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Abstract
Best management practices (BMPs) for agricultural diffuse pollution control are imple-

mented at the field or small-watershed scale. However, the benefits of BMP implementation

on receiving water quality at multiple spatial is an ongoing challenge. In this paper, we intro-

duce an integrated approach that combines risk assessment (i.e., Phosphorus (P) index),

model simulation techniques (Hydrological Simulation Program–FORTRAN), and a BMP

placement tool at various scales to identify the optimal location for implementing multiple

BMPs and estimate BMP effectiveness after implementation. A statistically significant

decrease in nutrient discharge from watersheds is proposed to evaluate the effectiveness

of BMPs, strategically targeted within watersheds. Specifically, we estimate two types of

cost-effectiveness curves (total pollution reduction and proportion of watersheds improved)

for four allocation approaches. Selection of a ‘‘best approach” depends on the relative

importance of the two types of effectiveness, which involves a value judgment based on the

random/aggregated degree of BMP distribution among and within sub-watersheds. A statis-

tical optimization framework is developed and evaluated in Chaohe River Watershed

located in the northern mountain area of Beijing. Results show that BMP implementation

significantly (p >0.001) decrease P loss from the watershed. Remedial strategies where

BMPs were targeted to areas of high risk of P loss, deceased P loads compared with strate-

gies where BMPs were randomly located across watersheds. Sensitivity analysis indicated

that aggregated BMP placement in particular watershed is the most cost-effective scenario

to decrease P loss. The optimization approach outlined in this paper is a spatially hierarchi-

cal method for targeting nonpoint source controls across a range of scales from field to

farm, to watersheds, to regions. Further, model estimates showed targeting at multiple

scales is necessary to optimize program efficiency. The integrated model approach

described that selects and places BMPs at varying levels of implementation, provides a

new theoretical basis and technical guidance for diffuse pollution management in agricul-

tural watersheds.
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Introduction
Best management practices (BMPs) have been widely implemented in watersheds to trap and
control P sources and transport from agricultural landscapes [1–4]. Many studies have clearly
demonstrated the need for targeted BMP selection within a watershed (Chang et al., 2009; Qi
et al., 2011; Shen et al., 2013). Thus, BMP optimization has become a critical component of
effective non-point source pollution control strategies [5].

Recent studies have shown that the accuracy of BMP selection and placement can be
enhanced by constructing a cost-effective decision support system that combines a process-
based watershed model, an optimization algorithm, and an economic assessment tool [6–11].

The above optimization technology and theory have been efficiently utilized to quantify
BMP effectiveness at field and watershed scales. However, practical applications have been lim-
ited for several reasons. First, spatial allocation BMPs were randomly distributed. Further, con-
sidering resource constraints, it is not possible to implement BMPs on every field in a
watershed. Second, BMP placement on every field is not usually appropriate because small
areas of a watershed often contribute disproportionately large amounts of pollutant loads.
When selected for implementation in these critical zones, BMPs will achieve maximum reduc-
tion efficiency [3, 12, 13]. Third, nonpoint source models commonly allocate BMPs on a single
spatial scale (field, farm or watershed), with evaluation indicators usually the mitigation effi-
ciency of pollution load. Fourth, most optimization schemes are time consuming and computa-
tionally inefficient, given the potentially infinite number of BMPs placement scenarios in a
watershed. The computation time for the optimization process was typically on the order of
days) [14–17].

Considering the complexity and lack of field verification, considerable uncertainties exist
because of difficulties in linking hydrologic response units (HRUs) with critical source areas
(CSAs) and BMP effectiveness through individual hydrology models [18]. Moreover, natural
farm boundaries seldom coincide with HRU boundaries in hydrology models. Watershed-scale
models based on hydrologic boundaries (i.e., SWAT, AnnAGNPS, and Hydrological Simula-
tion Program—Fortran or HSPF models) are employed to identify and estimate CSAs and the
impact of BMPs on water quality. However, BMPs are selected, implemented, and maintained
at the farm- or field-scale and applied within the field and farm boundaries [8].

BMP effectiveness is generally determined as a percent difference in P loss before and after
implementing BMPs [19]. However, the improvements in water quality in response to BMP
intervention are not always reflected in watershed-scale nutrient flux reductions [20, 21]. This
may be due to;

1. the hydrologic model overestimates BMP effectiveness [22],

2. the time lag effect between BMP effectiveness and significant changes in water quality [23],
and

3. although the reductions of BMP would have occurred, but it cannot detectable due to the
background variability in local pollutant loads driven by the uncontrolled weather or natu-
ral factors [24].

Much of the recent literature has focused on the concept of complex, adaptive cost-effective-
ness analysis systems for BMP placement at a single spatial scale, with limited approaches to
address adequately the complexities of these systems at multi-spatial scale watershed.

The watershed-scale model, HSPF (Hydrological Simulation Program-Fortran), was
selected in this study for identifying and quantifying P loss at a subwatershed-level. HSPF sim-
ulates for extended periods of time the hydrologic, and associated water quality, processes on
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pervious and impervious land surfaces and in streams and well-mixed impoundments. It has
been applied extensively around the world [25–28]. The GIS interface with which the model is
integrated aids spatially mapping model-predicted CSAs of P loss.

Risk assessment tools can identify key nutrient source and transport processes at the field
scale [19]. The P Index take into account source and transport factors to describe nutrient
availability, and erosion, runoff, leaching and connectivity to account for delivery. In this
study, an integrated approach was developed, it includes: field runoff monitoring, risk assess-
ment model simulation techniques for assessment and identify the CSAs areas, BMP assess-
ment tool for calculate the effectiveness of BMPs, and statistical analysis to identify the optimal
location for BMPs and to estimate trade-offs at various scales before and after implementation.

The objectives are as follows: (1) identify the spatial distribution frequency of P pollution
loads at two scales (subwatershed and field); (2) examine the relationship between the probabil-
ity of statistically significant water quality improvement and reduction proportion of pollution
load in a watershed and generate effect evaluation indices; and (3) distinguish the change
trends and benefit/cost curves of four approaches to geographically allocate conservation
efforts. This work is helpful in further controlling soil erosion and non-point source pollution
and containing the Miyun Reservoir, China.

Study Area
Chaohe River Watershed is located in North China; it has a drainage area of 4888 km2 contain-
ing Miyun Reservoir, Beijing’s drinking water supply (Fig 1). Around the watershed, there is
no large city, only a few small factories in Hebei Province, and the economy is dominated by
agriculture. Nearly all agricultural activities and residents locate close to the banks of Chaohe
River. Therefore, Miyun Reservoir continues to face a serious threat of eutrophication from
non-point sources following point source controls in Miyun Reservoir Watershed [29, 30]. The
study area experiences a temperate, semi-arid, sub-humid continental monsoon climate with
an annual mean precipitation of 600 mm, 77% of which falls in July to September. The soils of
Chaohe River Watershed are typically Argosols, Cambosols and Aridosols, namely Luvisols,
Alisols, Cambisols, Calcisols and Gypsisols, based onWorld Reference Base for Soil Resources.
Land use types include farm land (8%), forest land (51%), grassland (34%), water (4%), urban
land (2%), and unused land (1%).

Methodology
The modeling framework (Fig 2) represents a multi-scale approach to the multi-objective task
of mitigating P pollution and statistically improvement the water quality of whole watershed.

3.1 Data preparation
The model input data utilized were a combination of the following:

1. A digital elevation model (DEM) constructed by the Institute of Geographical and Natural
Resources Research, CAS (Chinese Academy of Sciences), that provides a consistent cover-
age of topography at a resolution of 30 m;

2. A land use map with a scale of 1:100,000 constructed by digitalizing and interpreting remote
sensing images provided by the Institute of Geographical and Natural Resources Research,
CAS;

3. A soil type scale of 1:100,000 constructed by digitalizing and interpreting remote sensing
images provided by the Institute of Geographical and Natural Resources Research, CAS;
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Fig 1. Location of Chaohe River watershed in Beijing and Hebei province, location of China.

doi:10.1371/journal.pone.0130607.g001
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4. Weather data (1991 to 2010) collected from 12 stations in the study area by China Meteoro-
logical Administration.

Hydrological (1991 to 2010) and water quality (1996 to 2010) data were obtained from rele-
vant monitoring stations throughout the study area.

3.2 HSPF model simulation
Chao River Watershed was divided into 97 subwatersheds according to the drainage area and
model calculations by HSPF model. The manual calibration procedure based on the trial and
error process of parameter adjustments was used and simulations performed by changing the
calibration parameters. After adjustment for each parameter, the simulated and measured run-
off and total P (TP) yield were compared to judge the improvement in the model prediction.

Fig 2. Flow chart of integrating modeling framework.

doi:10.1371/journal.pone.0130607.g002
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Some of the HSPF parameters governing the estimations of runoff, sediment and TP and used
in the model calibration are given in Table 1. Their calibrated values for the watershed along
with their possible range are also given in Table 1.

Calibration and validation were conducted based on observed data by adjusting the key
parameters until the simulation values were reasonably close to the observed values (Fig 3).
First, flow calibration and validation were conducted. Observed flow data from 1990 to 2000
were utilized to calibrate the parameters with the total relative error of flow simulation at dif-
ferent intervals of the year, season, month, and single storm event. Verification of data from
2001 to 2010 was then conducted. Second, sediment yield was calibrated and validated. Lastly,
total phosphorus (TP) yield was calibrated and validated. The procedure was performed similar
to the hydrological calibration and validation process. The accuracy of flow simulation is the
precondition of accuracy in sediment and nutrient simulation. To evaluate the model’s good-
ness of fit, the most commonly used statistical measures for model assessment, Nash efficiency
coefficient (Ens) and relative error (RE), were employed [31].

The results of Ens and RE indicate that the output estimates from the HSPF model can serve
as satisfactory and acceptable datasets for the further analysis of BMP selection and placement
(Table 2).

3.3 Risk assessment with the P index
Amodified P Index was developed to represent field-scale P inputs and outputs of non-point
source pollution by analyzing local hydrological and meteorological data, land use, soil, soil
conservation, farmland management, population density, and livestock. The factors of live-
stock and population density are new factors added to the P Index system based on the actual
local characteristics [30]. The final index was adjusted to a suitable size (30 m) of CSAs to
assign sources and target-oriented control measures based on spatial and statistical analyses

Table 1. Parameters Used in Runoff, Sediment and TP Yield Calibration of HSPFModel.

Process parameter Description Calibrated watershed
parametric values

Possible range of value

Minimum Maximum

Runoff calibration parameters

LZSN Lower zone nominal storage 5 5 7.5

INFILT Index to the infiltration capacity of the soil 0.1 0.03 0.5

AGWRC Base groundwater recession 0.98 0.001 0.999

DEEPFR Fraction of GW inflow to deep recharge 0.1 0.0 1.0

UZSN Upper zone nominal soil moisture storage 1.128 0.25 0.75

INTFW Interflow inflow parameter 7.5 1 7.5

IRC Interflow recession parameter 0.5 0.3 0.85

Sediment yield calibration parameters

KRER Coefficient in the soil detachment equation 0.2 0.15 0.4

JRER Exponent in the soil detachment equation 2.0 1.0 3.0

KSER Coefficient in the detached sediment washoff equation 6 0 10

JSER Exponent in the detached sediment washoff equation 1.9 1.0 3.0

TP calibration parameters

KDSP first order phosphate desorption rate 0.03 0 0.5

KADP first order phosphate adsorption rate 0.07 0 1.0

KIMP first order phosphate immobilization rate 0.025 0 5.0

KMP first order organic P mineralization rate 0.05 0.0001 0.03

doi:10.1371/journal.pone.0130607.t001
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conducted with the ArcGIS 10.1 platform. Unlike most current PI that allow for minimal cali-
bration to estimate the risk of P loss (dimensionless values)[13], the PI of Chaohe River Water-
shed estimates actual loss according to the quantitative relationship between P loss risk
estimates at the field scale and P loads from the relevant watershed; the index has been vali-
dated through annual runoff monitoring in 10 standard plots in Shixia Watershed downstream
of Chaohe River Watershed [32].

3.4 Effectiveness of BMPs
Ameans of estimating BMP effectiveness was constructed based on data from almost 300 stud-
ies on BMP effectiveness published in China and the United States [33]. A tool (database) that
allows users to determine BMP effectiveness according to soil type and slope conditions at a

Fig 3. Calibration and validation of HSPFmodel.

doi:10.1371/journal.pone.0130607.g003

Table 2. Nash efficiency coefficient (Ens) and relative error (RE) of HSPF simulation.

Nash efficiency coefficient (Ens) Relative error (RE)

Calibration Validation Calibration Validation

Flow 0.88 0.89 14.50% 13.10%

Sediment 0.82 0.79 15.36% 16.67%

TP 0.63 40.72%

doi:10.1371/journal.pone.0130607.t002
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given site was developed. This database includes 60 agricultural BMPs grouped into six classes
(S1 File). The database was assessed through analysis of variance to establish the effects of pri-
mary factors believed to influence BMP effectiveness. Data from combined soil and slope analy-
ses were utilized to design a BMP effectiveness estimator based on user-specified hydrologic soil
groups and slope classes. Visual Basic for Applications and structured query language were
employed to design the said estimator. The BMP database provides an estimate of the costs and
effectiveness of each BMP that can be implemented at a specific field scale in the watershed [33].

3.5 BMP spatial distribution scenarios
Four BMP implementation scenarios were considered under the following principles [34].

1. Targeted placement of BMPs is applied in certain subwatersheds with relatively high P
loads (aggregated).

2. BMPs are randomly distributed without regard for watershed boundaries and P loads
(dispersed).

3. BMPs are targeted to a percentage of field P load in the entire watershed without regard for
watershed members (dispersed).

4. BMPs are randomly implemented on fields in the subwatershed with the highest P loads.
The same procedure is then applied to the subwatershed with the second highest P load and
so on (aggregated) (Fig 4).

Synthetic data where come from the PI, HSPF and BMP tool and a conceptual case study
can clarify the analysis results and reduce the problems resulting from the limitation of mea-
sured data. A model agricultural landscape was developed to compare various approaches for
allocating conservation efforts at the watershed scale [35, 36]. If proportional P loss

Fig 4. Four sets of BMPs are located in the conceptual watershed. Note: Black lines represent a stream network; spatially-independent subwatersheds
are shaded ascending order (darker = higher) based on their proportion of P loads account for whole watershed P loads; Black dots are targeted fields for
BMPs implemented, illustrative purposes, locations near streams means reduce more pollution).

doi:10.1371/journal.pone.0130607.g004

A Framework to Control Phosphorus from Agricultural Diffuse Pollution

PLOS ONE | DOI:10.1371/journal.pone.0130607 August 27, 2015 8 / 22



distributions within the watershed are similar in shape and log-normal, then the distribution of
individual field P losses is also log-normal.

In the present study, the construction of a conceptual watershed was based on methods
developed by Hsieh et al. (2007) and Diebel et al. (2008) [35, 37]. We compared four scenarios
of allocating BMPs in a conceptual watershed; the effectiveness of these scenarios was limited
to reduce P loss. Each scenario is composed of 100 equally sized and spatially independent
model subwatersheds and 10,000 model fields randomly selected from the Chaohe River
Watershed. The subwatershed loads were converted to proportions of the entire watershed
load. Similarly, P loads from fields were converted to subwatershed loads in the form of pro-
portions for a certain subwatershed. Thus, the standardized entire watershed P load (λw) was
set to 1. A detailed derivation process can be found in the paper written by [35]. The propor-
tional contribution of the field to the entire watershed P load can be expressed as

lw ¼
X100

subw¼1

lsubw ¼
X10000
f¼1

lf ;subw ¼ 1; ð1Þ

where λw is the P load from the entire watershed, λf,subw is the proportion of each subwatershed
P load in the watershed load, and λf is the proportion of watershed P load from each field.

3.6 Cost and effectiveness indexes
An index that describes the cost and benefits (effectiveness) of the implemented BMPs was
established. The index can effectively represent the change in water quality for pollution reduc-
tion. Two types of cost—effectiveness curves (P load reduction and proportion in the entire
water that achieved statistically significant water quality improvement) were estimated for the
four BMP scenarios. The first type is the proportion of P loads in the whole watershed after
BMPs were implemented. The second is the proportion of subwatersheds where a statistically
significant reduction in the stream water P concentration is observed (measured water quality
change) [38–40]. A ‘‘best-fit scenario” was selected based on the relative importance of the two
types of effectiveness. Finally, a sensitivity analysis was conducted to identify and test the stabil-
ity of the BMP scenarios under the influence of various model input uncertainties.

3.6.1 Relationship between statistically significant change in water
quality and P load reduction
The Kruskal—Wallis test was applied to test Psubw, which is the probability of achieving statisti-
cally significant changes in water quality at the outlet of a given subwatershed based on the
BMP implementation level in that watershed. The test was implemented with SPSS 18.0 (BMP
implementation level is represented by Isubw, which is defined as the proportion of 100 fields in
each watershed where BMPs are implemented). Subsequently, the Psubw for the four BMP allo-
cations was estimated.

We selected a dataset that consists of time series (monthly samples fromMay to October in
2006 to 2010) of P concentrations from 30 outlets of the subwatershed of Chaohe River Water-
shed. The dataset also provides the best available estimate of P variability in Chaohe River
streams. Log-normal frequency distributions were fittedto the sample values for each stream
and then 24 random numbers from each distribution were generated to obtain water quality
data before BMP implementation [35]. We then multiplied each value by Rsubw (ranges from 0
to 1, increments of 0.05) to obtain water quality data after BMP implementation. Therefore,
the sample means and standard deviations can be proportionally scaled by this procedure, in
accordance with the trend seen across the range of measured values (σ = 0.62μ- 0.012, intercept
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not different from zero, r2 = 0.63). Based on these two datasets, we applied the Kruskal—Wallis
test to compare the median of water quality before and after BMP implementation in each out-
let at every Rsubw level [Psubw(Rsubw); p<0.01]. A statistically significant improvement in water
quality at each Rw can then be estimated. Furthermore, we can fit the relationship between Pw
and Rw to obtain the following regression.

psubw ¼ 1:059

1þ 60ðe�13:2�RsubwÞ � 0:059 ð2Þ

From the field scale to the entire conceptual watershed, Psubw(Rsubw) and Rf (effectiveness of
the selected BMP in terms of P loss from individual fields) were utilized to calculate Psubw (Rf,
Isubw) in the four BMP allocation scenarios. Rsubw can be expressed as

Rsubw ¼ Rf

X100�IsubW
f¼1

lf ;subw

0
@

1
A: ð3Þ

Fields were selected in the order of highest to lowest λf,subw in Scenarios 1 and 3 and in a ran-
dom order in Scenarios 2 and 4.

3.6.2 Development of P load reduction benefits
Through the field selection approach defined above, the modeled pollutant reduction benefit
index Rw (P load reduction in the entire watershed) was calculated as follows:

Rw ¼ Rf

X10;000�Iw

f¼1

lf ;subw

0
@

1
A ð4Þ

The measured water quality change benefit index �PsubwðRf ; IsubwÞ was calculate as Eq (5), it
equivalent to the proportion of subwatersheds where a significant P reduction is detected. In
Eq (5), the Psubw (Rf, Isubw) was calculated separately for each subwatershed based on Eqs (2)
and (3) defined in Section 2.4.1 [35]:

�Psubw Rf ; Isubw
� �

¼

X100

subw¼1

Psubw Rf ; Isubw
� �

100
ð5Þ

Results

4.1 P load distribution at different spatial scales
The P load from Chaohe River flows into Miyun reservoir mainly from July to September
(flood season). The loss of sediments during flood season accounts for 78% to 90% of the value
for the entire year. Thus, flood season is a critical period for soil erosion control and non-point
source pollution prevention. For each subwatershed, the average pollution load is 21.32 kg, the
maximum load is 113.85 kg, and the minimum value is 0.91 kg (Fig 5) (S2 File).

The PI results show that high-, moderate-, and low-risk areas account for 7.95%, 19.63%,
and 72.42% of the total area, respectively (Fig 6) (S3 File). PI is significantly correlated (R2 =
0.67) with the actual loss at the watershed scale (Fig 7). The average load of P at the field scale
is 2.94 kg, and the maximum and minimum values are 17.24 and 2.07 kg, respectively, exhibit-
ing a spatial normal distribution.
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We examined empirical P load data from HSPF and PI models through SPSS 18 to obtain
evidence on the distribution situations at field at subwatershed spatial scales. At the field scale,
we employed P loss values for 495 randomly selected agricultural fields with a mean area of
0.05 km2 in Chaohe River Watershed; the frequency distribution of P loss estimates in Chaohe
River fits a log-normal distribution (Kolmogorov—Smirnov test: Pnormal = 0.027 and Plog-normal

= 0.198; S� = 0.05 and μ = 0.47) (Fig 8). At the subwatershed scale, annual unit area total P
loads (kg/km2/year) were selected for 100 small watersheds (6.9 km2 to 18.3 km2) in Chaohe
River Watershed with more than 40% agricultural land. The frequency distribution of P load
estimates also fits a normal and log-normal probability distribution (Kolmogorov—Smirnov
test: Pnormal = 0.007 and Plog-normal = 0.334; S� = 0.15 and μ = 1.17) (Fig 9).

All of the frequency distributions analyzed demonstrate that the results from PI and HSPF
models are ideal for the construction of a conceptual watershed for Chaohe River Watershed.

Fig 5. Spatial distribution of the P from HSPFmodel.

doi:10.1371/journal.pone.0130607.g005
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4.2 Prioritization and estimation of BMPs
A BMP tool was constructed to provide options quickly and simply based on reported effec-
tiveness. In Chaohe River Watershed, Luvisols soil (HSG—B) that accounts for over 70% of
land use and below 50% slopes was determined to heavily contribute to nutrient and sediment
pollution according to the results of HSPF and PI simulations. We selected site properties simi-
lar to the observed values (HSG—B and slopes of 0% to 50%) and chose the best related BMP
category for probable adoption in the watershed. In this case, nutrient control is implemented
via structural methods and livestock/manure management to reduce P losses. Our tool pro-
vides effectiveness estimates of the applicable BMP classes for the specified site conditions and
category. The tool provides results for two BMP classes that can be utilized in the watershed.
Nutrient control by structural methods and livestock/manure management is potentially effec-
tive in reducing P losses. The average effectiveness values of nutrient control by structural
methods and livestock/manure management for TP are 70% and 60%, respectively.

Fig 6. Spatial distribution of PI at field scale from PI model.

doi:10.1371/journal.pone.0130607.g006
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Based on reports on the effectiveness of BMPs implemented in Chaohe River Watershed,
we assumed that BMP implementation would reduce P load from an individual field by 65% to
simplify the calculations involving cost—effectiveness indexes and referred to the methods pro-
vided by [35, 41]. We also assumed that the cost of BMP implementation is constant among
fields. Thus, the cost of BMP implementation serves as the BMP implementation level (number
of fields or subwatersheds that implemented BMPs) and effort (size of BMPs for a given field).

Fig 7. Correlation of watershed PI and the actual loss.

doi:10.1371/journal.pone.0130607.g007

Fig 8. Log-normal distribution of phosphorus pollution at field scale.

doi:10.1371/journal.pone.0130607.g008
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4.3 Relationship between P load reduction and probability of obtaining a
statistically significant P concentration
The probability of obtaining a statistically significant reduction in P load estimates after BMP
implementation in Chaohe River Watershed is represented by a sigmoid (threshold) function
curve (Fig 10) (S4 File) The probability of having a statistically significant improvement in P
loss at each Rw level is shown in Table 3. The given streams show an abrupt threshold in the
probability of water P concentration; a statistically significant improvement occurred when the
proportion of P load reduction reached the 0.65 level in a certain subwatershed. As shown in
Table 3, Rsubw = 0.65 can serve as the threshold, where the targeted effectiveness of BMP is
reached. A statistically significant improvement in water quality can be obtained in Chaohe
River Watershed because as the effectiveness continues to increase, the cumulative probability
density function for a randomly selected stream becomes more gradual.

4.4 Optimization of BMP allocation scenarios
We employed cumulative net benefit as a common estimate criterion to effectively present the
two benefit indexes. In terms of the cumulative proportion of watershed P loads after BMP
implementation (Rw, first index) (Fig 11) (S5 File), Scenario 3 produced the best cost—effec-
tiveness curve at all BMP implemented levels compared with the other three scenarios; Sce-
nario 3 is followed by Scenarios 1, 4, and then 2, which produced the least benefit at all BMP
effort levels.

In terms of the cumulative proportion of subwatersheds where a statistically significant
reduction in stream P concentration was observed (Pw, second index) (Fig 12) (S6 File), Sce-
nario 1 exhibited the best performance for water quality improvement and provided the most
benefit at all levels of BMP implementation (P loss followed a log-normal distribution at the

Fig 9. Log-normal distribution of phosphorus pollution at subwatershed scale.

doi:10.1371/journal.pone.0130607.g009
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field scale). The performance of Scenario 3 is slightly better than that of Scenario 4 at BMP
effort of 0.6 because of the high BMP efficiency of P losses in Scenario 3 (Fig 12) (S6 File); the
fields with high P losses exhibit aggregated distributions. Scenario 2 exhibits minimal improve-
ment in water quality when Iw is below 0.6, but its performance is better than that of Scenarios
3 and 4 at the threshold (Iw = 0.6). Therefore, Scenario 1 is the most beneficial BMP allocation
for P loss control. P load reduction in the entire watershed can reach 26%, and the probability
of obtaining a statistically significant improvement in water quality can reach 51%.

4.5 Sensitivity analysis
We conducted three types of sensitivity analysis to confirm the stability and performance of
the modeled framework. First, to consider the uncertainty of BMP performance in nutrient
control caused by site-specific conditions, BMP reduction (Rf) was varied from 40% to 80%.
Second, the frequency distributions of P load were modified to normal or lognormal at field
and subwatershed scales. Third, the sample number (from 12 to 48) of pre- and post-BMP
implementation was adjusted.

Sensitivity analysis shows that Scenario 1 is a robust tool for the spatial allocation of BMPs.
Scenario 1 has the highest value of Pw and Rw compared with the other scenarios, and its BMP

Fig 10. Test results from Kruskal Wallis method. Note: The probability (Psubw) of detecting a statistically
significant difference (P>0.01) in stream phosphorus concentration is plotted against the proportional
phosphorus load reduction (BMP implemented level, Rsubw).

doi:10.1371/journal.pone.0130607.g010

Table 3. Dataset of Kruskal Wallis test.

Rsubw 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Psubw 0.00 0.00 0.05 0.14 0.26 0.43 0.60 0.74 0.85 0.92

Rsubw 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Psubw 0.95 0.98 0.99 0.99 1.00 1.00 1.00 1.00 1.00 1.00

doi:10.1371/journal.pone.0130607.t003
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Fig 11. Cost-effectiveness curves for the Rw and Iw under four BMP scenarios.

doi:10.1371/journal.pone.0130607.g011

Fig 12. Cost-effectiveness curves for the Pw and Iw under four BMP scenarios.

doi:10.1371/journal.pone.0130607.g012
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placement level is 20% (Table 4). By modifying P loss distribution to a normal distribution at
the subwatershed scale, the cumulative probability of Pw and Rw decreased in Scenario 1. Simi-
larly, this phenomenon became more obvious when P loss was log-normally distributed.
Therefore, all the above results indicate that BMP allocations with an aggregated and targeted
structure are useful for P loss control in a mixed-use, landscape-type agricultural watershed.

4.6 Visualization of spatial optimal placement of BMPs
The visualization of BMP allocation was processed with Scenario 1 (Fig 13). We also deter-
mined the proportion of BMP implementation in each township by overlaying the natural
hydrological boundary and township administrative divisions through ArcGIS 10.1 (Table 5).
The average watershed area with BMPs was 21%, which is consistent with the assumption of
Scenario 1. BMP-implemented areas, namely, Nan Guan (NG), Ku Longshan (KLS), Wu
Daoying (WDY), Bai Ta (BT), and Xi Liangjianfang (XLJF), required a much larger proportion
of watershed area (49%). These five areas are located in the upper stream of Chaohe River
Watershed. Five other townships with over 30% BMP implementation are located in the mid-
upper stream of Cheohe River Watershed. Therefore, the critical areas for BMP placement and
practical implementation are aggregated and targeted in the mid-upper stream of Chaohe
River Watershed.

Discussion

5.1 Nonlinear relationship between P load reduction and probability of
obtaining a statistically significant P concentration
We employed a sigmoid curve to determine the threshold relationship between Psubw and Rsubw

at the field scale and the relationship between Rw and Iw and Pw and Iw at the watershed scale.
The results indicate that scenarios with a targeted structure significantly reduce P loads and
lead to an improvement in water quality at the watershed scale (Fig 12) (Fig 13) (S6 File).
Moreover, the relationship between nutrient level and water quality is often nonlinear in
Chaohe River Watershed.

For the threshold value, sigmoid curves are usually defined by the mean value (μ) and steep-
ness (S) of the response and predictor variables. In this study, if 70% to 80% of watershed P

Table 4. Performance of four allocation scenarios according to two benefit indices under different parameter levels.

Scenario parameters Measured water quality change index Modeled pollutant reduction index

Rf N Subwatershed
Pdistribution

Field
Pdistribution

Scenari1 Scenario
2

Scenario
3

Scenario
4

Scenario
1

Scenario
2

Scenario
3

Scenario
4

0.8 24 Log-normal Log-normal 0.69 0.20 0.34 0.45 0.43 0.17 0.40 0.30

0.65 48 Log-normal Log-normal 0.56 0.19 0.32 0.41 0.25 0.15 0.24 0.23

0.65 24 Log-normal Log-normal 0.51 0.17 0.28 0.39 0.26 0.15 0.36 0.24

0.65 12 Log-normal Log-normal 0.41 0.16 0.24 0.36 0.26 0.15 0.23 0.20

0.5 24 Log-normal Log-normal 0.41 0.17 0.24 0.36 0.24 0.13 0.22 0.21

0.4 24 Log-normal Log-normal 0.20 0.16 0.14 0.18 0.20 0.11 0.18 0.17

0.65 24 Log-normal Normal 0.38 0.17 0.23 0.39 0.20 0.15 0.26 0.24

0.65 24 Normal Log-normal 0.43 0.17 0.27 0.39 0.21 0.15 0.28 0.24

0.65 24 Normal Normal 0.28 0.17 0.23 0.39 0.21 0.15 0.20 0.18

Rf: P load reduction after BMP implemented at field scale; N: Number of sample before and after BMP implemented; benefit index values (proportions) are

reported for a 20% watershed-scale BMP implementation level BMP implementation level.

doi:10.1371/journal.pone.0130607.t004
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load is derived from 1% to 2% of the watershed area, a relatively small P reduction level at the
watershed scale could result in a large increase in the probability of water quality improvement
[35]. If a high threshold exists, then these watersheds require a relatively high P load reduction
to achieve specific P concentrations.

5.2 BMP allocation scenarios
Comparison of the four scenarios employed in this study indicates that Scenario 2 does not
have any structural components, such as aggregated and targeted, at the field or subwatershed
scale. Consequently, it can serve as the baseline scenario to compare the other three scenarios.
Obviously, adding a targeted or aggregated structural component to the baseline scenario will
improve the effectiveness of BMP placement (Fig 12) (Fig 13) (S6 File). Similarly, BMPs imple-
mented with a targeted structure will produce relatively high P reduction efficiencies with an
aggregated structure.

Fig 13. Distributions of BMP implemented based on scenario 1.

doi:10.1371/journal.pone.0130607.g013
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BMP allocations with both targeted and aggregated components were found to be the most
cost efficient for improving water quality while ensuring the economic feasibility of solution
measures [42]. Aggregated and targeted components can be regarded as a streamlined approxi-
mation—selection process of the potential field for BMPs implemented at the field and subwa-
tershed scales; effectiveness is merely based on the specific field that has already been
implemented with BMP. Using a different BMP allocation method at field (aggregated) and
subwatershed (targeted) scales would allow this method to perform a process similar to the
actual iterative process but without the need to re-evaluate site-scale instantaneous efficiency
in each step [35]. Furthermore, a layered BMP configuration system for identifying potential
sites for BMP implementation can reduce assessment costs.

5.3 Practical application of BMP scenarios
The aggregated and targeted components in each scenario are based on models that describe
how P load is distributed, how it can be reduced, and what mitigation outcomes might occur
[35]. In the actual application, this integrated model system may also be affected by other
uncontrollable factors similar to any model-based management approach. First, the influence
of weather on BMP effectiveness was not accounted for in this analysis [43]. Second, govern-
ment policies that result in inconsistent application of regulations or incentives (often unpopu-
lar) and the willingness of stakeholders to implement BMPs were also not considered.

Table 5. Proportion of the BMP implemented at each township.

Township Abbreviation Area_township (km2) Area_BMP implemented(km2) Percentage

Anchungoumen ACGM 60 15 25%

Baita BT 163 59 36%

Change CG 154 21 14%

Fujiadian FJD 86 5 6%

Gubeikou GBKZ 89 20 22%

Guchengchuan GCC 104 21 20%

Gaolinzhen GLZ 27 2 7%

Houyingzi HYZ 133 29 22%

Kulongshan KLS 282 93 33%

Leguo LG 96 23 24%

Lahaigou LHG 56 16 29%

Liangjianfang LJF 117 9 8%

Laowa LW 38 10 26%

Nanguan NG 227 94 41%

Nanxinying NXY 181 25 14%

Pingfang PF 70 5 7%

Shanghuangqi SHQ 133 46 35%

Shirengou SRG 340 2 1%

Tuchengzi TCZ 174 34 20%

Tahuangzhen THZ 143 44 31%

Wudaoying WDY 297 78 26%

Xiaobazi XBZ 304 32 11%

Xiliangjianfang XLJF 191 47 25%

Zhailing ZL 100 18 18%

Mean: 21%

doi:10.1371/journal.pone.0130607.t005
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Conclusions and Future Research
A BMP allocation priority framework that involves the use of a BMP tool and a statistical simu-
lation technology informed by HSPF and PI was developed in this study. The proposed
approach significantly accelerates the optimization process and thus allows for the testing of a
broad-area watershed with hundreds of unique hydrological locations. The approach was
tested in Chaohe River Watershed. A practical BMP allocation plan was also developed for P
loss mitigation at field and subwatershed scales.

A BMP toolbox was developed to provide site-specific estimates of BMP effectiveness [33].
The estimates focus on site conditions and management practices in China and are based on
data from published research. Statistically significant improvement in the water quality of the
watershed was considered in BMP effectiveness instead of the water quality of streams.

Two benefit indexes were presented to address the important relationship among water
quality, P load reduction, and BMP implementation level as well as to establish a linkage
among multiple spatial scales. This condition assisted in the decision-making process by sup-
porting the analysis of the sigmoid curves of these two indexes at field and watershed scales.
The threshold of four BMP placement allocations were compared to identify the most cost-
effective scenario for BMP implementation. The sensitivity analysis demonstrates that Scenario
1 is stable, robust to uncertainties in model parameters, and efficiently improves water quality.
Hence, it is the ideal BMP allocation plan.

The methodology developed in this study can be extended to other watersheds to prioritize
BMP allocation for control. However, further research is required. For example, the influence of
terrestrial factors and weather on BMP effectiveness in a large watershed should be considered.
Moreveor, stakeholders’ interests in BMP placement at the field scale should be represented.
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