders with 
77% accuracy. C, Baseline resting- state functional connectivity between the left PCC and the right lateral DLPFC seeds combined and the 
superior parietal lobule, precuneus, perigenual anterior cingulate cortex, mid cingulate cortex, and PCC classifies pregabalin responders versus 
milnacipran responders with 92% accuracy. Warm colors (red to yellow) designate positive support vector machine (SVM) weights where 
milnacipran responders have greater connectivity compared to pregabalin responders; cool colors (dark blue to light blue) designate negative 
SVM weights where pregabalin responders have more connectivity compared to milnacipran responders. Graphs show prediction values for 
each subject.



BRAIN- BASED PREDICTION OF THERAPEUTIC OUTCOMES IN CHRONIC PAIN |      2133

contributing to successful classification included greater connec-
tivity for pregabalin responders versus milnacipran responders to 
regions such as the left inferior parietal lobule, left precuneus, left 
and right PCC, right perigenual ACC, and right primary motor/
somatosensory cortex. In addition, significant average model 
weights where connectivity to the left PCC was found to be 
greater for milnacipran responders as compared to pregabalin 
responders included the left primary visual cortex, bilateral supe-
rior medial frontal gyrus, bilateral superior parietal lobule, and the 
right superior temporal gyrus (Figure 1A and Table 3).

Whole- brain connectivity patterns of the right lateral DLPFC 
differentiated pregabalin responders from milnacipran responders 
with 77% accuracy (Figure 1B). Significant average model weights 
contributing to successful classification included greater connec-
tivity for pregabalin responders versus milnacipran responders to 
regions including the left precuneus, bilateral superior and infe-
rior parietal lobules, left middle frontal gyrus, right superior frontal 
gyrus, and the left posterior insular cortex (Table 3).  Additionally, 
significant average model weights where connectivity of the 
DLPFC was found to be greater in the milnacipran responders as 
compared to the pregabalin responders included the right ante-
rior cerebellum, right superior frontal gyrus, right middle tempo-
ral gyrus, and the right superior temporal gyrus. Many of these 
connected regions are found to be involved in the  frontoparietal, 
dorsal attention, and sensorimotor networks. The remaining seed 
regions included in this study did not yield high predictive accu-
racy. When pretreatment clinical pain ratings were included as an 
additional feature, the combination model did not improve the 
predictive power beyond using the whole- brain connectivity maps 
alone (for left PCC, 77% accuracy; for right lateral DLPFC, 77% 
accuracy).

In order to enhance classification performance of the afore-
mentioned models, a combinatorial SVM model was produced 
using connectivity maps from both the left PCC and the right 
lateral DLPFC. This combinatorial classification model was able 
to synergistically differentiate responders to pregabalin from 
responders to milnacipran with 92% accuracy (Figure 1C). Sig-
nificant average model weights contributing to this result included 
the combination of those brain regions previously described 
individually— regions within the default mode network such as the 
precuneus, PCC, and inferior parietal lobule, the mid cingulate 
cortex, the posterior insular cortex, the perigenual ACC, and mul-
tiple regions within the cerebellum (Figure 1). Complete results are 
found in Table 3. As with our PCC and DLPFC models alone, the 
addition of the pretreatment clinical pain ratings did not improve 
the predictive power of the combined SVM model including the 
left PCC and right lateral DLPFC, yielding 92% accuracy.

Assessment of confounders and investigation of 
separation accuracy in SVM classification. To confirm that 
these significant average model weights of connectivity were spe-
cific to responders and not nonresponders for these compounds, 

the average model weights from these analyses were then applied 
to the nonresponders from both the pregabalin study (n = 7) and 
the milnacipran study (n = 8). There were below- chance classifica-
tion accuracies of 47% for the PCC connectivity maps and 40% 
for the DLPFC, with the remaining seeds resulting in classification 
accuracies found to be less than the relevant clinical threshold set 
for this study (range 13– 73%).

We also confirmed that classification weights were 
specific to pain and not related to changes in anxiety and 
depression  following treatment. In this pregabalin responder ver-
sus  milnacipran responder analysis, the PCC and DLPFC maps 
did not yield  significant classification for anxiety (left PCC, 15%; 
right lateral DLPFC, 54%) or depression (left PCC, 54%; right 
lateral DLPFC, 54%). In an exploratory analysis, responder and 
nonresponder labels were created for anxiety and depression 
scores for both the pregabalin and milnacipran groups. The only 
significant classification in the milnacipran group was for perigen-
ual ACC connectivity, which classified responders versus non-
responders in terms of depression scores, with 73% accuracy 
(Supplementary Figure 3 and Supplementary Table 2, available 
on the Arthritis & Rheumatology website at http://onlin elibr ary.
wiley.com/doi/10.1002/art.41781/ abstract).

Furthermore, we confirmed that head motion during acquisi-
tion of fMRI images did not confound classification performance. 
For each subject, a composite motion value was created from the 
average of all time points along the 6 dimensions (3 rotation and 
3 translation). This was used to split subjects into high- motion or 
low- motion groups. The goal was to see if the prediction model 
obtained from pregabalin responders versus milnacipran respond-
ers was able to predict high- motion and low- motion labels. All 
comparisons yielded below- chance classification, with accuracy 
ranging from 8% to 31%, demonstrating that the drug classifica-
tion models obtained from brain images were not confounded by 
head motion.

We wanted to be sure our classifier was not predicting dif-
ferences in sequences or MRI hardware between the  pregabalin 
and milnacipran studies despite both studies using the same 
scan sequences and MRI scanner. When adding baseline pla-
cebo scans from both studies, we were unable to differentiate 
between functional connectivity MRI data from the milnacipran 
study (n = 15) and the pregabalin study (n = 13) with high accu-
racy for any seed included in this study (accuracy values ranged 
from 25% to 64%).

DISCUSSION

FM is a complex condition that is difficult to treat, with phar-
macologic interventions providing significant pain relief in only 
a minority of cases. There has been a recent surge of interest 
in utilizing candidate pain biomarkers in a predictive, machine- 
learning framework to improve the management of FM and related 
chronic pain conditions (18). Here, we utilized machine learning on 

http://onlinelibrary.wiley.com/doi/10.1002/art.41781/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.41781/abstract
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 (Continued)

Table 3. Significant multivariate SVM prediction of response to pregabalin versus response to milnacipran 
according to baseline resting- state connectivity between brain regions in patients with FM*

Seed region, regions with significant connectivity 
weights

Accuracy, 
%

Size, 
mm3

Coordinates

x y z
Left PCC seed region 77

Left inferior parietal lobule: BA 40 (−) – 19,488 −52 −50 44
Left precuneus (−) – – −6 −68 38
Left ventral PCC (−) – – −6 −46 14

Right medial frontal gyrus (−) – 18,984 6 60 0
Right perigenual ACC (−) – – 8 44 −2

Right inferior parietal lobule (−) – 4,800 46 −50 44
Right medial frontal gyrus/superior frontal gyrus (−) – 3,296 16 32 42
Right primary motor/primary somatosensory cortex (−) – 2,744 38 −30 62
Left posterior cerebellum: Crus 1, Crus 2 (−) – 2,728 −40 −66 −42
Left posterior insular cortex/superior temporal gyrus (−) – 1,512 −40 −26 14
Right posterior insular cortex (−) – 744 50 −10 8
Left superior frontal gyrus (−) – 736 −20 32 46
Right/left superior medial frontal gyrus (+) – 680 2 60 30
Right superior parietal lobule (+) – 640 26 −60 60
Right superior temporal gyrus (+) – 448 56 8 −8
Left superior parietal lobule (+) – 360 −32 −66 60
Right putamen (−) – 328 26 16 −2
Right midbrain/pons (−) – 328 4 −24 −20

Right lateral DLPFC seed region 77
Right superior parietal lobule (−) – 36,656 14 −80 54

Right inferior parietal lobule (−) – – 46 −46 54
Left precuneus (−) – – −4 −66 44
Left superior parietal lobule (−) – – −16 −70 56
Left inferior parietal lobule (−) – – −40 −62 54
Left primary somatosensory cortex (−) – – −50 −18 58

Left middle frontal gyrus (−) – 8,184 −24 34 −18
Left inferior frontal gyrus (−) – – −32 30 −12
Right superior frontal gyrus (−) – – 34 44 −16

Right pons (−) – 1,800 20 −14 34
Right parahippocampal gyrus (−) – – 22 −4 −28

Left pons (+) – 1,592 0 −34 −32
Right anterior cerebellum (+) – – 10 −48 −28

Left precentral gyrus (−) – 1,000 −50 −2 26
Right superior frontal gyrus (+) – 720 16 24 64
Left inferior occipital gyrus (+) – 544 −44 −78 −6
Right middle temporal gyrus (+) – 464 52 −6 −22
Right superior temporal gyrus (+) – 456 42 −50 16
Right posterior cerebellum (+) – 440 −46 −50 −46
Left posterior insular cortex (−) – 360 −34 −28 14

Left PCC and right lateral DLPFC seed regions combined 92
Right superior parietal lobule (−) – 36,928 34 −50 62

Right primary somatosensory cortex (−) – – 58 −18 48
Right inferior parietal lobule: BA 40 (– ) – – 44 −40 46
Left precuneus (– ) – – −8 −64 44
Right precuneus (– ) – – 6 −62 42
Left inferior parietal lobule: BA 40 (−) – – −40 −50 46

Right perigenual ACC (−) – 19,408 4 36 −4
Right medial frontal gyrus (−) – – 4 58 −6

Left inferior parietal lobule: BA 40 (−) – 18,800 −48 −50 44
Left precuneus (−) – – −10 −62 42
Left ventral PCC (- ) – – −2 −46 20
Left mid cingulate cortex (−) – – −2 −34 46

Left inferior orbital frontal gyrus (−) – 9,672 −26 30 −10
Right mid orbital frontal gyrus (−) – – 18 48 −22

Left precuneus (−) – 5,072 −6 −42 70
Right mid cingulate (−) – – 6 −28 44

Right primary somatosensory cortex (−) – 2,160 50 −28 62
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resting- state fMRI data collected from 2 cohorts of FM patients 
who underwent longitudinal therapy with pregabalin or  milnacipran. 
The 2 drugs have differential neurochemical properties and mech-
anisms of action in the central nervous system.  Pregabalin is 
thought to act through inhibition of calcium- dependent release 
of excitatory neurotransmitters, whereas milnacipran likely works 
through increasing norepinephrine and serotonin signaling in 
descending inhibitory pathways (9,10). Therefore, we sought 
to understand if functional connectivity between brain regions 
implicated in pain processing and modulation may be a candi-
date biomarker that predicts differential response to pregabalin 
and milnacipran in patients with FM.

Machine- learning models showed that baseline patterns of 
brain connectivity distinguished responders to pregabalin from 
responders to milnacipran, significantly above the level of chance. 
To further distinguish that these markers were specific to pain 
only, we confirmed that improvements in anxiety (left PCC, 15%; 
right lateral DLPFC, 54%) and depression (left PCC, 54%; right 
lateral DLPFC, 54%) were not identified by our classifiers. More-
over, motion, scanner, and sequence parameters did not seem 
to contribute to our results. Finally, our approach did not classify 
nonresponsiveness to the 2 drugs, suggesting that our markers 
predict differential analgesic response.

Our results highlight classification differences between  
 milnacipran and pregabalin. We assessed brain  connectivity 
 patterns of the PCC, a key node of the default mode  network, 

and found that within– default mode network connectivity pat-
terns were higher in pregabalin responders than in milnacipran 
responders. Interestingly, our PCC seed region was placed in a 
dorsal subregion of the PCC which has been found to be asso-
ciated with pain widespreadness in FM (19), while the resultant 
connected ventral subregion of the PCC has been shown to be 
associated with pain catastrophizing in patients with FM (20). 
This suggests that our classifier identified multiple default mode 
network regions that influence chronic pain. Further, we explored 
connectivity of the DLPFC, an antinociceptive node that has 
shown modifications in connectivity with treatment in previous 
studies of chronic pain (21). Here we observed that greater con-
nectivity of the DLPFC with subregions of networks including 
frontoparietal, dorsal attention, and sensorimotor networks dif-
ferentially predict pregabalin versus milnacipran responders.

Recent machine-learning neuroimaging studies in chronic 
pain have shown that combining data across different tasks (22) 
or modalities (23) can bolster classification and prediction accu-
racy. We combined whole- brain– seed connectivity maps of the 
PCC and the DLPFC and found increased classification perfor-
mance (92%) in distinguishing pregabalin versus milnacipran 
outcomes, which was substantially higher than the individual per-
formance of either seed in isolation (77%). These results under-
score the fact that these 2 drugs may act on different brain regions 
and combining results from different networks can capture unique 
aspects of pain pathology and bolster classification performance.

Table 3. (Cont’d)

Seed region, regions with significant connectivity 
weights

Accuracy, 
%

Size, 
mm3

Coordinates

x y z
Right anterior cerebellum (+) – 1,376 10 −48 −24

Right pons (+) – – 8 −30 −36
Right supplementary motor area (−) – 1,176 36 0 58
Left cuneus (+) – 1,136 −14 −78 8
Left superior frontal gyrus (−) – 880 −16 28 52
Right supplementary motor area (+) – 880 14 24 64
Left posterior cerebellum (+) – 760 −6 −78 −34
Left inferior occipital gyrus (+) – 696 −48 −82 −4
Left posterior cerebellum (+) – 496 −42 −52 −50
Right mid temporal gyrus (+) – 488 50 −4 −20
Left superior parietal lobule (+) – 472 22 −56 62
Left mid cingulate cortex (−) – 464 −10 −24 54
Left premotor cortex (+) – 448 −34 −8 54
Right posterior insular cortex (−) – 416 44 −10 10
Right posterior cerebellum (+) – 360 6 −68 −46
Right superior temporal gyrus (+) – 352 60 10 −8
Right superior frontal gyrus (+) – 336 14 24 62

* Support vector machine (SVM) accuracy values indicate the frequency with which the model correctly identifies 
pregabalin responders and milnacipran responders. Group labels were chosen based on median splits (for both 
drugs, responders had a ≥20 point reduction in pain following treatment), and patients deemed to be responders 
to each respective drug were entered into this analysis. Results are significant at P < 0.05, derived from permutation 
testing (1,300 iterations), and are reported for clusters >320 mm3. (+) denotes greater functional connectivity 
for milnacipran responders compared to pregabalin responders. (−) denotes greater functional connectivity for 
pregabalin responders compared to milnacipran responders. FM = fibromyalgia; PCC = posterior cingulate cortex; 
BA 40 = Brodmann area 40; ACC = anterior cingulate cortex; DLPFC = dorsolateral prefrontal cortex. 
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In recent years there has been a push toward personalized or 
precision medicine for numerous medical conditions ranging from 
cancer to depression (24). Given that most of these conditions are 
etiologically complex, there are likely multiple pathologies across 
individuals who share a common diagnosis. The situation is similar 
for chronic pain. There may be multiple pain- processing pathways 
wherein plasticity may promote chronic pain that outlasts peripheral 
nociceptive drive. Therefore, the effectiveness of an analgesic, with a 
specific set of molecular targets, may be more or less suited to any 
individual person based on their specific pathology. While the con-
cept of personalized or precision analgesia has been  discussed for 
over 2 decades (25), it still remains largely unrealized for chronic pain.

There are several limitations to this study. The sample size used 
in this study is small due to the design of our 2 previous studies, 
and we were unable to include an independent replication cohort. 
Machine- learning studies typically need larger sample sizes to be 
robust. Therefore, in future studies, training the model on larger 
sample sizes with out- of- sample validation is needed to determine 
if these results are reproducible. Furthermore, to optimize our SVM 
analyses, we used an unorthodox cutoff to identify our pregabalin 
and milnacipran responder groups (20% reduction in clinical pain). 
Studies with larger samples may be able to use a more traditional 
cutoff point of 30% improvement in pain to identify drug respond-
ers. Other machine- learning techniques could have been chosen, 
but one of our main motivations to use SVM for this study was that 
it is designed to deal with small sample sizes and high- dimensional 
data (26). While we were able to achieve high accuracy with 
leave-one-out cross-validation, we also attempted a k- fold cross- 
validation analysis where we used a 5- fold cross-validation. This 
approach yielded the same accuracy values (77% each for the 
DLPFC and PCC independently, and 92% for the combination of 
the DLPFC and PCC maps), suggesting that our findings are con-
sistent across multiple methods. Finally, only women were enrolled 
in this study, and other factors such as age, race, and concur-
rent medications were not included as part of the SVM.

While our study has limitations, we see this work as a first 
step toward building robust, generalizable, and predictive mark-
ers of pharmacologic response in chronic pain. Machine learning 
combined with functional connectivity MRI is not yet ready for clin-
ical application. There have been studies that have taken steps to 
close this gap (27), but it is yet to be confirmed as a viable tool in 
a clinical setting. To this end, ongoing work will investigate using 
whole- brain correlation matrices, feature selection techniques, and 
nonlinear kernels as additional approaches to analgesic prediction.

In summary, our results demonstrate that brain connectivity 
at baseline, prior to commencing therapy, may be leveraged to 
differentially predict responders between analgesics. The predic-
tive ability may be due to the mechanism of action of these phar-
macologic agents on the endogenous pain circuits in the central 
nervous system. Larger, multisite, and systematic trials with multi-
modal biomarkers are needed in the future to validate these find-
ings and utilize them in a precision medicine framework.

AUTHOR CONTRIBUTIONS

All authors were involved in drafting the article or revising it critically 
for important intellectual content, and all authors approved the final version 
to be published. Dr. Ichesco had full access to all of the data in the study 
and takes responsibility for the integrity of the data and the accuracy of 
the data analysis.
Study conception and design. Pauer, Harte, Clauw, Harris.
Acquisition of data. Ichesco, Peltier.
Analysis and interpretation of data. Ichesco, Peltier, Mawla, Harper, 
Harte, Clauw, Harris.

ROLE OF THE STUDY SPONSORS

Pfizer and Forest Laboratories had no role in the collection, analysis, 
or interpretation of the data. Nor did Pfizer or Forest Laboratories have 
any role in writing the manuscript or deciding to submit the manuscript for 
publication. Pfizer and Forest Laboratories did have a role in study design. 
Publication of this article was not contingent upon approval by Pfizer or 
Forest Laboratories.

REFERENCES
 1. Clauw DJ. Fibromyalgia: a clinical review. JAMA 2014;311:1547– 55.

 2. Gracely RH, Petzke F, Wolf JM, Clauw DJ. Functional magnetic res-
onance imaging evidence of augmented pain processing in fibromy-
algia. Arthritis Rheum 2002;46:1333– 43.

 3. Napadow V, LaCount L, Park K, As- Sanie S, Clauw DJ, Harris RE. 
Intrinsic brain connectivity in fibromyalgia is associated with chronic 
pain intensity. Arthritis Rheum 2010;62:2545– 55.

 4. Kutch JJ, Ichesco E, Hampson JP, Labus JS, Farmer MA, Martucci 
KT, et al. Brain signature and functional impact of centralized pain: a 
multidisciplinary approach to the study of chronic pelvic pain (MAPP) 
network study. Pain 2017;158:1979– 91.

 5. Derry S, Cording M, Wiffen PJ, Law S, Phillips T, Moore RA. 
Pregabalin for pain in fibromyalgia in adults. Cochrane Database 
Syst Rev 2016;9:CD011790.

 6. Derry S, Gill D, Phillips T, Moore RA. Milnacipran for neuropathic pain and 
fibromyalgia in adults. Cochrane Database Syst Rev 2012:CD008244.

 7. Arnold LM, Clauw DJ, Wohlreich MM, Wang F, Ahl J, Gaynor PJ, 
et al. Efficacy of duloxetine in patients with fibromyalgia: pooled anal-
ysis of 4 placebo- controlled clinical trials. Prim Care Companion J 
Clin Psychiatry 2009;11:237– 44.

 8. Tracey I, Woolf CJ, Andrews NA. Composite pain biomarker sig-
natures for objective assessment and effective treatment. Neuron 
2019;101:783– 800.

 9. Harris RE, Napadow V, Huggins JP, Pauer L, Kim J, Hampson J, 
et al. Pregabalin rectifies aberrant brain chemistry, connectivity, 
and functional response in chronic pain patients. Anesthesiology 
2013;119:1453– 64.

 10. Schmidt- Wilcke T, Ichesco E, Hampson JP, Kairys A, Peltier S, 
Harte S, et al. Resting state connectivity correlates with drug and 
placebo response in fibromyalgia patients. Neuroimage Clin 2014;6:  
252– 61.

 11. Cleeland CS, Ryan KM. Pain assessment: global use of the Brief 
Pain Inventory [review]. Ann Acad Med Singap 1994;23:129– 38.

 12. Bjelland I, Dahl AA, Haug TT, Neckelmann D. The validity of the 
Hospital Anxiety and Depression Scale: an updated literature review. 
J Psychosom Res 2002;52:69– 77.

 13. Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity 
in the resting brain: a network analysis of the default mode hypothe-
sis. Proc Natl Acad Sci U S A 2003;100:253– 8.

 14. Whitfield- Gabrieli S, Nieto- Castanon A. Conn: a functional connec-
tivity toolbox for correlated and anticorrelated brain networks. Brain 
Connect 2012;2:125– 41.



BRAIN- BASED PREDICTION OF THERAPEUTIC OUTCOMES IN CHRONIC PAIN |      2137

 15. Calhoun VD, Adali T, Pekar JJ. A method for comparing group fMRI 
data using independent component analysis: application to visual, 
motor and visuomotor tasks. Magn Reson Imaging 2004;22:1181– 91.

 16. Hu X, Le TH, Parrish T, Erhard P. Retrospective estimation and cor-
rection of physiological fluctuation in functional MRI. Magn Reson 
Med 1995;34:201– 12.

 17. Chang CC, Lin CJ. LIVSVM: a library for support vector machines. 
ACM Trans Intell Syst Technol 2011;2:27.

 18. Van der Miesen MM, Lindquist MA, Wager TD. Neuroimaging- based 
biomarkers for pain: state of the field and current directions [review]. 
Pain Rep 2019;4:e751.

 19. Ellingsen DM, Beissner F, Alsady TM, Lazaridou A, Paschali M, Berry 
M, et al. A picture is worth a thousand words: linking fibromyalgia pain 
widespreadness from digital pain drawings with pain catastrophizing 
and brain cross- network connectivity. Pain 2020;162:1352– 63.

 20. Lee J, Protsenko E, Lazaridou A, Franceschelli O, Ellingsen DM, Mawla I,  
et al. Encoding of self- referential pain catastrophizing in the posterior 
cingulate cortex in fibromyalgia. Arthritis Rheumatol 2018;70:1308– 18.

 21. Čeko M, Shir Y, Ouellet JA, Ware MA, Stone LS, Seminowicz DA. 
Partial recovery of abnormal insula and dorsolateral prefrontal 

connectivity to cognitive networks in chronic low back pain after 
treatment. Hum Brain Mapp 2015;36:2075– 92.

 22. López- Solà M, Pujol J, Wager TD, Garcia- Fontanals A, Blanco- 
Hinojo L, Garcia- Blanco S, et al. Altered functional magnetic res-
onance imaging responses to nonpainful sensory stimulation in 
fibromyalgia patients. Arthritis Rheumatol 2014;66:3200– 9.

 23. Lee J, Mawla I, Kim J, Loggia ML, Ortiz A, Jung C, et al. Machine 
learning- based prediction of clinical pain using multimodal neuroim-
aging and autonomic metrics. Pain 2019;160:550– 60.

 24. National Research Council. Toward precision medicine: building a 
knowledge network for biomedical research and a new taxonomy of 
disease. Washington, DC: The National Academic Press; 2011.

 25. Woolf CJ, Max MB. Mechanism- based pain diagnosis: issues for 
analgesic drug development. Anesthesiology 2001;95:241– 9.

 26. LaConte S, Strother S, Cherkassky V, Anderson J, Hu X. Support 
vector machines for temporal classification of block design fMRI 
data. Neuroimage 2005;26:317– 29.

 27. Wager TD, Atlas LY, Lindquist MA, Roy M, Woo CW, Kross E. An 
fMRI- based neurologic signature of physical pain. N Engl J Med 
2013;368:1388– 97.


