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Abstract

Myoferlin, a member of ferlin family of proteins, was first discovered as a candidate gene for 

muscular dystrophy and cardiomyopathy. Recently myoferlin was shown to be also expressed in 

endothelial and cancer cells where it was shown to modulate VEGFR-2 and EGFR signaling by 

enhancing their stability and recycling. Based on these reports, we hypothesized that myoferlin 

might be regulating IL-6 signaling by modulating IL-6R stabilization and recycling. However, in 

our immunoprecipitation (IP) experiments, we did not observe myoferlin binding with IL-6R. 

Instead, we made a novel discovery that in resting cells myoferlin was bound to EHD2 protein and 

when cells were treated with IL-6, myoferlin dissociated from EHD2 and binds to activated 

STAT3. Interestingly, myoferlin depletion did not affect STAT3 phosphorylation, but completely 

blocked STAT3 translocation to nucleus. In addition, inhibition of STAT3 phosphorylation by 

phosphorylation defective STAT3 mutants or JAK inhibitor blocked STAT3 binding to myoferlin 

and nuclear translocation. Myoferlin knockdown significantly decreased IL-6-mediated tumor cell 

migration, tumorsphere formation and ALDH positive cancer stem cell population, in vitro. 

Furthermore, myoferlin knockdown significantly decreased IL-6-meditated tumor growth and 

tumor metastasis. Based on these results, we have proposed a novel model for the role of 

myoferlin in chaperoning phosphorylated STAT3 to the nucleus.
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Introduction

IL-6, a pleiotropic cytokine, is involved in a number of cellular processes including, cell 

proliferation, cell motility, cell survival and immune response.1–4 IL-6 is one of the main 

chemokines present in serum samples of cancer patients and elevated IL-6 levels have also 

been shown to be an independent predictor of poor survival, tumor recurrence and tumor 

metastasis in a number of malignancies including breast, prostate and head and neck 

cancers.5–8 Recently, we have shown that IL-6 promotes tumor metastasis by inducing 

epithelial-mesenchymal transition (EMT).2 IL-6 mediates its biological function 

predominantly through binding to IL-6 receptor-α (IL-6Rα) on the cell surface.9 IL-6 

binding to its receptor in turn induces conformational changes leading to the formation of 

IL-6/IL-6Rα/gp130 hexameric complex (a gp130 homodimer plus IL-6/IL-6Rα 
hetrodimers).10–12 This complex then recruits Janus (JAK) kinases and phosphorylates 

them.13 Activated JAKs, phosphorylate cytosolic STAT3 which then translocates to the 

nucleus to function as a transcription factor.14 This nuclear translocation of activated STAT3 

is critical for the IL-6/STAT3 signaling. But, protein shuttling across nuclear membrane is 

tightly regulated15 and very little is known about the molecular events that facilitate the 

nuclear translocation of STAT3. In this study, we observed that phosphorylation of STAT3 

by IL-6 leads to its binding with myoferlin and co-migration to the nucleus. Although 

myoferlin has been shown to regulate cell membrane fusion, repair and recycling,16, 17 there 

are no studies that has investigated the role of myoferlin in IL-6/STAT3 signaling 

particularly its role in chaperoning STAT3 to the nucleus.

Myoferlin, a member of the ferlin family of proteins, was originally discovered as a muscle 

specific protein.18 The ferlin family of proteins share similar domain architecture that 

includes a carboxy-terminal transmembrane domain and multiple amino-terminal C2 

domains which promote their binding to negatively charged phospholipids.19–21 The ferlin 

family of proteins (dysferlin, otoferlin and myoferlin) has been extensively studied in muscle 

cell function and it has been shown to play an important role in plasma membrane integrity, 

myoblast fusion and vesicle trafficking.18, 22–24 Mutations of dysferlin are linked to limb 

girdle muscular dystrophy type B and Myoshi myopathy because skeletal muscle fiber 

sarcolemma in these patients fail to repair damaged muscle cells,21 whereas mutations of 

otoferlin leads to non-syndromic deafness because synaptic vesicles fail to fuse at the 

plasma membrane.25 Myoferlin is a 230-kDa protein that is highly expressed in 

myoblasts18, 26 and myoferlin depletion studies in mice showed strong muscular dystrophy 

due to the failure of myoblasts to fuse and form large multinucleate myotubes.23 Recently, a 

number of different groups have shown that myoferlin is also expressed in endothelial and 

cancer cells.17, 27–31 Bernatchez et al. have shown that myoferlin modulates VEGF/

VEGFR-2 signaling in vascular endothelial cells by stabilizing VEGFR-2.17 Myoferlin 

depletion in endothelial cells also significantly decreased angiogenic tyrosine kinase 

receptor (Tie-2) expression.32 In cancer cells, myoferlin was shown to regulate EGF/EGFR 

signaling by stabilizing EGFR.27

In this study, we observed that in the resting cancer cells myoferlin is bound to EHD2 

protein and when the cancer cells are treated with IL-6, myoferlin dissociates from EHD2, 

binds to activated STAT3 and chaperone it to nucleus to mediate its transcriptional role. 
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Myoferlin depletion in the cancer cells significantly decreased tumor cell migration and 

tumorsphere formation, in vitro and tumor progression, in vivo. Taken together, our results 

from this study provide a novel oncogenic role for myoferlin in modulating IL-6/STAT3 

signaling that plays an important function in a number of cellular processes including cell 

proliferation, cell migration and cancer stem cell phenotype.2–4

Results

Myoferlin expression is significantly upregulated in tumor samples from head and neck 
squamous cell carcinoma (HNSCC) patients and HNSCC cell lines

We have recently shown by immunohistochemistry (IHC) that myoferlin expression is 

markedly upregulated in HNSCC and it directly correlates with poor overall survival.33 In 

this study, we measured myoferlin expression levels in 30 frozen samples from HNSCC 

patients (20 primary tumors and 10 adjacent normal controls) by real-time PCR. Our results 

show that myoferlin expression was significantly higher in HNSCC tumor samples (Mann-

Whitney test; p value 0.0008) as compared to adjacent normal tissue (Fig. 1a). We next 

examined whether myoferlin expression is also higher in head and neck tumor cell lines as 

compared to normal epithelial cells. Indeed, both myoferlin mRNA and protein levels were 

significantly higher in head and neck cancer cell lines as compared to normal epithelial cells 

(Fig. 1b–c).

IL-6 induces STAT3-myoferlin binding and co-migration to nucleus

We and others have previously shown that IL-6 activates a number of different pathways 

including JAK/STAT3 pathway (Fig. 2a).2, 4 Recently myoferlin was shown to bind to 

VEGFR-2 and promote its stability and recycling.17 We initially examined if myoferlin 

might be modulating IL-6 signaling by regulating IL-6 receptor (IL-6R) stability and 

recycling. However, our immunoprecipitation (IP) and HA pulldown experiments suggest 

that myoferlin does not bind to IL-6R (data not shown). Instead, we observed that in resting 

cells myoferlin is bound to EHD2 protein and upon stimulation with IL-6, myoferlin 

dissociates from EHD2 and binds to activated STAT3 (Fig. 2b and 2d). STAT3 is 

cytoplasmic protein that is predominantly activated at the cell surface and then migrates to 

nucleus to function as a transcription factor.34 We next examined if myoferlin binding to 

phosphorylated STAT3 affected its translocation to nucleus. IL-6 treatment of CAL27 cells 

induced a time-dependent co-migration of myoferlin and STAT3 to nucleus (Fig. 3a–b). We 

next examined if this IL-6-induced co-migration of myoferlin and STAT3 is also observed in 

other HNSCC cell lines. We repeated these experiments using another HNSCC cell line 

(UM-SCC-74B) and we observed a similar co-migration of myoferlin and STAT3 to nucleus 

(Fig. 3c and Supplemental Fig. 1a). Recent studies have shown that myoferlin expression is 

also elevated in breast cancer cells and it promotes cancer cell motility, invasion and 

EMT.27, 35 We next examined if myoferlin and STAT3 co-migrated to nucleus in response to 

IL-6 treatment in breast cancer cells. Indeed, IL-6 treatment of breast cancer cells (MDA-

MB-231) induced co-migration of myoferlin and STAT3 to nucleus (Fig. 3d and 

Supplemental Fig. 1b). We next knocked down myoferlin in tumor cells by siRNA and 

examined if myoferlin regulates IL-6-induced STAT3 phosphorylation and nuclear 

translocation. Our results show that myoferlin knockdown does not affect IL-6-mediated 
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STAT3 phosphorylation (Fig. 3e) but myoferlin knockdown significantly blocked STAT3 

translocation to nucleus (Fig. 3f and Supplemental Fig. 2).

STAT3 phosphorylation is required for STAT3 binding to myoferlin and translocation to 
nucleus

We next examined if STAT3 phosphorylation is required for myoferlin binding and 

translocation to nucleus. To answer this question, we employed two different approaches. In 

the first set of experiments, we used a JAK inhibitor (JAK inhibitor-1) to block STAT3 

phosphorylation and examined myoferlin binding to STAT3 and translocation to nucleus. 

Our result show that JAK inh-1 markedly reduced IL-6-mediated STAT3 phosphorylation 

(Fig. 4a), myoferlin binding to STAT3 (Fig. 4b) and nuclear translocation of STAT3 and 

myoferlin (Fig. 4c). In the second set of experiments, we overexpressed STAT3 

phosphorylation defective mutant (STAT3YF, kindly provided by Dr. Tom Smithgal, 

University of Pittsburgh) with a Tyr-705 to Phe-705 substitution.36 Tumor cells 

overexpressing STAT3YF mutant showed marked decrease in IL-6-mediated STAT3 

phosphorylation (Fig. 4d), myoferlin binding to STAT3 (Fig. 4e) and nuclear translocation of 

STAT3 and myoferlin (Fig. 4f). These results therefore suggest that STAT3 phosphorylation 

at Tyr-705 is critical for myoferlin binding and nuclear translocation.

Myoferlin knockdown significantly decreases tumor cell migration, tumorsphere formation 
and ALDH-positive tumor cells

IL-6/STAT3 signaling has been shown to promote tumor cell motility and stem cell 

phenotype.2, 37 We next examined if myoferlin knock down affects IL-6-mediated tumor cell 

migration and cancer stem cell phenotype. To stably knockdown myoferlin, we used two 

different shRNAs [purchased from Sigma (shRNA1) and Santa Cruz (shRNA2)]. Cells 

transduced with scrambled shRNA were used as control (Fig. 5a). Our results show that 

myoferlin knockdown using both shRNAs significantly decreased IL-6-mediated tumor cell 

motility (Fig. 5b). Myoferlin knockdown also significantly decreased ALDH positive cells in 

IL-6 overexpressing CAL27 cells (Fig. 5c) and tumorsphere formation in CAL27-IL-6 cells 

(Fig. 5d–e). Similarly, myoferlin knockdown in UM-SCC-74A cells (HNSCC cell line that 

naturally express high levels of IL-6) significantly decreased tumor cell migration and 

tumorsphere formation (data not shown). In addition, myoferlin knockdown significantly 

decreased the expression of IL-6/STAT3 target genes (snail and nanog) in UM-SCC-74A 

cells (Fig. 5f).

Myoferlin knockdown significantly decreases tumor growth and tumor metastasis, in vivo

We had previously shown that IL-6-STAT3 pathway is critical for tumor metastasis.2 To 

further examine the role of myoferlin in IL-6-STAT3 signaling pathway and tumor 

metastasis, we stably knocked down myoferlin in CAL27-IL-6 or UM-SCC-74A (a highly 

metastatic HNSCC cell line that naturally expresses high levels of IL-6)38 cells by 2 

shRNAs. Our in vitro biochemical and functional experiments suggest that both these 

shRNAs were effective in blocking myoferlin expression and function. In our in vivo 
experiments, we used cells that were transduced by myoferlin shRNA purchased from 

Sigma-Aldrich. Cells transduced with scrambled shRNA were used as control. IL-6 

overexpression in CAL27 cells significantly increased tumor growth as compared to CAL27 
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cells transduced with vector alone (CAL27-VC) (Fig. 6a). In addition, CAL27-IL-6 tumors 

showed markedly higher expression of nanog (Supplementary Fig. 3a). Myoferlin 

knockdown in CAL27-IL-6 cells (CAL27-IL-6-MYOF KD) significantly decreased tumor 

growth and nanog expression as compared to CAL27-IL-6 (Fig. 6a–b and Supplementary 

Fig. 3a). Similarly, myoferlin knockdown in UM-SCC-74A cells (UM-SCC-74A-MYOF 

KD) significantly decreased tumor growth and nanog expression (Fig. 6 c–d and 

Supplementary Fig. 3b).

Lymph nodes from animals carrying CAL27-VC tumors were negative for metastatic disease 

whereas 55% of lymph nodes from animals carrying CAL27-IL-6 tumors were positive for 

metastatic disease (Fig. 6e). Myoferlin knockdown in CAL27-IL-6 cells (CAL27-IL-6-

MYOF KD) significantly decreased in lymph node metastatic disease (Fig. 6e). In addition, 

lungs from animals carrying CAL27-IL-6-MYOF KD tumors showed significant decrease in 

metastatic nodes (Fig. 6f). Similarly, myoferlin knockdown in UM-SCC-74A cells 

significantly deceased lymph node (Fig. 6g) and lung metastasis (Fig. 6h).

Proposed mechanism of myoferlin role in IL-6/STAT3 signaling

Based on the results from this study, we propose a novel mechanism by which myoferlin 

modulates IL-6/STAT3 signaling (Fig. 7). In the resting state, myoferlin is bound to EHD2 

protein (Fig. 7a). IL-6 binding to IL-6R induces STAT3 phosphorylation (Fig. 7b) and also 

leads to myoferlin dissociation from EHD2 and binding to phosphorylated STAT3 and 

chaperoning pSTAT3 to nucleus (Fig. 7c). In the nucleus, STAT3 functions as a transcription 

factor and regulates a number of IL-6/STAT3 downstream genes including snail and nanog.

Discussion

In this study, we demonstrate that a muscle specific protein “myoferlin” which is absent or 

expressed at very low levels in normal mucosa is markedly upregulated in head and neck 

cancer cells. Recent studies have shown a similar elevated expression of myoferlin in breast, 

lung and pancreatic cancer cells.27, 29–31 All the previously published studies in muscle, 

endothelial cells and cancer cells have thus far examined the role of myoferlin in plasma 

membrane function particularly membrane repair, vesicle trafficking and receptor 

stability.16, 17, 22, 23, 27 Based on these studies, we initially hypothesized that myoferlin 

might be regulating IL-6 signaling by modulating IL-6R recycling and stability. However, 

we did not observe myoferlin binding to IL-6R and its recycling to plasma membrane. 

Instead, we observed that myoferlin binds to activated STAT3 and co-migrates to nucleus. 

Myoferlin has been previously shown to be present in the nucleus of muscle cells.18 

Recently, we examined sub-cellular expression of myoferlin in tumor samples from HNSCC 

patients. We observed that nuclear myoferlin expression is highly predictive of poor overall 

survival (p<0.0001) and patients whose tumors were nuclear myoferlin positive had 5.4 

times the hazard of death than patients whose tumors had myoferlin present in cytosol or at 

plasma membrane (95%, CI: 3.4–8.8).33 There is no published study so far that has 

examined the functional role of myoferlin in the nucleus. Therefore, in this study, we 

examined if myoferlin modulates IL-6/STAT3 signaling by binding to phosphorylated 

STAT3 and chaperoning it to the nucleus.
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In our immunoprecipitation and HA pulldown experiments, we observed that myoferlin is 

bound to EHD2 protein in resting cells and IL-6 treatment of these cells induced myoferlin 

dissociation from EHD2 and binding to phosphorylated STAT3. EHD2 protein is 

predominantly studied for its role in endocytic recycling and has been shown to bind to 

myoferlin in muscle cells.24 It is possible that EHD2 protein might also function as a natural 

inhibitor of myoferlin by binding to it and blocking its IL-6/STAT3 signaling functions. 

Recent studies have shown that EHD2 could function as a tumor suppresser protein.39–42 

EHD2 overexpression was inversely associated with overall survival and EHD2 knockdown 

significantly enhanced breast cancer and esophageal squamous cell carcinoma (ESCC) cell 

migration, cell invasion and enhanced epithelial to mesenchymal transition (EMT).39, 40 In 

this study, we observed that dissociation of EHD2 from myoferlin in activated tumor cells 

(treated with IL-6) led to enhanced tumor cell motility and cancer stem cell phenotype. 

Similarly, myoferlin knockdown in cancer cells significantly inhibited tumor cell motility, 

tumor invasion and promoted mesenchymal to epithelial transition (MET).35, 43 These 

results support our inference that EHD2 might mediate its tumor suppressor function by 

inhibiting myoferlin function and IL-6/STAT3 signaling. However, further studies are 

required to validate the role of EHD2 in negatively regulating myoferlin function.

There have been contradicting reports regarding the requirement of tyrosine phosphorylation 

in STAT3 protein for its translocation to the nucleus.44–46 Liu et al have recently shown that 

STAT3 nuclear import is independent of tyrosine phosphorylation.44 However, a number of 

other studies have shown that tyrosine phosphorylation (particularly mediated by growth 

factors; e.g. IL-6, VEGF) is required for STAT3 translocation to the nucleus.45, 46 Our 

results suggest that in IL-6 mediated STAT3 nuclear translocation, tyrosine phosphorylation 

is essential for its binding to myoferlin and subsequent translocation to nucleus. However, in 

myoferlin deficient cells, STAT3 tyrosine phosphorylation alone was not enough to mediate 

its translocation to nucleus. It is possible that at basal level, STAT3 nuclear translocation 

might not be dependent on tyrosine phosphorylation and is predominantly mediated by 

binding to importin-a3.44 But in the growth factor (e.g. IL-6) mediated nuclear translocation, 

STAT3 phosphorylation markedly upregulates its nuclear translocation by enhancing STAT3 

binding to a chaperone protein “myoferlin”. Similar chaperones mediated enhanced nuclear 

trafficking of glucocorticoid receptors have been reported.47

Recently, we have shown that high expression of IL-6 is directly associated with nuclear 

localization of myoferlin in head and neck tumors.33 In addition, nuclear myoferlin 

expression was predictive of tumor recurrence, perineural invasion, extracapsular spread 

(ECS) and distal metastasis. Similarly, a number of gene microarray studies have reported an 

association between myoferlin expression and metastatic cancer.48–50 However, molecular 

mechanism(s) that underline myoferlin-mediated aggressive and metastatic phenotype in 

cancer cells is not very well understood. Our results from this study provide a novel insight 

into the role of myoferlin in regulating IL-6/STAT3 signaling cascade that has been shown to 

promote tumor growth, chemoresistance and tumor metastasis,2, 51, 52 Results from this 

study also provide a scientific rationale to design small molecule inhibitors that could 

disrupt myoferlin/STAT3 protein-protein interactions thereby providing a novel therapeutic 

option for the treatment of head and neck cancer patients.
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Materials and Methods

Patient tumor samples, reagents and Cell lines

Tumor and normal tissue samples used in this study were collected from HNSCC patients 

undergoing treatment at the James Cancer Hospital after obtaining informed consent. The 

use of patient samples was approved by the Ohio State University institutional review board. 

CAL27 and MDA-MB-231 were obtained from ATCC (Manassas, VA). UM-SCC-74A and 

UM-SCC-74B cell lines were obtained from the laboratory of Dr. Thomas E. Carey at the 

University of Michigan.53 The identity of all the tumor cell lines was confirmed by STR 

genotyping (Identifiler Kit, Applied Biosystems, Carlsband, CA). Immortalized (HPV 

E6/E7) oral epithelial cells (IOE) were kindly provided by Drs. William Foulkes and Ala-

Eddin Al Moustafa (McGill University, Montreal, Quebec, Canada).54 Normal human oral 

keratinocytes (HOK) were obtained from ScienCell (Carlsbad, CA). All tumor cell lines 

were cultured in DMEM supplemented with 10% fetal bovine serum containing 1% 

penicillin/streptomycin (Invitrogen, Carlsbad, CA) and 1% Non-essential amino acids. IOE 

and HOK were grown in keratinocyte growth medium (Invitrogen, Carlsbad, CA). HA-

tagged myoferlin plasmid (pCDNA3.1-Myoferlin HA, Principal Investigator; Dr. William 

Sessa)17 was obtained from Addgene (Cambridge, MA). Primary antibodies against STAT3 

(# 9132), STAT3 (pY705, # 9131), Lamin (# 2032), Tubulin (#2148) and E-Cadherin (# 

3195) were obtained from Cell Signaling (Danvers, MA); EHD2 (# ab23935) was from 

Abcam (Cambridge, MA); Myoferlin (# HPA014245) was from Sigma (St. Louis, MO) and 

GAPDH (# MAB374) from Millipore (Billerica, MA). Recombinant IL-6 was purchased 

from PeproTech (Rocky Hill, NJ). JAK inhibitor 1 was obtained from EMD Millipore 

(Billerica, MA) and ALDH staining kit was obtained from Stemcell Technologies, 

(Vancouver, Canada).

Quantitative PCR

RNA from the tumor samples (n=20), normal controls (n=10), HNSCC cell lines (n=10) and 

normal epithelial cells (n=2) was extracted using TRIzol reagent (Invitrogen). Myoferlin, 

snail or nanog RNA was transcribed into cDNA and amplified with TaqMan primer/probes 

(myoferlin; Hs00203853-m1, nanog; Hs02387400-g1 and snail; Hs00195591-m1). mRNA 

expression for myoferlin, snail or nanog was normalized to OAZ1 using the 2−ΔΔCt 

method.55

Myoferlin overexpression

HA-tagged myoferlin was transfected in immortalized oral epithelial cells (IOE) using 

lipofectamine 3000 (Invitrogen).2 Myoferlin overexpression was verified by Western 

blotting.

Myoferlin knockdown with siRNA or shRNA

CAL27 and UM-SCC-74A cells were transduced with Dharmacon siGENOME SMART 

pool siRNA for Myoferlin. In brief, tumor cells were cultured in 60 mm dishes and 

transfected with 100 nM of siRNA SMART pool. Cells transfected with scrambled siRNA 

were used as control. After 16–18 hours of incubation, cells were washed with PBS and 
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further incubated in fresh medium. Seventy two hours post transfection, cells were used for 

experiments. For stable knockdown, we used two shRNAs; MISSION® Myoferlin shRNA 

Lentiviral transduction particles from Sigma-Aldrich and Myoferlin shRNA (m) Lentiviral 

particles from Santa Cruz Biotechnology. MISSION® pLKO.1-puro carrying scrambled 

shRNA was used as a control. The lentiviral constructs were transduced in the cells in 96 

well plate using polybrene to the final concentration of 4μg/ml. The transfected cells were 

selected with puromycin treatment and myoferlin knockdown was confirmed by Western 

blotting.

Immunoprecipitation

Tumor cells were cultured in 6 cm dishes and treated with IL-6. After 30 minutes, cells were 

washed with PBS and whole cell lysate prepared. The whole cell lysate was then incubated 

with 50μl of protein A/G agarose beads (Thermo Scientific-Pierce, Rockford, IL) for 30 min 

at 4°C. After pre-clearing step, cell lysate was incubated with anti-myoferlin antibody 

overnight at 4°C on rocker. Next, protein A/G Agarose beads slurry was added to the cell 

lysate and further incubated for 4 hours at 4°C. After incubation, agarose beads were 

collected by centrifuging the slurry. Proteins bound to agarose beads were separated by 

adding 2x sample buffer and boiling it at 95°C for 5 min.

Cytoplasmic and nuclear protein extraction

Nuclear and cytoplasmic proteins from tumor cells were separated using the NE-PER 

Nuclear & Cytoplasmic extraction kit (Pierce, Rockford, IL). Cells were treated with IL-6 

for different time points and then harvested for cytosolic and nuclear protein extraction. Cell 

pellet was treated with cell membrane lysis reagents from the extraction kit to release the 

cytoplasmic contents. The cytoplasmic proteins were collected by centrifugation leaving the 

intact nuclei in the pellet. The nuclear pellet was washed with PBS to reduce carryover of 

the cytoplasmic proteins to the nuclear protein fraction. Nuclear lysis buffer was then added 

to the pellet to lyse the nuclei and release the nuclear proteins. Reducing agent and loading 

buffer were then added to the cytoplasmic and nuclear extracts and analyzed by Western 

blotting.

Western Blot Analysis

Cell lysates were separated using NuPAGE gels (Invitrogen, Carlsbad, CA) and transferred 

onto PVDF membranes. Nonspecific bindings were blocked by incubating membranes with 

5% Milk or 3% BSA in TBST for 1 hour at room temperature. Membranes were then 

incubated with the respective primary antibody in TBST + 5% Milk or 3% BSA at 4°C 

overnight. The blots were washed and then incubated with sheep anti-mouse (1:3,000) or 

with donkey anti-rabbit (1:4,000) IgG-labelled with horseradish peroxidase for 1 hour at 

room temperature and specific protein bands were detected using ECL-plus kit (Thermo 

Scientific-Pierce, Rockford, IL). Equal protein loading was verified by stripping the blots 

and then re-probing it for GAPDH.
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Immunofluorescent staining

Tumor cells were cultured in Labtech chambers and treated with recombinant IL-6 (50 ng/

ml). At the end of incubation, cells were fixed with 4% paraformaldehyde and permeablized 

by treatment with 100% methanol for 10 minutes at −20°C. Next, slides were washed with 

PBS, blocked with normal goat IgG for 1 hour and incubated overnight at 4°C with rabbit 

anti-myoferlin and mouse anti-STAT3 antibodies. After three washes, chamber slides were 

then incubated with secondary antibodies (Alexa Fluor 488 labeled-goat anti-mouse-IgG or 

goat Alexa Fluor 594 labelled-anti-rabbit-IgG). Chamber slides were then mounted with 

ProLong gold with DAPI (Invitrogen). The immunofluorescent staining images were 

captured using Nikon Eclipse 80i microscope and overlaid using NIS-Elements-Basic 

software (Nikon, Melville, NY).

Tumor cell motility assay

We used Xcelligence system (ACEA Biosciences, San Diego, CA) to measure tumor cell 

motility.2 In brief, 160 μl of DMEM media with 10% FBS was carefully added to the lower 

chambers. Next, upper chamber was then carefully assembled with lower chamber and 50 μl 

of serum free media added to the top wells. After 1 hour, cell suspension (50,000 cells in 

100 μl) was added to each well. Cell migration from upper chamber to lower chamber was 

monitored for 24 hrs.

ALDH staining

Tumor cells were cultured in 6 cm plates, trypsinized and adjusted to 1 × 106 cells/ml. Cell 

were then subdivided into control and test groups and stained for ALDH (Stemcell 

Technologies, Vancouver, Canada). After staining, cells were analyzed by flow cytometry.

Tumorsphere formation

Tumor cells were cultured on ultralow binding plates (Corning, Lowell, MA) for 7 days as 

previously described.56 At the end of incubation, number of tumorsphere >50μm were 

counted. Tumorspheres were gently spun down, mixed with Matrigel and allowed to solidify 

at 37°C. Matrigel plugs were then fixed, paraffin embedded and processed for 

immunohistochemistry. Tumorsphere sections were deparaffinized and standard heat 

induced antigen retrieval method was used as described before.57 Slides were then washed 

with TBST, blocked with normal goat serum for 1 hour, and then incubated with rabbit anti-

E-cadherin and mouse anti-nanog antibodies. After overnight incubation, slides were washed 

with PBS and further incubated with secondary antibodies (Alexa Fluor 488 labeled-goat 

anti-mouse-IgG and Alexa Fluor 594 labeled-goat anti-rabbit-IgG-). Slides were then 

mounted with ProLong gold with DAPI (Invitrogen). The immunofluorescent staining 

images were captured using Nikon Eclipse 80i microscope and overlaid using NIS-

Elements-Basic software.

Tumor growth and metastasis model

Animal studies were approved by The Ohio State University IACUC Animal ethic 

committee. Myoferlin was stably knocked down in CAL27-IL-6 (CAL27 overexpressing 

IL-6) and UM-SCC-74A cells (naturally express high IL-6). Tumor cells (1×106) were 
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implanted subcutaneously in the flanks of SCID mice (n=5 for each group).38 Tumor volume 

was measured twice a week starting day 6 till the end of the study. After 39 days, animals 

were euthanized and tumors, regional lymph nodes, and lungs were harvested. To label and 

identify flank draining lymph nodes, 25 μl of 5% dye (Evans Blue, Sigma) was injected in 

the foot pads of animals 30 minutes before euthanizing.58 Primary tumors, lymph nodes and 

lungs were fixed with paraformaldehyde and processed for immunohistochemistry as 

described in tumorsphere formation.

Statistical analysis

We used a conservative Bonferroni correction method for the sample size calculations. 

Results are presented as mean ± s.e.m. Mann-Whitney test was used to examine the 

significance of myoferlin expression in patient samples. For rest of the in vitro and in vivo 
experiments, we used two-way analysis of variance and Student’s t test to analyze the data. 

The difference between different groups with p value of <0.05 was considered significant.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Myoferlin levels are upregulated in primary tumor samples from head and neck cancer 
patients and HNSCC cell lines
(a) Myoferlin expression in primary tumor samples (n=20) and in adjacent normal mucosa 

(n =10) of HNSCC patients was analyzed by RT-PCR. (b–c) Myoferlin expression in 10 

HNSCC cell lines (UM-SCC-74A, UM-SCC-74B, CAL-27, UM-SCC-25, UM-SCC-36, 

FADU, UM-SCC-38, UM-SCC-5, UM-SCC-10A and UM-SCC-11A) and 2 normal 

epithelial cells (Human oral keratinocytes [HOK] and immortalized oral epithelial cells 

[IOE]) were analyzed by RT-PCR (b) and Western blotting (c). mRNA expression for 

myoferlin was normalized to OAZ1 using the 2−ΔΔCt method. Equal protein loading was 

verified by stripping the blots and reprobing with GAPDH antibody.
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Figure 2. IL-6 induces STAT3 phosphorylation and binding to myoferlin
(a) CAL27 cells were treated with IL-6 for different time intervals and STAT3 activation was 

examined by Western blotting. (b) CAL27 cells were treated with IL-6 for 30 minutes and 

whole cell lysate was prepared and myoferlin immunoprecipitated (IP). Non-specific IgG 

was used as control. Proteins bound to myoferlin were resolved by SDS-PAGE and presence 

of pSTAT3 (Y705), STAT3 and EHD2 in IP was analyzed by Western blotting. Whole cell 

lysate was used as input control. (c–d) HA-tagged myoferlin was overexpressed in 

immortalized oral epithelial cells (IOE) that normally express very little or no myoferlin. (c) 
Myoferlin expression in IOE cells was verified by Western blotting. (d) Proteins bound to 

myoferlin were pull-down by anti-HA antibody and presence of pSTAT3 (Y705), STAT3 and 

EHD2 was analyzed by Western blotting.
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Figure 3. Myoferlin knockdown does not inhibit STAT3 phosphorylation but blocks STAT3 
translocation to nucleus
(a) CAL27 cells were cultured in Labtech chambers and treated with IL-6 for 30 minutes. 

Cells were then stained for myoferlin (red), STAT3 (green) and nucleus (DAPI, blue) and 

analyzed by fluorescence microscope at 600X. (b) CAL27 cells were treated with IL-6 for 

different time intervals. Nuclear and cytosolic fractions were isolated from these cells and 

Western blotted for GAPDH, Lamin A/C, STAT3 and myoferlin. (c–d) UM-SCC-74B (c) 
and MDA-MB-231 (d) cells were treated with IL-6 for 30 min. Nuclear and cytosolic 

fractions were isolated from these cells and Western blotted for GAPDH, Lamin A/C, 

STAT3 and myoferlin. (e-f) Myoferlin was knocked down by siRNA in CAL27 cells (MYOF 

KD). Cells transduced with scrambled siRNA (SC) were used as control. Seventy two hours 

post transfection; cells were treated with IL-6 for 30 minutes. (e) Whole cell lysates were 

Western blotted for myoferlin, STAT3 and pSTAT3. (f) Nuclear and cytosolic fractions were 

Western blotted for GAPDH, Lamin A/C, STAT3 and myoferlin.
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Figure 4. STAT3 phosphorylation is required for STAT3 binding to myoferlin and translocation 
to nucleus
(a–c) CAL27 cells were treated with IL-6 for 30 minutes in the presence or absence of JAK 

inhibitor (JAK inh-1). (a) Whole cell lysates were Western blotted for pSTAT3, STAT3 and 

GAPDH. (b) CAL27 cells were treated with IL-6 for 30 minutes; whole cell lysate was 

prepared and myoferlin immunoprecipitated (IP). Non-specific IgG was used as control. 

Whole cell lysate was used as input control. Proteins bound to myoferlin were resolved by 

SDS-PAGE and presence of pSTAT3 (Y705) and STAT3 in IP samples was analyzed by 

Western blotting. (c) Nuclear and cytosolic fractions were Western blotted for GAPDH, 

Lamin A/C and pSTAT3, STAT3 and myoferlin. (d-e) CAL27 cells were transfected with 

STAT3 phosphorylation (Y705) defective mutant (STAT3YF). (d) Cells were treated with 

IL-6 for 30 minutes and whole cell lysates were Western blotted for pSTAT3 and STAT3. (e) 
Cells were treated with IL-6 for 30 minutes and whole cell lysate was prepared and 

myoferlin immunoprecipitated (IP). Non-specific IgG was used as control. Whole cell lysate 

was used as input control. Proteins bound to myoferlin were resolved by SDS-PAGE and 

presence of pSTAT3 (Y705) and STAT3 in IP was analyzed by Western blotting. (f) Nuclear 

and cytosolic fractions were Western blotted for GAPDH, Lamin A/C and pSTAT3, STAT3 

and myoferlin.
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Figure 5. Myoferlin knockdown decreases cell migration, ALDH positive cells and tumorsphere 
formation
(a–f) Myoferlin expression in CAL27 overexpressing IL-6 (CAL27-IL-6) or UM-SCC-74A 

cells was stably knockdown by two different shRNAs. Control cells were transduced with 

scramble shRNA control (SC). (a) Myoferlin knockdown in CAL27-IL-6 and UM-SCC-74A 

cells was verified by Western blotting. (b) Cell migration was examined by xCELLigence 

system and expressed as cell migration index. (c) CAL27 cells expressing vector alone 

(CAL27-VC) or CAL27 overexpressing IL-6 (CAL27-IL-6) or myoferlin knockdown cells 

(CAL27-IL-6-MYOF KD1 or KD2) or CAL27-IL-6 cells transduced with scramble shRNA 

control (CAL27-IL-6-SC) were stained for ALDH activity and analyzed by flow cytometry. 

(d–e) Cells were cultured on ultralow binding plates in serum free medium. After 10 days, 

number of tumorsphere (>50 μM) were counted. (d1–2) Representative pictures of 

tumorsphere from CAL27-VC and CAL27-IL-6 groups, respectively. (d3–4) Tumorsphere 

were gently added to Matrigel and allowed to polymerize (solidify). Matrigel containing 

tumorsphere were then paraffin embedded and sectioned for immunohistochemistry (IHC). 

Tumorspheres were stained for E-cadherin (red), pSTAT3 (green) and nucleus (DAPI, blue) 

and then analyzed by fluorescence microscope at 400X. (e) Tumorsphere formation 

efficiency in CAL27 cells. (f) The expression of IL-6/STAT3 target genes snail and nanog 

were analyzed by real-time PCR in UM-SCC-74A (a cell line that naturally express high 

levels of IL-6) after myoferlin knockdown.
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Figure 6. Myoferlin knockdown significantly decreases tumor growth and tumor metastasis
(a–d) Tumor cells (CAL27 or UM-SCC-74A) were implanted in the flanks of SCID mice 

and tumor growth and tumor metastasis to draining lymph nodes and lungs was analyzed. 

(a) Representative pictures of tumors from CAL27 cells overexpressing IL-6 or vector alone 

(VC) and transduced with scramble shRNA control (CAL27-VC-SC or CAL27-IL-6-SC) or 

transduced with myoferlin shRNA (CAL27-VC-MYOF KD or CAL27-IL-6-MYOF KD) 

groups. (b) Tumor growth curves for CAL27-VC-SC, CAL27-IL-6-SC, CAL27-VC-MYOF 

KD and CAL27-IL-6-MYOF KD tumors. (c) Representative pictures of tumors from UM-

SCC-74A-SC and UM-SCC-74A-MYOF KD groups, respectively. (d) Tumor growth curves 

for UM-SCC-74A-SC and UM-SCC-74A-MYOF KD tumors. (e & g) Tumor metastasis to 

draining lymph nodes for CAL27 (e) and UM-SCC-74A tumors (g). (f & h) Tumor 

metastasis to lungs for CAL27 (f) and UM-SCC-74A tumors (h).
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Figure 7. Myoferlin chaperone model
(a) In the resting cells, myoferlin is bound to EHD2 protein at the plasma membrane. (b) 
IL-6 binding to its receptor recruits STAT3, myoferlin and EHD2 to the IL-6R-gp130-JAK 

complex at the plasma membrane and phosphorylates myoferlin and STAT3. (c) 
Phosphorylation of myoferlin dissociates it from EHD2 and binds to pSTAT3. (d) Myoferlin 

chaperones STAT3 to nucleus while EHD2 shuttles IL-6R back to plasma membrane.
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