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ABSTRACT Recent developments in high-density genotyping and statistical analysis methods that have
enabled genome-wide association studies in humans can also be applied to outbred mouse populations.
Increased recombination in outbred populations is expected to provide greater mapping resolution than
traditional inbred line crosses, improving prospects for identifying the causal genes. We carried out
genome-wide association mapping by using 288 mice from a commercially available outbred stock; NMRI
mice were genotyped with a high-density single-nucleotide polymorphism array to map loci influencing
high-density lipoprotein cholesterol, systolic blood pressure, triglyceride levels, glucose, and urinary
albumin-to-creatinine ratios. We found significant associations (P , 1025) with high-density lipoprotein
cholesterol and identified Apoa2 and Scarb1, both of which have been previously reported, as candidate
genes for these associations. Additional suggestive associations (P , 1023) identified in this study were also
concordant with published quantitative trait loci, suggesting that we are sampling from a limited pool of
genetic diversity that has already been well characterized. These findings dampen our enthusiasm for
currently available commercial outbred stocks as genetic mapping resources and highlight the need for
new outbred populations with greater genetic diversity. Despite the lack of novel associations in the NMRI
population, our analysis strategy illustrates the utility of methods that could be applied to genome-wide
association studies in humans.
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Linkage analysis using crosses between inbred mouse strains is a pow-
erful method for detecting genetic loci underlying quantitative traits
(i.e., quantitative trait loci; QTL). However, mapping resolution is
typically too coarse to identify the causal genes. Several breeding
strategies, including heterogeneous stocks, advanced intercross lines,
and the collaborative cross (CC), can produce populations with in-
creased recombination and improved mapping resolution (Flint et al.
2005). Recently, both wild-caught and commercial stocks of outbred

mice have been proposed as resources for genetic fine mapping
(Aldinger et al. 2009; Laurie et al. 2007; Yalcin et al. 2010). Yalcin
et al. surveyed genetic variation in 66 commercial outbred stocks and
identified several with high average minor allele frequency (MAF), low
levels of linkage disequilibrium (LD), and absence of population struc-
ture as the most promising choices for mapping studies.

Outbred populations have been used previously to refine the
location of QTL detected in other mapping studies (Talbot et al.
1999). Rgs2 was identified as the causal gene for anxiety related traits
in mice by analyzing 729 outbred MF1 mice with 42 SNP markers
spanning a previously mapped QTL interval on Chromosome 1 (Yalcin
et al. 2004). Outbred populations have also been used for de novo QTL
mapping similar to genome-wide association (GWA) studies with hu-
man populations (Ghazalpour et al. 2008; Huang et al. 2009; Valdar
et al. 2006). Valdar et al. used an outbred population for genome-wide
analysis of cardiovascular disease (CVD) risk factors, but their study
included relatively few single nucleotide polymorphisms (SNPs;
�13,500) compared with the . 100,000 genetic markers typically used
in human GWA studies.
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Our GWA study using 288 outbred NMRI mice genotyped with
the Mouse Diversity Array (Yang et al. 2009) was performed
with multiple aims in mind. The first aim was to map loci associated
with cardiovascular disease risk, including HDL cholesterol, blood
pressure, triglyceride levels, glucose, and urinary albumin-to-creatinine
ratio (ACR). The second aim was to compare results obtained with
different genome scan statistics and permutation strategies. The final
goal was to critically assess the utility of the NMRI population as
a resource for GWA studies because commercial outbred stocks have
been proposed as a novel and potentially powerful resource for genetic
mapping (Yalcin et al. 2010).

MATERIALS AND METHODS
Animals
Three hundred 4- to 6-week-old, male NMRI mice were purchased
from Taconic (Taconic Europe) and individually housed in solid-
bottom cages with free access to water and standard rodent chow (cat.
no. 8604; Harlan-Teklad). The vivarium was maintained on a 12-hr
light/dark cycle (6 AM to 6 PM) at 20-24�.

Phenotyping
Tail-cuff blood pressure was measured in 8-week-old mice using
a CODA-6 noninvasive blood pressure monitoring system (Kent
Scientific) as previously described (Feng et al. 2009). All of the meas-
urements were taken in the afternoon, and values from 100 measure-
ment cycles (20 per day for 5 days) were used to calculate the average
systolic blood pressure (SBP), diastolic blood pressure (DPB), mean
arterial pressure (MAP), and standard deviation (SD) for each mouse.
Any reading .2 SD from the mean for an individual mouse was
discarded, and final averages and SD were recalculated. Only mice
having a final average SBP calculated from 40 cycles, of 100 cycles
maximum, were used for the QTL analyses. Once the mice were 10
weeks of age, spot urine samples were collected daily in the morning
for 1 week, and the urine for each mouse was pooled and centrifuged
for 5 min at 10,000 rpm. The supernatant was transferred into a clean
tube and urinary albumin and creatinine concentrations were mea-
sured using a Roche Hitachi 917 Clinical Chemistry Autoanalyzer. A
series of mouse albumin standards (Kamiya Biomedical Co., Seattle,
WA) was also quantified and the final urinary albumin concentration
in each sample was calculated by linear regression from the mouse
albumin standards. This method has been shown to accurately quantify
albumin concentrations in mouse urine samples (Grindle et al. 2006).

Blood samples were obtained from each mouse by submandibular
puncture after a 4-hr fast. Plasma samples were frozen at 280� for
later measurement of total cholesterol (CHL), high-density lipoprotein
cholesterol (HDL-C), triglycerides (TG), and glucose (GLU) using
a Beckman Synchron CX5 Chemistry Analyzer. All traits except
ACR were approximately normally distributed. The ACR was highly
skewed, with many mice having an ACR of zero. We tested a variety
of ACR transformations, but all lead to similar conclusions. We report
the result for the log-transformed variable logACR ¼ loge(ACR 1 1).
The lipid traits (HDL-C and CHL) and the blood pressure traits (SBP,
DBP and MAP) were highly correlated among themselves (r . 0.97),
and although we analyzed each of the individual traits, results were
essentially identical and we report here only our analysis of HDL and
SBP, as representative of these groups of traits.

Genotyping
Genomic DNA was isolated by phenol:chloroform extraction from
tail biopsies taken from the 290 NMRI mice that completed the
phenotyping protocol, and DNA concentrations were quantified using

a Nanodrop spectrophotometer. Samples were genotyped by the
Novartis Genomics Factory using the Mouse Diversity Genotyping
Array (Yang et al. 2009). SNP genotypes were called using a custom
software pipeline for this array platform (http://cgd.jax.org/tools/
mousedivgeno/). A total of 581,672 SNP genotypes were obtained
for each of the 290 animals. Of these, 244,840 SNPs (42%) were
polymorphic. Two samples were identified with 99% identity of their
SNP genotypes and were removed from subsequent analysis, which
was carried out on the remaining 288 mice. We computed the MAF
and tested Hardy-Weinberg equilibrium for each polymorphic SNP
and retained 103,872 SNPs with MAF . 2%, Hardy-Weinberg equi-
librium x2 , 20 and missing values , 40%. The small proportion
(1.3%) of missing genotypes that remained were imputed using fast-
Phase (Scheet and Stephens 2006). Identical SNPs within a 2Mb in-
terval were collapsed resulting in a total of 44,428 unique SNP
genotypes that were used in subsequent analyses.

Population structure
The squared correlation coefficient (r2) was calculated for all pairs of
SNPs within a 50-Mb sliding window across the genome. Locally
weighted scatter plot smoothing (LOWESS) was used to compute
the median r2 as a function of distance between pairs of SNPs. The
information content of each SNP was computed as the symmetric
Shannon entropy, (pln(p) 1 (1 2 p)ln(1 2 p)), where p is the
MAF of the SNP. In addition to the NMRI population, we computed
information content of the full set of 581,672 SNPs genotyped in 79
strains of the BxD recombinant inbred panel and in the eight founder
strains of the collaborative cross (Yang et al. 2011). A kinship matrix
between the individual animals was calculated based on identity by
state among the 44,428 SNPs using EMMA (Kang et al. 2008). Hier-
archical clustering of 288 animals was computed and visualized using
the heatmap function in R 2.10.0 (R Development Core Team 2009).

Association mapping
We carried out single-locus association genome scans on diallelic
SNPs using each of three statistical tests. We computed a linear trend
test (1df) by regressing the trait on genotype scores 21, 0, 1 corre-
sponding to AA, AB, and BB genotypes, respectively. The trend test
assumes additive genetic effects at a locus. We also conducted analysis
of variance (ANOVA; 2df) that allows for both additive and dominant
effects at a locus. Finally we used the EMMA software to fit a mixed
linear model at each SNP (described in detail by Kang et al. 2008).
EMMA accounts for population structure by modeling the variance-
covariance matrix as a function of this estimated kinship matrix. The
genetic and residual variance components, sg and se, are estimated
using an efficient implementation of restricted maximum likelihood in
EMMA. A linear trend test is computed for each SNP genome-wide
and a –log(p) score is reported. Fixed effect covariates can be included
in genome scans using any of these statistical tests, which enabled
implementation of conditional scans and forward stepwise search by
including previously selected marker genotypes as covariates.

Genome-wide significance thresholds
To assess genome-wide significance of the association statistics, we
used a novel simulation technique. We transformed each phenotype
using van der Waerden’s scores (Conover 1999) and estimated genetic
and residual variances of the transformed data for each trait using
EMMA. For each phenotype, we simulated 288 trait values by sam-
pling from a multivariate normal distribution using the mvrnorm
function in R with covariance matrix defined by the estimated kin-
ship. We then replaced the simulated values with observed values in
a manner that preserved the rank order of the simulated values.
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Specifically, we computed the ranks of the original and of the simu-
lated data. The original data value with rank k is then reassigned to the
individual with kth rank among the simulated data. In this way, we
obtain a permutation of the original data that retains the correlation
structure implied by the kinship matrix. We performed a genome scan
using the permuted trait values and recorded the largest –log(p)
scores. This was repeated 100 times. We fitted a generalized extreme
value distribution to these scores and derived significance thresholds
from the quantiles of this distribution (Knijnenburg et al. 2009).

We also used a free data permutation analysis for each phenotype
(Churchill and Doerge 1994). The validity of this simple permutation
test is based on an assumption that the individuals in the study are
exchangeable. This assumption is not valid when there are different
degrees of familial relationship present in the study population; how-
ever, we used the simple free permutation as a reference point to
assess the impact of applying a more complex, but justifiable, pro-
cedure in the context of this study.

Multilocus analysis
Complex traits are influenced by variation at multiple loci and we
can often obtain more realistic estimates of effect sizes and
significance by considering the simultaneous effects of multiple
loci. We used forward stepwise regression with bootstrap resam-
pling (Valdar et al. 2009) to develop multi-locus models for each
trait. We first created 100 resampled data sets consisting of trait
and genotype values from 288 animals that are sampled at random
from the original data with replacement. We performed forward
stepwise regression on each resampled data set to obtain a multi-
locus regression model with 20 SNPs. The number 20 is arbitrary.
All that is required is to ensure that the number of SNPs in the
regression model is more than the number that could significantly
influence the trait. We calculated the resample model inclusion
probabilities (RMIP) for each SNP m as

RMIPm 5
1
R

XR

r51

irm

where R ¼ 100 is the number of resampled data sets irm ¼ 1 if at
least one SNP within 6 w Mb of SNP m was included in the model
of sample r, otherwise irm ¼ 0. We varied the window size w from
60.5 Mb to 64 Mb.

Precision analysis
To assess the genome-wide average precision of mapping in this
population, we performed a simulation study using the observed
genotype data. We randomly sampled a SNP from the genome and
simulated trait values assuming that this SNP was the causal locus. We
simulated an effect size corresponding to the same percentage of total
variance explained as the HDL QTL on Chromosome 1 (reported in
the section QTL mapping, below). Trait values were sampled from
a multivariate normal distribution using mvrnorm in R with correla-
tion structure defined by the kinship matrix and the genetic and re-
sidual variances were as estimated for HDL. We removed the selected
SNP from the data and performed a genome scan with EMMA. The
distance between the SNP with highest –log(p) and the target SNP was
recorded. In cases where a group of adjacent SNPs had tied P values,
we computed the median distance between the location of association
peak and the target SNP. We repeated this process 1000 times, and
computed the distribution of distances from the peak to the target
SNP. A small proportion of association peaks were observed on

Figure 1 (A) LD between all pairs of makers within a 50-Mb sliding
window is computed using the squared correlation coefficient. The red
line indicates the local median value of r 2. (B) Distribution of the MAFs
of 44,428 SNP markers used in this study. (C) Distribution of the dis-
tance between peak marker and location of the causal SNP in 1000
simulated genome scans.
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different chromosomes from the target SNP. These events were
recorded but were excluded from the distance calculation.

RESULTS
Genetic parameters of the NMRI population
We used SNP genotypes to characterize the genomes of 288 NMRI
mice to assess their suitability as a mapping population (the final
dataset is available at http://cgd.jax.org/datasets/datasets.shtml). The
squared correlation coefficient (r2) between SNPs was used as a mea-
sure of LD. We observed a sharp decay of LD with increasing physical
distance between SNPs (Figure 1A). The LD decay radius, defined as
the physical distance at which r2 falls below 0.5, was 1.2 Mb. The
distribution of MAFs was broad with 22,205 SNPs having MAF. 0.2
(Figure 1B). The average MAF was 0.23, excluding 336,832 invariant
SNPs and 128,923 SNPs with MAF , 0.02. These values for the LD
decay radius and average MAF are comparable with other NMRI
cohorts, a finding that suggests that NMRI would be a good choice
for association mapping (Yalcin et al. 2010).

Population structure due to stratification or to family relationships
within a sample can adversely affect mapping studies if not accounted

for in the analysis (Cheng et al. 2010). We assessed the degree of
structure in our NMRI population using hierarchical clustering of
288 animals based on the kinship matrix. We observed a few small
groups of related animals, but there appeared to be no major structure
in our population (supporting information, Figure S1). The mean
percentage of identical SNPs (of the 44K filtered set) between any
pair of animals was 74%, with a range from 69 to 91%.

Mapping resolution was assessed using simulations as describe in
Materials and Methods. The maximum –log(p) occurred on the same
chromosome as the simulated QTL in 99.3% of simulations. When the
peak was on the same chromosome it was within 1.34 Mb in 95% of
simulations, within 0.52 Mb in 80% of simulations, and within 0.17 Mb
in 50% of simulations (Figure 1C). The long right tail of the distribu-
tion indicates that mapping resolution was low in some regions of the
genome.

The size and distribution of LD blocks was assessed visually using
Haploview (Barrett et al. 2005) (Figure S2, A and B). LD blocks are
larger in our NMRI sample than is usually seen in a human population
sample. There are also substantial regions of long-range LD, which is
typical of laboratory mouse populations (Petkov et al. 2005) and could
potentially create spurious associations at SNP markers that are distant
from the causal polymorphism (Dickson et al. 2010).

To assess the genetic diversity of NMRI relative to other mouse
populations, we computed the mean information content (Shannon
entropy) for all 581K SNP markers in our NMRI population, in 79
BxD recombinant inbred strains, and in the eight founder strains of
the Collaborative Cross (CC) (Collaborative Cross Consortium 2012).
The average entropies for all SNP markers in NMRI, BxD, and CC
were 0.10, 0.14, and 0.43, respectively. We computed average infor-
mation content in 4-Mb windows across the genome in each of these
populations to assess local variation in informative SNPs (Figure 2). A
number of regions of low diversity were identified in the NMRI and
BxD populations, for example on Chromosome 10, consistent with
previous reports of the distribution of genetic diversity in classical
inbred mouse strains (Yang et al. 2007). The distribution of informa-
tive SNPs in the CC population is uniformly high.

Genome-wide significance thresholds
We used two methods to assess significance thresholds for GWA
mapping, simulation and unrestricted permutation. We applied these
to each of three methods for measuring association: the trend test,
ANOVA test, and mixed model. The estimated genome-wide
significance thresholds for glucose, HDL cholesterol, systolic blood
pressure, and triglycerides were similar across all of these combina-
tions. Values ranged from 5.12 to 5.90, but no single method or trait
was consistently higher or lower than another (Table 1). The excep-
tion was logACR, which was skewed compared with the other traits
(Figure S3). The genome-wide 5% threshold for logACR ranged from

Figure 2 SNP information content. The average Shannon entropy in
of SNPs in 4-Mb windows across the genome is shown for NMRI (A), 79
BxD recombinant inbred strains (B), and the eight founder strains of
collaborative founder strains (C).

n Table 1 Genome-wide significance (0.05) thresholds for association
mapping test statistics

HDL SBP GLU TG log(ACR)

Simulation Trendtest 5.37 5.17 5.53 5.51 8.00
ANOVA 5.40 5.05 5.44 5.81 14.62
EMMA 5.31 5.16 5.50 5.46 8.01

Permutation Trendtest 5.46 5.29 5.51 5.74 7.79
ANOVA 5.40 5.16 5.10 5.53 12.45
EMMA 5.37 5.23 5.41 5.66 7.76

HDL, high-density lipoprotein; SBP, systolic blood pressure; GLU, glucose, TG,
triglyceride; log(ACR), log-transformed albumin-to-creatinine ratio; ANOVA,
analysis of variance.
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7.76 to 7.79 for EMMA and the simple trend test, but the ANOVA
thresholds were substantially greater (12.45 using permutation). We
attribute this to the combination of extreme logACR values with rare
heterozygous genotypes that arise in many permutations of the data.
The trend test is robust to this effect, but it risks missing associations
with large dominant components.

QTL mapping
We performed GWA mapping using each of three test statistics,
a simple trend test, ANOVA, and a trend test within a mixed
model that accounts for family structure (EMMA). Results
obtained using these tests across all five traits examined here were
highly concordant (Figure 3 and Figure S4, A and B). The most
striking findings were two highly significant loci associated with
HDL. There was an association with SBP on proximal Chromo-
some 10 at 7 Mb that exceeded the genome-wide 0.05 thresholds
for the simple trend and ANOVA tests, but fell below the threshold
for the EMMA test. The logACR trait was the most variable of the
five traits, although still highly concordant across test statistics. For
this trait, we observed loci on Chromosome 5 at 147 Mb and
Chromosome 11 at 88 Mb that exceeded the 0.05 threshold for
either simple trend test or the ANOVA test. There were a number
of subthreshold loci, in particular for logACR, that stood out from
the background and may be of interest.

The strong associations for HDL on Chromosomes 1 and 5 (Figure
S5) were also significantly associated with total cholesterol levels (not
shown). The Chromosome 1 locus at 173 Mb spans a region encom-
passing 16 genes (Figure S6A). Numerous mouse crosses have linked
HDL to this region and Apoa2 has been identified as the gene un-
derlying the QTL (Wang et al. 2004). In fact, rs8258226, which is
believed to be the causative SNP in Apoa2, is on the Mouse Diversity
Array and our NMRI animals are polymorphic at this SNP. As in the
study by Wang et al., the T allele (Valine at position 61) was associ-
ated with high HDL-C levels compared with the C allele (alanine at
position 61). On Chromosome 5, the region of strongly associated
SNPs contains 7 genes, including Scarb1 (Figure S6B). This region
has also been linked to HDL in multiple crosses, and Scarb1 (encoding
SRB1) was identified as the primary candidate gene (Su et al. 2010).

In addition to the main peak at 173Mb on Chromosome 1, we
observed a second distinct and significant peak at 181 Mb (Figure 4).
This region has also been associated with HDL in mouse crosses that
are not segregating Apoa2 (R. Korstanje, personal observation and
James Cheverud, personal communication). The peak SNPs at 173 Mb
(rs31551271) and 181 Mb (rs30672856) were correlated (r ¼ 0.36),
although they are not in the same LD block (Figure S7). To establish
whether these represent independent associations we repeated the
genome scan analysis using EMMA with the peak SNP markers from
Chromosome 1 and Chromosome 5 (rs36333480) as covariates. No

Figure 3 GWA mapping with mixed model
analysis (EMMA) over 44,428 SNPs for traits
HDL, SBP, TG, GLU, and the log-transformed
ACR.
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new QTL were identified and the support for an independent QTL at
181Mb was reduced to a level consistent with chance (Figure S7). We
also fit multilocus regression models with different combinations of
the three QTL for HDL (Table S1). The Chromosome 1 locus at 181
Mb explains 10% of the total variance in HDL when considered on its
own. However, after adjusting for the Chromosome 1 locus at 173 Mb,
the QTL at 181 Mb accounts for only 2.5% of total variance. With the
addition of the Chromosome 5 locus, this contribution decreases
further, to 0.3% of total variance. Thus, the Chromosome 1 locus at

181 Mb may represent a spurious association in which the combined
effects of two loci with genuine associations combine to create a
“ghost” signal.

The absence of significant QTL for traits other than HDL is
somewhat surprising. However, the distribution of P-values for these
traits indicates that there may be an excess of small P-values, in
particular for logACR (Figure S3). We identified the five strongest
associations for each of the traits and compared them with published
QTL for the same traits (Table 2). Almost all have been previously
reported in mouse or rat linkage analyses. Thus, it is possible that
these represent genuine signals that fall below the detection threshold
of our study design.

We conducted multilocus genome-wide scans using forward
stepwise variable selection on bootstrapped samples. The QTL on
Chromosome 1 at 173 Mb and Chromosome 5 at 126 Mb were
included in 100% of resampled models but the QTL on Chromosome
1 at 181 Mb was never included as an independent QTL in the multi-
locus analysis (Figure 4). The SBP QTL on proximal Chromosome 10
was represented in a substantial number (RMIP ¼ 0.56) of the boot-
strap samples. The TG QTL on Chromosome 16 at 51 Mb and two
QTL for logACR (Chromosome 5 at 68 Mb and Chromosome 11 at
88 Mb) all had RMIP . 0.3.

DISCUSSION
We carried out a GWA study to discover and localize QTL in an
outbred population sample of NMRI mice. Many commercially
available outbred populations are not well suited for genetic mapping
because of extensive inbreeding or other deficiencies. However,
a number of these populations have high MAFs, low LD, and limited
population structure, which makes them suitable for association

n Table 2 Top five peaks for the five traits and comparison with previously mapped QTL

Trait Chr Position (bp) P-Value QTL (Candidate Gene) Reference

HDL 1 173,155,512 8.0 · 10216 (Apoa2) Wang et al. 2004
5 125,530,593 6.0 · 10212 (Scarb1) Su et al. 2010
1 181,672,702 8.4 · 1027

7 52,328,410 2.4 · 1024

11 86,772,383 5.4 · 1024 B6 x C3H Su et al. 2009
SBP 10 7,151,309 2.1 · 1025 SBH x SBN (rat) Yagil and Yagil 1998

1 5,305,996 2.0 · 1024

13 57,444,015 3.7 · 1024

3 23,806,561 2.4 · 1024 LH x LN (rat) Sassard et al. 1997
X 149,326,707 3.9 · 1024

TG 16 50,610,771 2.3 · 1025 D1 · D2 Stylianou et al. 2008
15 84,041,657 7.8 · 1025 MRL/lpr x BALB/c Gu et al. 1999
18 4,740,277 1.8 · 1024 —

11 107,124,592 3.1 · 1024 B6 x D2 Colinayo et al. 2003
1 164,192,866 3.9 · 1024 B6 x RR Suto et al. 2004

NZO x NON Su et al. 2009
GLU 1 83,642,895 2.6 · 1024 B6 x 129 Kido et al. 2000

18 73,383,043 3.9 · 1024 B6 x CAST Smith 2002
18 4,707,155 4.4 · 1024

4 8,691,086 5.5 · 1024 B6 x D2 Togawa et al. 2006
5 73,493,320 7.3 · 1024 Chung et al. 1997

log(ACR) 5 147,841,950 4.6 · 1028 MWF x LEW (rat) Schulz et al. 2002
1 194,419,611 9.3 · 1027 B6 x NZM Morel et al. 1994

11 88,323,710 2.6 · 1026 SS x SHR (rat) Poyan Mehr et al. 2003
1 174,219,650 6.7 · 1026 B6 x NZM Morel et al. 1994
5 68,016,195 1.9 · 1025 B6 x D2 Sheehan et al. 2007

QTL, quantitative trait loci; HDL, high-density lipoprotein; SBP, systolic blood pressure; GLU, glucose, TG, triglyceride; log(ACR), log-transformed albumin-to-
creatinine ratio.

Figure 4 (Top panel) Detail of 2log(P) statistics (EMMA) on distal
Chromosome 1. (Bottom panel) Detail of bootstrap resampling statis-
tics for HDL on Chromsome 1. Height of bar indicates how frequently
a locus is included in a forward stepwise selection multilocus model.
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mapping (Yalcin et al. 2010). Our NMRI mapping population satisfied
these criteria and detected two significant QTL for HDL, demonstrat-
ing that loci with large effect sizes are readily detectable and can be
mapped with high resolution. However, the sample size of 288 mice
lacked the statistical power to detect alleles with small effects, leading
to a number of suggestive associations. Most of the top scoring sug-
gestive associations in our study replicate previously reported QTL.
Failure to identify new loci suggests that the NMRI population carries
mostly the same allelic variants characterized in complex traits anal-
yses using classical inbred mouse strains.

Association mapping with outbred mouse populations is similar to
human GWA studies in many respects, including the use of high-
density SNP genotyping and genome-wide SNP-based association
testing. We detected minimal population structure and observed rapid
decay of LD within our NMRI population. However, the rate of LD
decay is less than in wild-caught mice and human populations.
Whereas there is no significant LD between markers more than 2 Mb
apart in wild-caught mice (Laurie et al. 2007) and 0.5 Mb apart in
humans (Dawson et al. 2002), the distance is approx 10 Mb in NMRI
mice. As with human GWA studies, we assumed no previous knowl-
edge of ancestral haplotypes in the founder population, which pre-
cludes inference-based linkage analysis methods. Our study differs
from a human GWA in that the environment and phenotyping are
tightly controlled and the population size is much smaller than is
typical in human studies.

We identified significant association peaks for only one trait, HDL.
We investigated the 5 peaks with the smallest P-value for each trait to
see whether these non-significant peaks could be true associations.
Nearly all were previously identified in mouse or rat linkage analyses.
Concordance with known QTL suggests that these GWA peaks could
be true-positive associations and that we could use the NMRI results
to help identify candidate genes for the published QTL. For example,
HDL was associated with a locus on Chromosome 11 (between 79.87
and 96.67 Mb) that includes 316 genes. A cross between C57BL/6J and
C3H/HeJ mice previously linked HDL to this locus with a 95% CI
between 57.00 and 88.50 Mb (including 854 genes). Assuming the
same causal gene for the GWA and the QTL cross, we can narrow
the search for candidate genes to the overlapping region from 79.87 to
88.50 Mb containing 177 genes. We can use high-density SNP data
(Yang et al. 2011) to exclude regions that are identical-by-descent
between C57BL/6J and C3H/HeJ mice based on the assumption that
regions with no genetic variation between the two strains are unlikely
to contain the QTL gene. In this way we eliminate 100 candidate
genes. Of the 77 genes left in the interval, the gene encoding the
hepatocyte nuclear factor 1b (Hnf1b) is a strong candidate because
genetic deletion specifically in hepatocytes and bile duct cells signifi-
cantly raises plasma cholesterol levels (Coffinier et al. 2002). Addi-
tional work will be required to experimentally validate candidate genes
for these loci.

We expected the NMRI population to yield more significant QTL
and to provide greater mapping resolution than we observed.
Considering ancestry of NMRI, which originate from Swiss mice
from Lausanne, provides a possible explanation. The mice were
moved to the United States in 1926, transferred to the NIH in 1937,
and subsequently inbred for 51 generations. The mice later moved to
the Naval Medical Research Institute (and obtained the name NMRI),
to the Zentral Institut fur Verzuchstierzucht in Hannover, and finally
to Taconic. The bottleneck at the NIH likely reduced the genetic
variation greatly. Most existing outbred populations, including NMRI,
were derived from classical laboratory inbred strains and as such will
have significant blind spots and limited haplotype diversity (Yang

et al. 2011). Limited genetic diversity and uneven distribution of poly-
morphic loci may have limited the success of our mapping efforts
using the NMRI population.

Spurious QTL detection in GWA studies can occur for a variety of
reasons (Dickson et al. 2010). Multilocus QTL modeling can be useful
to evaluate the robustness of QTL detected. We identified two asso-
ciation peaks for HDL on Chromosome 1 using single marker analysis
but only one QTL at 173 Mb was supported in the multilocus analysis,
which suggests that the second QTL may represent a spurious finding.
Yalcin et al. (2010) reported a significant association for HDL at the
Apoa2 locus. They also report secondary association signals at
173.6Mb and 173.7Mb, substantially proximal to our locus at
181Mb. This region of Chromosome 1 has a complex LD structure
in our NMRI sample (Figure 4) and among mouse inbred strains
(Petkov et al. 2005). As a result it is difficult to determine if any of
the observed associations distal to Apoa2 are genuine or spurious.

Multiple testing presents a statistical challenge for both mouse and
human GWA studies. The Bonferroni correction widely applied to
human GWA analyses imposes a substantial multiple testing penalty,
effectively limiting the ability to detect loci with small effects to reduce
the detection of spurious loci. In our analysis, we used a novel
permutation technique to calculate significance thresholds through
simulation. Although permutation tests have been shown to be
potentially misleading in the presence of family structure (Cheng
et al. 2010), our simulation strategy accounts for population structure
and for non-normal trait distributions. This permutation method
could also be applied to human GWA studies. Although thresholds
obtained with the simulation method did not differ substantially from
those obtained with free permutation in this study, the two
approaches would likely differ when applied to populations with more
pronounced genetic structure. Therefore, we hesitate to recommend
free permutation without a deeper investigation of the issues.

Precision of QTL mapping is not well understood in human
GWA. We used a simulation approach to estimate mapping precision
in our NMRI population and established that we can localize a QTL
with large effect size to within 1.34 Mb of the greatest association
peak. This result represents a genome-wide average and there may
substantial local variation in mapping precision. This approach could
be applied over a range of QTL effect sizes in any genotyped
population sample including human GWA studies. Our assessment
of mapping precision is tailored to the particular QTL found in this
study. QTL of smaller effect size or in the context of a complex genetic
background may be mapped with less precision.

This study demonstrates that GWA analysis can be successfully
applied to outbred mice populations to identify genetic variants
underlying complex traits. GWA studies can complement classical
linkage analyses using inbred mouse crosses to refine QTL and
identify causal genes, and future studies using outbred populations
with greater genetic diversity should be even more powerful for
identifying causal genes. However, the promise of currently available
commercial outbred populations is limited by low genetic diversity
and the requirement for sample sizes substantially larger than the
approximately 00 animals used in this study.
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