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Abstract

It has been suggested that extracellular vesicles (EVs) can mediate crosstalk between hor-

mones and metabolites within pancreatic tissue. However, the possible effect of pancreatic

EVs on stem cell differentiation into pancreatic lineages remains unknown. Herein, human

islet-derived EVs (h-Islet-EVs) were isolated, characterized and subsequently added to

human induced pluripotent stem cell (iPSC) clusters during pancreatic differentiation. The h-

islet-EVs had a mean size of 117±7 nm and showed positive expression of CD63 and CD81

EV markers as measured by ELISA. The presence of key pancreatic transcription factor

mRNA, such as NGN3, MAFA and PDX1, and pancreatic hormone proteins such as C-pep-

tide and glucagon, were confirmed in h-Islet-EVs. iPSC clusters were differentiated in sus-

pension and at the end stages of the differentiation protocol, the mRNA expression of the

main pancreatic transcription factors and pancreatic hormones was increased. H-Islet-EVs

were supplemented to the iPSC clusters in the later stages of differentiation. It was observed

that h-Islet-EVs were able to up-regulate the intracellular levels of C-peptide in iPSC clusters

in a concentration-dependent manner. The effect of h-Islet-EVs on the differentiation of iPSC

clusters cultured in 3D-collagen hydrogels was also assessed. Although increased mRNA

expression for pancreatic markers was observed when culturing the iPSC clusters in 3D-col-

lagen hydrogels, delivery of EVs did not affect the insulin or C-peptide intracellular content.

Our results provide new information on the role of h-Islet-EVs in the regulation of insulin

expression in differentiating iPSC clusters, and are highly relevant for pancreatic tissue engi-

neering applications.

Introduction

Diabetes mellitus (DM) is a chronic metabolic disorder characterized by hormonal dysregula-

tion in insulin-producing pancreatic β-cells [1, 2]. Disease incidence, particularly for type 2

PLOS ONE | https://doi.org/10.1371/journal.pone.0187665 November 8, 2017 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Ribeiro D, Andersson E-M, Heath N,

Persson-kry A, Collins R, Hicks R, et al. (2017)

Human pancreatic islet-derived extracellular

vesicles modulate insulin expression in 3D-

differentiating iPSC clusters. PLoS ONE 12(11):

e0187665. https://doi.org/10.1371/journal.

pone.0187665

Editor: Joseph Najbauer, University of Pécs
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DM, is increasing worldwide, and has an impact on the affected individual as well as the health

care systems [3, 4]. Disease modelling and development of clinical treatment options are

impaired by limited availability and functionality of isolated pancreatic islets from donors [5, 6].

The advancement of pluripotent stem cell technology has led to a cascade of technological

innovations in stem cell-based differentiation [7], with the potential to generate alternative

sources of islet-like cells [8]. Common differentiation protocols use complex and sequential

cocktails of growth factors and/or small molecules to direct endocrine differentiation of stem

cells [9–11], and more recently this has been used in combination with stem cell clusters cul-

tured in suspension [12–15]. These clusters resemble islet 3D-architecture and show increased

functional insulin release properties in-vitro [16–18]. Earlier literature supports the use of 3D-

culture, to preserve and/or increase in-vitro pancreatic islet viability and insulin secretion [19,

20]. Of particular interest are 3D-scaffolds containing extracellular matrix (ECM) motifs

found within the pancreatic ECM, such as collagen [21, 22].

Despite increased efforts in the development of complex in-vitro 3D-stem cell culture sys-

tems, previously mentioned differentiation protocols may not provide the dosage, temporal

and synergistic signals that constitute the pancreatic islet in-vivo niche.

It has been shown that protein, lipid and RNA packaged into and released from cells in

extracellular vesicles (EVs) can modify/reprogramme the phenotype of recipient cells. [23].

EVs are circulating, cell-derived membrane enclosed vesicles involved in the communication

between cells [24]. Several types of EVs have been described in the literature including plasma

membrane derived microvesicles and exosomes which originate from within the endosomal

system [25–27]. Recent literature supports a role for EVs in metabolic-associated disturbance

[28], in particular β-cell insulin resistance and overall potential to affect development of DM

[29]. In fact, microvesicles isolated from pancreatic β-cell lines were found to transfer micro-

RNAs to neighboring β-cells. Furthermore, β-cell microvesicular cargo content was affected by

exposure to pathophysiological conditions associated with DM [30]. Another notable study

showed that biologically active EVs released from human pancreatic islets were able to shuttle

specific microRNAs to human islet endothelial cells, inducing INS mRNA expression, offering

protection from apoptosis and enhancement of angiogenesis [31]. However, the effect of pan-

creatic islet-derived EVs on stem cell differentiation and pancreatic commitment remains

unknown.

Here, we test the hypothesis that EVs isolated from human pancreatic islets can deliver

RNA and/or proteins to differentiating cells, and influence the outcome of the differentiation

towards insulin-producing cells. EVs were isolated from human pancreatic islets (h-islets) and

their concentration, size and specific pancreatic cargo was characterized. Next, the effect of the

addition of h-islet-EVs to differentiating pancreatic iPSC clusters was assessed in both suspen-

sion cultures and in hydrogels composed of collagen type 1.

Materials and methods

Materials and media

Materials and media used throughout this work can be found in Materials and methods A in

S1 File.

Human pancreatic islets

Human primary islets were purchased from Prodo Laboratories Inc., who provide islets iso-

lated from donor pancreases obtained from deceased individuals with research consent from

Organ Procurement Organizations (OPOs). The use and storage of human islets was per-

formed in compliance with the Declaration of Helsinki, ICH/Good Clinical Practice, and
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AstraZeneca code of conduct. Samples were anonymized prior to receiving them from Prodo

Laboratories Inc. H-Islets were transported in PIM (S) 1 and changed to fresh PIM1 for an

overnight recovery. Donor information can be found in Table A in S1 File.

EV isolation

PIM1 media supplemented with human serum was used for islet culture (PIM1 complete).

PIM1 media itself does not contain any other animal-derived product. PIM1 complete

media was used to extract EVs corresponding to the human serum fraction, which were used

as control EVs (h-Ctr-EVs). PIM1 media was purchased routinely at each islet preparation,

and different batches were used. Human pancreatic islet-derived EVs were isolated from pan-

creatic islet conditioned media after one overnight culture in PIM1 complete media. Condi-

tioned media was centrifuged at 200 g for 10 minutes, followed by 2000 g for 10 minutes and a

final centrifugation of 4000 g for 60 minutes. The supernatant was filtered with a 0.45 μm filter

and incubated with ExoQuick-TCTM reagent following manufacturer instructions. EVs were

characterized for concentration, surface expression markers, size distribution using NTA, and

visualised using TEM.

EV quantification

EVs were quantified in terms of total protein content and particle concentration. EV total pro-

tein content was measured using a Pierce™ BCA Protein Assay Kit. Particle concentration was

measured using the EXOCET exosome Quantification assay kit and Nanoparticle tracking

analysis (NTA). NTA was carried out using the LM10 Nanosight (Malvern) equipped with a

sample chamber and a 405 nm laser. EVs were diluted in PBS to fit in the resolution window

of measurement suggested by the instrument manufacturer. Samples were injected into the

sample chamber using a 1 mL syringe until the chamber was filled and sample was starting to

exit the system chamber outlet. Three separate fields of view were captured for each sample for

30 second measurements at room temperature. A script was used which allowed the sample to

be advanced manually between each measurement. The Nanosight NTA 3.1 software was used

to capture and analyze the particles. Camera levels, screen gain and detection thresholds were

kept consistent between replicates of samples but not between different sample conditions.

The expression of tetraspanins was measured with Exo-ELISA for CD63, CD9 and CD81 fol-

lowing manufacturer´s instructions.

Transmission electron microscopy

Negative stain transmission electron microscopy was used to image the EVs. EVs were re-sus-

pended in TBS and frozen at -80˚C. TBS was found to be a more desirable buffer for analysis

of EVs via TEM (unpublished data). Carbon film on gold 300 square mesh grids (EM resolu-

tions) that had been subjected to glow discharge for 2 minutes at 25 mA, were applied to 10 μl

of thawed EVs and left to adsorb for 1 minute. Excess liquid was blotted using Whatman blot-

ting paper and a grid was applied to 10 μL 2% uranyl acetate (Agar Scientific) for 1 minute.

Excess liquid was blotted and grids were stored for use. Grids were imaged on a Tecnai 12

BioTwin coupled to a GATAN Orius 2K CCD camera transmission electron microscope oper-

ating at 120 KV.

EV cargo characterization

EVs were assessed for the presence of RNA and protein of several pancreatic markers and hor-

mones. RNA was extracted based on a combination of phenol-based method and a final
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purification step using the RNeasy1 Mini Kit. Briefly, EV pellets were lysed in TRIzol1 and

frozen. For each 700 μL of TRIzol1 solution 90 μL of chloroform was added, and the mix was

vortexed for 15 seconds and incubated for 2 minutes at room temperature. The mix was centri-

fuged at 14000 g for 15 minutes at 4˚C. From this centrifugation step resulted a 3 phase mix, in

which was an upper colourless aqueous phase containing RNA. This phase was transferred to

a clean Eppendorf tube, to which 2 times volume of absolute ethanol was added. This solution

was transferred to the spin columns of the RNeasy1 Mini Kit, following the manufacturer´s

instructions. The protocol followed for quantification of gene expression is detailed in Materi-

als and methods B in S1 File. The pancreatic hormone quantification is described below in the

ELISA section. 25–50 μg of EVs were run on the ELISAs.

Pancreatic differentiation in suspension

Undifferentiated iPSC clusters were generated according to Materials and methods C in S1

File. Suspension differentiation was carried out in Corning1 125 mL baffled Erlenmeyer

flasks, using 40 mL media per flask. The differentiation protocol used was adapted from Russ

et al. [15] and the details described in Material and methods D in S1 File.

EV supplementation

iPSC clusters, at day 11 of the differentiation protocol, were transferred to 96 well spheroid

plates and incubated with various concentrations of h-Islet-EVs (0, 100, 200 and 300 μg EVPro-

tein /mL) at every media change. iPSC clusters were allowed to sediment for 1 to 3 minutes and

media was removed without disturbing the cluster pellet. The cluster pellet was resuspended

with fresh media+EVs, at a concentration of 1.5% (ViPSC cluster/Vmedia). 100 μL of this solution

was added to each 96 well.

3D-culture in collagen hydrogels

Cell clusters were mixed with the freshly prepared collagen solutions (Material and methods C

in S1 File). A cell cluster suspension was added to the gel mix at 10% (ViPSC cluster/Vgel) concen-

tration. Clusters were pre-differentiated in suspension prior to encapsulation in 3D-culture in

hydrogels, and differentiation in 3D-hydrogels was carried out following the same differentia-

tion media and media change timing. EVs were supplemented by addition to the differentia-

tion media at 200 μg of EVprotein/mL.

Gene expression analysis

At different culturing time points, samples were taken from the cell cluster suspensions or 3D

cultures for RNA analysis. Gene expression procedures are detailed in Materials and methods

B in S1 File. Briefly, The RNA extraction of cell suspension clusters or encapsulated collagen-

clusters was performed using the RNeasy1 Mini Kit. RNA was converted to cDNA using the

using a High-Capacity cDNA Reverse Transcription Kit. Quantitative real-time PCR (qPCR)

was performed using TaqMan1 reagents. Primer information is described in Table B in S1

File.

Protein quantification by ELISAs

The pancreatic hormones insulin, C-peptide and glucagon, were quantified using the Merco-

dia Insulin ELISA, Mercodia ultrasensitive C-peptide ELISA and Mercodia Glucagon ELISA.

Cell samples were washed in PBS and lysed in H2O. Data was normalized against the total

DNA content using the Quant-iT™ PicoGreen 1 dsDNA.

h-Islet-EV involvement in iPSC cluster pancreatic differentiation
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Apoptosis

Apoptosis was measured using the Luminescent Caspase Assay, following manufacturer´s

instructions.

Statistical analysis

A minimum of three independent experiments were performed, with a minimum of two tech-

nical replicates per condition and assay. Data was statistically analysed using GraphPad Prism

software (version 6.01; GraphPad Software Inc.). Automatic correction for outliers was per-

formed using the ROUT method (Q = 1%). The results were analysed for normal distribution.

Parametric or non-parametric methods were used to assess variance in the data depending of

the data normality. Statistical significance of calculated P-values is defined in Table C in S1

File, P-values of 0.05 or less were considered statistically significant in the analysis of the

results. Boxplots graphs were used to display the distribution of data.

Results and discussion

h-Islet-EV concentration and size characterization

Human islets (h-islets) are a delicate cell population, limited in availability but of great interest

in diabetes research. The potential to use islet-derived conditioned media for the development

of functional assays adds great value to the field. In this study, EVs were isolated from the con-

ditioned media of non-diabetic h-islet donors with an average age of 41±13 years and an aver-

age BMI of 27±4. Human islets are sensitive to isolation and insulin regulation becomes

unbalanced in in-vitro culture [5]. To maintain the h-islet phenotype post isolation and trans-

portation, h-islets were cultured in medium supplemented with human serum (PIM com-

plete). After an overnight incubation, media conditioned by the h-islets was harvested and

EVs were isolated. PIM complete media is supplemented with human serum which is docu-

mented to contain EVs [32, 33], and thereby control EV samples (h-Ctr-EVs) were also iso-

lated from media that had not been exposed to h-islets. H-Islet-EVs had a significantly lower

protein concentration compared to h-Ctr-EVs (Fig 1A). The same pattern was observed when

analyzing the ratio of particle number per μg of protein for both EV fractions (Figure A in S1

File). One can speculate that human islets may have taken up and processed h-Ctr-EVs present

in the PIM conditioned media, and thereby h-islet-EVs subsequently released were not visible

as a cumulative release effect. The protein content of h-Islet-EVs showed less sample variabil-

ity, as compared to Ctr-EVs, indicated by the interquartile distribution of the box-plot.

The concentration of h-Islet-EVs was further characterized by measuring Acetyl-CoA

Acetylcholinesterase (AChE) activity, known to be enriched within EVs [34], and by nanopar-

ticle tracking analysis (NTA) (Fig 1B). The results showed significant variance depending on

the method used. The NTA data showed a higher concentration of h-islet-EVs as compared to

the AChE method, which may be explained by the presence of AChE in only a sub-population

of EVs. The EV size distribution was analyzed using NTA and the average h-Islet-EV size was

117±7 nm and mode size of 86±4 nm (Fig 1C). EVs have previously been isolated from media

conditioned by human islets by ultracentrifugation [31], the EVs in this study had a mean size

of 236±5 compared to 117±7 nm. The difference in size may be due to different methods of

isolation, although the size range observed in both studies is in agreement with current litera-

ture about the EVs [25, 27]. Regarding the isolation method, a comparative study has sup-

ported the use of commercial kits such as miRCURY, ExoQuick, and Total Exosome Isolation

Reagent as an adequate alternative to ultracentrifugation [35]. This study showed that all
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isolation techniques produced EVs within the expected size range (40–150 nm) and similar

physical properties.

Transmission electron microscopy (TEM) imaging was performed on h-Islet-EV samples

re-suspended in TBS, revealing a diverse population of particles (Fig 1D). EVs below 50 nm

are observed in Fig 1D, contrasting with the NTA data where few particles less than 50 nm

Fig 1. Characterisation of EVs. A) h-Islet-EVs (N = 11) and h-Ctr-EVs (N = 5) protein concentration per 10 mL of isolation media. For each 10

mL of media containing h-Islets, an average of 1390±511 h-Islets were present. No islets were cultured in the media for the control condition. B)

Particle concentration was quantified using the AChE activity assay (N = 11) or nanoparticle tracking analysis (N = 3). C) Size distribution over

frequency of events (N = 3). Descriptive statistics listed in table above the graph. D) Representative TEM image. Scale bar = 100 nm. *
represent statistical significance, and the corresponding p-value in Table C in S1 File.

https://doi.org/10.1371/journal.pone.0187665.g001
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were measured. Differences in EV size as determined by NTA and electron microscopy has

previously been described in other studies [36]. These differences could be attributed to the

sample preparation process for electron microscopy, and the detection limitations of nanopar-

ticle tracking analysis whereby EVs between 20–60 nm as observed by electron microscopy

were not measured by NTA [37]. Nevertheless, the resuspension in TBS, required for TEM,

did not alter the size distribution profile of the EVs as measured by NTA (Figure B in S1 File).

h-Islet-EVs express EV markers

Tetraspanins are present in the membrane of EVs and are often used as EV biomarkers [25,

38, 39]. Therefore h-islet-EVs were analyzed for the presence of tetraspanins CD9, CD63 and

CD81 by ELISA (Fig 2). No differences were observed in CD9 expression. However, the levels

of both CD63 and CD81 were significantly higher in h-Islet-EVs compared to h-Ctr-EVs sug-

gesting the release of a distinct population of EVs from h-islet cells. Literature suggests that

accumulation of a specific tetraspanin family marker in EVs might be cell origin-specific [40].

h-Islet-EV pancreatic cargo

The presence of protein and mRNA for pancreatic markers was analyzed in h-islet cells, h-

islet-EVs and h-Ctr-EVs (Fig 3A). The housekeeping gene 18sRNA was used as a positive con-

trol. mRNA for 18sRNA was significantly higher in h-islet cells as compared to h-islet EVs or

control-EVs, but no differences were observed between the EV populations. mRNA for pan-

creatic markers was not detected in control EVs. However, several pancreatic markers were

found in h-islet-EVs. The presence of mRNA for pancreatic transcription factors, such as

PDX1, NGN3 and MAFB was significantly higher in h-Islet-EVs as compared to h-islets.

NKX6.1 and MAFB mRNA were detected in both h-islets and h-Islet-EVs, but no significant

differences were observed. The mRNA for the hormone markers, INS and GCG was found sig-

nificantly higher in h-Islets than in h-Islet-EVs, but no differences were observed in SOM
mRNA expression. NGN3 is a critical transcriptional factor required for endocrine fate

Fig 2. Quantification of CD63, CD9 and CD81 content in EVs by ELISA. Normalization was performed to

the EVs protein content (N = 5). * represent statistical significance, and correspondingt p-value description in

Table C in S1 File.

https://doi.org/10.1371/journal.pone.0187665.g002
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determination in the developing pancreas, and is thought to be absent postnatally in human

islets [41, 42]. MafA and PDX1 are β-cell-specific and known to control glucose-responsive

transcription of insulin and other genes in islet β-cells [43, 44]. The high concentration of both

these mRNAs in the h-islet-EVs may suggest that pancreatic EVs may have a role in the endo-

crine fate specification via NGN3 signaling, and β-cell maturation and identity.

The protein levels of the two main pancreatic hormones found in h-islets, C-peptide and

glucagon, was assessed by ELISA and compared between h-Islet-EVs and h-Ctr-EVs (Fig 3B).

Significantly higher amounts of C-peptide and glucagon were detected in h-Islet-EVs, as com-

pared to h-Ctr-EVs. These data reveal that h-Islet-EVs carry pancreatic genetic and protein

information.

Fig 3. h-Islet-EV pancreatic cargo characterization. A) mRNA levels of pancreatic markers in h-Islet-EVs and h-Ctr-EVs as

compared to h-islets. Fold change normalized against h-Islets (N = 3). B) Quantification of C-peptide and glucagon in h-Islet-EVs

(N = 4) and h-Ctr-EVs (N = 3), normalized by EV protein content (μg). * represent statistical significance, and corresponding p-

value description in Table C in S1 File.

https://doi.org/10.1371/journal.pone.0187665.g003
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Temporal commitment of iPSC clusters differentiated in suspension

2D-culture adaptation to 3D-suspension cluster culture involved culturing single iPSCs in baf-

fled flasks in suspension and with rotation (Figure C (A) in S1 File). 3D-suspension culture led

to a significant decrease in cell viability (Figure C (B) in S1 File). Even so, suspension culture

viability remained above 85% during the suspension adaptation protocol. Cells within the iPSC

cluster proliferated, which resulted in increased cell number and cluster diameter size over time

(Figure C (C and D) in S1 File). The pluripotent maker OCT4, a typical embryonic/iPS stem

cell marker [45], could be detected in iPSC clusters (Figure C (E) in S1 File). Dispersion of the

iPSC clusters into single cells (Figure C (F) in S1 File) allowed a detailed visualization and quan-

tification of OCT4 relative expression (Figure C (G) in S1 File). 89.5±6.7% (mean ±SD) of the

cells stained positive for OCT4+ (normalized for Hoechst staining).

For iPSC cluster differentiation, a protocol adapted from Russ et al. [15] was used, and the

iPSC cluster transcriptional profile is shown in Figure D in S1 File. Changes in mRNA expres-

sion over time were compared to undifferentiated iPSC clusters (day 0). The expression of

OCT4 gene was reduced at early culture time points and reached very low levels by the end of

the differentiation protocol. Combined action of activin A (ActA) and Wnt3 treatment

induced a significant expression of typical endoderm markers SOX17 and FOXA2 genes [11].

Overall, the mRNA expression of critical pancreatic transcription factors such as NGN3, NEU-
ROD1 and MAFB [46, 47], increased significantly over time, as observed from day 10 to day

22. NKX6.1 and PDX1 showed a significant increase in mRNA after day 10. Contrasting with

the other pancreatic transcription factors, MAFA gene expression was only significantly

increased towards the end of the differentiation protocol (day 20–22). The expression of

mRNA for pancreatic hormones was only observed at the latest time points of the differentia-

tion. A significant increase in SOM expression was detected at day 10, followed by a peak in

expression at day 16. GCG and INS mRNA expression reached significant levels by day 16 and

onwards.

EVs affect iPSC cluster differentiation in a dose-dependent fashion

EVs are well recognized for their ability to mediate cell-to-cell communication. In particular,

MSC-derived EVs have been intensively investigated. In fact, EV mediated RNA delivery from

hMSCs to human islets revealed an immunosuppressive effect capable of improving islet trans-

plantation [48]. MSC-derived EVs are also known to mediate regenerative responses following

hepatic injury [49]. Nevertheless, a growing interest is being devoted to tissue-derived EVs.

Recent studies suggest that tissue homeostasis can be regulated via EV communication [50,

51].

To assess the effect of h-islet-EVs on stem cell differentiation, iPSC clusters at day 11 of dif-

ferentiation were transferred to spheroid 96 well plates. At this stage of differentiation the

iPSC clusters had a mean diameter size of 189.4±36 μm (Figure E in S1 File). Increasing con-

centrations of h-Islet-EVs (0, 100, 200 and 300 μg/mL) were added to the iPSC clusters at each

media change from day 11 until 20–22 (Fig 4A). Supplementing iPSC clusters with 300 μg/mL

h-islet-EVs, significantly decreased mRNA expression of INS and GCG in the iPSCs (Figure F

(A and B) in S1 File). SOM mRNA showed a significant increase in expression which corre-

lated with increasing doses of h-islet-EVs (Figure F (C) in S1 File).

Aqueous cell lysates were used to measure the total intracellular C-peptide, and assess the

EV supplementation effect at the protein level. Addition of 200 ug/mL h-Islet-EVs to iPS clus-

ters led to a significant increase in the intracellular levels of C-peptide, and this effect was

observed to be a concentration-dependent effect (Fig 4B). In this condition, an average of 17.5

ng of C-peptide per μg of DNA was quantified in the iPSC cluster lysates. Supplementation of

h-Islet-EV involvement in iPSC cluster pancreatic differentiation
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200 μg/mL of EVs (in 100 μL) may have contributed to an average accumulation of 0.11 ng of C-

peptide. The increase in intracellular C-peptide levels may be due to EV-mediated signaling lead-

ing to increased protein expression and/or due to EV accumulation inside the iPSC clusters.

As a disclosure, even at the most favorable condition, in this work the intracellular levels of

C-peptide in the iPS clusters were found approximately 100 times less as compared to the orig-

inal work described by Russ et al. [15].

Supplementation of h-Ctr-EVs to iPSclu, at 200 μg/mL, did not induce changes in the intra-

cellular levels of C-PEP protein (Fig 4C). H-Ctr-EVs contain approximately 2x106 particles

per μg of protein, while h-Islet-EVs contain approximately 9x105 particles per μg of protein. In

this work a protein dosage was used, and the effects of dosing in particle concentration was

not explored. The dosing of EVs in particle concentration or mRNA concentration is of poten-

tial interest to fully understand the EV-mediated communication and regulatory process.

Nevertheless, this data is in accordance with literature suggesting that factors released by

the developing pancreas may be instrumental in engineering stem cells [52]. Stem cells, in par-

ticular MSCs, have also been shown to be affected by other cell-derived EVs. Exosomes derived

Fig 4. Dosage effect of h-islet-EV supplementation in iPSC clusters differentiated in suspension. A)

Scheme of the timing of EVs supplementation. B) Quantification of C-peptide in iPSC clusters supplemented

with increasing concentrations of h-Islet-EVs (N = 4). C) Quantification of C-Peptide in iPSC clusters

supplemented with 200 μg/mL of h-Ctr-EVs. ELISA quantification was normalized by total DNA content. *
represent statistical significance as compared with 0 μg/mL condition. Corresponding p-value description in

Table C in S1 File.

https://doi.org/10.1371/journal.pone.0187665.g004
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from neuron progenitor cells at various differentiation stages could differentiate hMSC into

neuron-like cells, via delivery of miRNAs known to play a role in neuronal differentiation [53].

Similarly, EVs derived from a murine pancreatic β-cell line applied subcutaneously using

MatrigelTM platforms containing bone marrow cells, elicited a long-term control of glucose

levels over 60 days in diabetic immunocompromised mice [54].

EV delivery to iPSC clusters cultured in 3D-collagen hydrogels does not

affect insulin expression

To address whether delivery of h-Islet-EVs to iPSCs in 3D-matrices could simultaneously sup-

port 3D-culture of stem cells while inducing differentiation by the release of the nano-cargo

content, EVs were supplementated to iPSC clusters cultured in 3D-collagen. iPSC clusters were

cultured in 3D-collagen hydrogels from day 7 of differentiation until day 16 (COL D16) and

Fig 5. EV supplementation to differentiating iPSC clusters in 3D-COL hydrogels. A) Protocol scheme;

B) Relative Luminescence Units (RLU) measured from the Apoptosis assay (N = 3). Quantification of

intracellular C) insulin (N = 3) and D) C-peptide (N = 3) by ELISA, normalized to total dsDNA content.

“WoEVs” denotes iPSC clusters cultured in 3D-COL without supplementation of EVs. * represent statistical

significance. P-value description in Table C in S1 File.

https://doi.org/10.1371/journal.pone.0187665.g005
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compared with iPSC clusters differentiated until day 21 in suspension (Susp D21), as illustrated

in Figure G (A) in S1 File. 3D-culture in collagen hydrogels induced a significant increase in the

mRNA expression of pancreatic transcription factors (Figure G (B) in S1 File) NGN3, NKX6.1
and PDX1. mRNA expression of pancreatic hormones, INS, GCG and SOM, also increased

upon 3D-culture in collagen hydrogels. However, only INS mRNA showed a significant fold

change increase. Collagen hydrogels have been found suitable for 3D-culture and neuronal dif-

ferentiation of iPS cells, with beneficial outcome in transplantation when used in an animal

model [55]. Generally, hydrogels due to their unique biocompatibility, flexible methods of syn-

thesis, range of constituents, and tunable physical characteristics, have been the material of

choice for many applications in tissue engineering and regenerative medicine [56].

EVs were added, in the differentiation media, to iPSC clusters cultured in 3D-collagen

hydrogels (Fig 5A). H-islet-EV delivery to iPSC clusters led to significantly lower levels of apo-

ptosis as compared to iPSC clusters cultured in 3D-hydrogels without EV stimuli (Fig 5B).

This feature could be beneficial for the in-vitro culture of these constructs, when aiming for

long-term assays and/or subsequent transplantation. Islet-derived EVs have been shown to

protect β-cell endothelium from apoptosis when delivered in the culture media [31], endorsing

the results described here. iPSC cluster treatment with h-Ctr-EVs reduced apoptosis levels as

compared to no EV treatment condition, but no significant differences were observed.

Intracellular levels of insulin and C-peptide protein were measured (Fig 5C and 5D) but no

significant changes were observed in 3D-culture with or without h-Islet-EVs, contrasting with

the observations of EV delivery to iPSC clusters differentiating in suspension. However, a sig-

nificant decrease in insulin and C-peptide levels was observed upon h-Ctr-EV supplementa-

tion, suggesting different regulatory mechanisms of the two EV populations. One must

consider that human serum EVs may potentially carry a variety of signaling molecules and

proteins such as albumin, transferrin, immunoglobulins, lipoproteins and others [57]. The

composition of the h-Ctr-EVs was not explored in this work; however, the results described

above may suggest the presence of an active cargo in the serum EVs that negatively regulate

insulin expression in the differentiated iPSC clusters.

Conclusion

This work aimed to characterize h-Islet-EVs and to investigate the effect of h-Islet-EVs on

insulin expression in differentiating iPSC clusters. H-Islets released biologically active EVs that

were able to induce a significant increase in iPSC clusters intracellular levels of C-peptide, in a

concentration-dependent way. 3D-culture of iPSC clusters in collagen hydrogels supple-

mented with h-Islet-EVs did not affect insulin expression, however a regulation of cell apopto-

sis was observed.

The identified regulatory effects may be of significance for future pancreatic differentiation

models. As a next step a detailed transcriptomic and proteomic analysis of the h-Islet-EVs may

lead to the identification of novel molecular mechanisms underlying pancreatic regulation and

commitment. Isolation of EVs from longer term cultures of h-islets may also bring more

knowledge about the temporal release of active factors and association with apoptotic signal-

ing, and how such signaling affects iPSCs differentiation and viability.
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Formal analysis: Diana Ribeiro, Nikki Heath.

Funding acquisition: Ryan Hicks, Anna Forslöw.
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