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Abstract

The keratinocyte cancers (KC), basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) are the most common
cancers in fair-skinned people. KC treatment represents the second highest cancer healthcare expenditure in Australia.
Increasing our understanding of the genetic architecture of KC may provide new avenues for prevention and treatment.
We first conducted a series of genome-wide association studies (GWAS) of KC across three European ancestry datasets from
Australia, Europe and USA, and used linkage disequilibrium (LD) Score regression (LDSC) to estimate their pairwise genetic
correlations. We employed a multiple-trait approach to map genes across the combined set of KC GWAS (total N = 47 742
cases, 634 413 controls). We also performed meta-analyses of BCC and SCC separately to identify trait specific loci. We found
substantial genetic correlations (generally 0.5–1) between BCC and SCC suggesting overlapping genetic risk variants. The
multiple trait combined KC GWAS identified 63 independent genome-wide significant loci, 29 of which were novel. Individual
separate meta-analyses of BCC and SCC identified an additional 13 novel loci not found in the combined KC analysis. Three
new loci were implicated using gene-based tests. New loci included common variants in BRCA2 (distinct to known rare high
penetrance cancer risk variants), and in CTLA4, a target of immunotherapy in melanoma. We found shared and trait specific
genetic contributions to BCC and SCC. Considering both, we identified a total of 79 independent risk loci, 45 of which are novel.
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Introduction
Basal cell carcinoma (BCC) and squamous cell carcinoma (SCC)
are the most common cancers of the skin. Together, they are
known as keratinocyte carcinomas (KC), so named because
the cells of origin are the abundant, keratin-producing cells
of the epidermis. BCC and SCC both arise in the epidermis
but are histologically and clinically distinct from each other
(Supplementary Material, Fig. S1) (1). BCC and SCC tend to be
slow growing skin cancers when compared with melanoma,
which is the most aggressive form (2). SCC has a lower prevalence
than BCC, but accounts for the most KC-related deaths (2). While
the principal treatment modalities for KC (surgery, curettage
and destruction) are highly effective in the majority of cases,
they cause pain and scarring, carry risks of infection and
represent the second highest expenditure on cancer healthcare
in Australia (3,4). In the USA the average annual cost of skin
cancer (melanoma and keratinocyte cancers) treatment was
$8.1 billion, with ∼4.9 million patients treated for skin cancer
from 2007 to 2011 (5).

BCC and SCC share the major risk factors of ultraviolet
radiation (UVR) exposure and fair skin, and as such occur most
commonly on sun exposed sites (6). Consequently, KC are
extremely frequent in fair-skinned populations living in areas
with high UVR such as Australia and the southern United
States (2). The age-standardized incidence rate in Australia
for BCC is 770 per 100 000 person years; for SCC it is 270
per 100 000 person years (7). In addition to the role of UVR,
immunosuppression increases the risk of both SCC and BCC,
reinforcing the importance of the immune system in early
elimination of cancerous cells (6).

Both skin cancer and its established risk factors, such as
pigmentation, have a heritable component. A recent large
twin study estimated the heritability of keratinocyte cancer
to be 43% [95% confidence interval (CI), 26–59%] (8). Previous
genome-wide association studies (GWAS) and related approaches
have identified 29 loci associated with BCC susceptibility and 11
loci associated with SCC (9–14). Seven of these loci are associated
with both BCC and SCC, suggesting shared genetic pathways
in keratinocyte cancer etiology. Some of these common single
nucleotide polymorphisms (SNPs) have a functional role in
pigmentation (e.g. MC1R, IRF4, TYR) and freckling tendency
(BNC2) (10,12), consistent with the strong causal role of UVR
in keratinocyte cancer risk. Identifying additional risk loci may
uncover novel genetic pathways underpinning cancer risk and
identify new drug targets to assist in the development of future
cancer therapies (15).

We first conducted a series of GWAS across four large
datasets of ethnically homogenous ancestry (White British/
European) from Australia, Europe and the USA. In addition to
performing GWAS of BCC and SCC cases, where possible we
also analysed a single case group combining all KC cases. For
the QSkin and electronic medical records for genetic research
(eMERGE) GWAS datasets, while histology records confirmed the
occurrence of a KC, a specific diagnosis of BCC or SCC was not
available for all participants (Methods). For these two cohorts all
cases were included in the KC phenotype.

Given the overlap in the risk loci identified to date in BCC
and SCC (e.g. BNC2, MC1R, ASIP) (11,12), it is likely these traits
have an overlapping genetic basis. To explore this hypothe-
sis, we tested for genetic correlation between the BCC, SCC
and the KC phenotype GWAS using linkage disequilibrium (LD)
score regression (LDSC) (16). Finding a high degree of genetic
correlation across the KC phenotypes, we performed a com-
bined KC analysis bringing together the BCC, SCC and KC GWAS

using multiple trait analysis of GWAS (MTAG), a method that
accounts for incomplete genetic correlation across traits as well
as sample overlap (17). As the genetic correlations across BCC,
SCC and the KC phenotype were high but not complete, there
are likely genetic variants that contribute to either BCC or SCC
specifically. We explored this by performing individual separate
meta-analyses of BCC and SCC alone.

Results
Genetic correlations across BCC, SCC and KC

For each of the contributing GWAS there was little to no evidence
for inflation due to population stratification (Supplementary
Material, Table S1). Using LDSC we found moderate or high
genetic correlations between SCC, BCC and combined KC
phenotypes (Fig. 1, Supplementary Material, Table S1). For
example, UK Biobank (UKBB) BCC GWAS versus the 23andMe
SCC GWAS Rg = 0.79 (CI 0.54–1.03, P-value = 2.6 × 10−10), while
the QSkin BCC GWAS versus the UKBB SCC GWAS was Rg = 0.56
(CI 0.11–1.00, P-value = 0.01). These correlations indicated that
a multivariate analysis using MTAG was likely to be more
powerful for identifying loci than separate analyses of BCC or
SCC. Moreover, the generally high correlations justified including
the ∼8000 additional KC cases for which type-specific histology
(i.e. BCC or SCC) was not available (Table 1).

Combined multi-trait analysis of KC

Following the multi-trait analysis of the UKBB KC GWAS,
23andMe BCC, 23andMe SCC, QSkin KC and eMERGE KC
GWAS (Table 1), the adjusted output for the UKBB KC GWAS
identified 78 independent genome-wide significant SNPs
assigned to 63 to risk loci, 29 of which are novel (Table 2,
complete results for all independent SNPs can found in
Supplementary Material, Table S2).

A number of the newly identified KC SNPs are expression
quantitative trait loci (eQTLs) for nearby genes, or are associated
with other traits (Table 3; results for all SNP can be found
in Supplementary Material, Table 2). Two of the novel KC loci
highlight genes that are existing drug targets (Supplementary
Material, Table S2). The first, rs231779 on chromosome 2, is
an eQTL for CTLA4, which is a target for immunotherapy
medications including ipilimumab and tremelimumab, which
are already in use for melanoma. The second, rs12576996 on
chromosome 11 is an eQTL for MAP 3K11, which has been
investigated as a drug target for Parkinson’s disease using
CEP-1347.

Meta-analysis of BCC and SCC GWAS

After conducting the overall multi-trait KC GWAS, we performed
individual meta-analysis of BCC and SCC using a fixed effects
meta-analysis to identify any regions reaching genome-wide
significance for a specific type of KC (Supplementary Material,
Table S3). Seventy three loci were associated with either BCC
or SCC, and the majority overlapped (Materials and Methods)
with the MTAG KC analyses. A single locus previously reported
for each of BCC and SCC reached genome-wide significance
in the individual analyses but not in the KC MTAG analysis
(rs9419958/OBFC1 and rs13301660/SEC16A, respectively, Supple-
mentary Material, Table S3). We further identified 13 new loci
by conducting BCC or SCC GWAS meta-analysis; these loci did
not reach genome-wide significance in our KC MTAG analyses
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Figure 1. Genetic correlation between BCC, SCC and KC cancers. With the exception of the comparisons between the smallest datasets, all correlations values are

significant at P-value <0.05 (eMERGE KC versus QSkin BCC P-value = 0.37; eMERGE KC versus QSkin SCC P-value = 0.88; full results in Supplementary Material, Table S1).

Table 1. Sample sizes used for GWAS analysis

BCC SCC KC
Study sample Cases Controls Cases Controls Cases Controls

QSkin 1995 4797a 821 4797a 8145 4797a

UKBB 16 847 340 302a 2274 340 302a 18 538 340 302a

eMERGE KC - - - - 1565 8756
23andMe 12 945 274 252a 6579 280 558a 19524b 280 558b

Total 31 787 619 351 9674 625 657 47 742 634 413

aControl sets for QSkin, 23andMe and UKBB GWAS are overlapping. bCombined KC analysis GWAS set for 23andMe reported to illustrate effective sample size for the
combined KC analysis using MTAG (which accounts for sample overlap); only individual BCC and SCC GWAS were available for 23andMe.

and previous studies (Tables 4 and 5; full results including anno-
tation can be found in Supplementary Material, Table S3). The
chromosome 2 locus with peak SNP rs7563677 is an eQTL for
ITGB6, representing a potentially novel drug target for KC. ITGB6
is a target of intetumumab currently in use for the treatment
of prostate adenocarcinoma; additional drugs in use for this
gene’s product are abituzumab for metastatic colorectal cancer,
and STX-100 for idiopathic pulmonary fibrosis and melanoma
Supplementary Material, Table S3.

Heritability of BCC and SCC

h2
SNP (SNP-heritability) estimates for BCC and SCC were 13.1%

(95% CI = 9.7–16.5%) and 6.8% (95% CI = 0.9–12.7%), respectively.
Of that, GWAS significant loci contributed ∼5.9% to BCC h2

SNP

and 2.7% for SCC.

Consistency of effect sizes across traits

Having identified loci associated with both the KC phenotype,
and with BCC and SCC alone, we compared the effect size for
the lead SNP from each of the independent loci identified across
the three datasets (Methods; Supplementary Material, Table S8).

Most of the SNPs identified in the KC MTAG analysis includ-
ing rs231779 (CTLA4), rs7328654 (BRCA2) and rs3213737 (HAL)
had consistent effect estimates in the BCC and SCC meta-
analysis. However, we noted that when SNPs differed they
tended to have larger effect sizes for BCC than SCC, particularly
for rs79522206 (RNU6ATAC37P) and rs6707137 (RNY4P15). This
may be due to the effect of winner’s curse bias as the majority of
our meta-analysis and MTAG sample set was comprised of BCC
GWAS (47). However, some variants have larger effects in the
SCC meta-analysis including in genes involved in pigmentation

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddz121#supplementary-data
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Table 2. Novel KC loci identified using MTAG

CHR BP SNP EA/NEA P OR [95% CI] Nearest protein coding gene

1 110 724 488 rs535930 G/A 2.08 × 10−8 0.95 [0.94–0.97] KCNC4
1 114 303 808 rs6679677 C/A 6.50 × 10−11 1.10 [1.07–1.13] PHTF1
1 154 984 363 rs1870940 G/A 7.88 × 10−11 0.94 [0.92–0.96] ZBTB7B
1 242 023 898 rs4149909 G/A 2.35 × 10−9 1.16 [1.10–1.21] EXO1
2 5 684 786 rs62112661 C/A 4.40 × 10−8 0.95 [0.94–0.97] SOX11
2 7 704 860 rs79522206 G/A 4.38 × 10−16 0.81 [0.77–0.85] RNF144A
2 37 189 296 rs3845780 T/C 1.85 × 10−9 0.95 [0.94–0.97] STRN
2 38 298 139 rs1800440 T/C 4.50 × 10−12 1.08 [1.06–1.10] CYP1B1
2 88 554 351 rs6707137 G/A 5.80 × 10−22 1.19 [1.15–1.23] THNSL2
2 204 734 487 rs231779 T/C 9.66 × 10−15 0.94 [0.92–0.95] CTLA4
3 98 447 140 rs7620634 G/A 1.82 × 10−8 1.06 [1.04–1.08] ST3GAL6
5 149 192 846 rs17110447 G/A 1.66 × 10−9 0.94 [0.93–0.96] PPARGC1B
6 4 979 956 rs1246946 T/C 5.32 × 10−15 0.94 [0.92–0.95] RPP40
6 90 976 768 rs72928038 G/A 1.24 × 10−20 1.11 [1.09–1.14] BACH2
7 6 418 673 rs836489 T/G 1.23 × 10−8 0.95 [0.94–0.97] RAC1
7 29 132 279 rs117744081 G/A 2.07 × 10−19 0.79 [0.75–0.83] CPVL
7 50 176 163 rs10228836 G/A 1.70 × 10−10 0.95 [0.93–0.96] ZPBP
8 98 367 884 rs4735451 T/C 4.75 × 10−9 1.06 [1.04–1.08] TSPYL5
8 120 082 971 rs13261635 T/C 1.43 × 10−8 0.95 [0.93–0.97] COLEC10
9 106 858 192 rs3739737 G/A 3.55 × 10−8 1.05 [1.03–1.07] SMC2
10 10 771 564 rs12767525 T/C 5.49 × 10−9 1.05 [1.04–1.07] CELF2
10 64 402 433 rs10995255 G/A 6.51 × 10−11 0.94 [0.93–0.96] ZNF365
11 64 107 735 rs663743 G/A 2.35 × 10−9 0.95 [0.93–0.97] CCDC88B
11 65 580 638 rs12576996 T/G 3.77 × 10−11 1.07 [1.05–1.09] OVOL1
12 96 379 806 rs3213737 G/A 1.11 × 10−8 1.05 [1.03–1.07] HAL
13 32 954 561 rs7328654 G/A 5.82 × 10−10 1.05 [1.04–1.07] N4BP2L1
14 75 935 908 rs77100309 G/A 1.65 × 10−8 0.91 [0.89–0.94] JDP2
19 1 106 845 rs2075710 T/C 1.68 × 10−8 1.06 [1.04–1.08] GPX4
20 49 399 007 rs62202837 T/C 2.23 × 10−13 0.93 [0.91–0.95] BCAS4

Hg19 chromosome (CHR) and base pair (BP) positions are provided for each SNP. Odds ratios (OR) and P-values are from the MTAG analysis of five GWAS datasets;
UKBB KC, eMERGE KC, 23andMe BCC, 23andMe SCC and QSkin KC (sample sizes reported in Table 1). The OR and 95% confidence interval is for the effect allele (EA);
the non-effect allele (NEA) is also reported. We also report the nearest protein coding gene for each SNP; more complete gene annotation data can be found on
Supplementary Material, Table S2.

e.g. rs1805007 (MC1R), rs1805008 (TUBB3) and rs12203592 (IRF4)
(11,14). Similar magnitude of effect estimates for BCC and SCC
was noted for other pigmentation variants, including rs1126809
(TYR) and rs35407 (SLC45A2) (11). Some of the previously
known variants associated with BCC or SCC but not associated
with pigmentation pathway particularly, rs2853677 (TERT) and
rs78378222 (TP53) (48,49), showed significantly larger effect
estimates on BCC risk than SCC risk.

Gene-based approaches for KC

FastBAT gene-based test for KC revealed an additional three
genes in two loci not identified in the single SNP analyses
for KC, BCC or SCC (Methods; novel genes marked in bold
in Supplementary Material, Table S4). We also conducted a
gene-set enrichment analysis using the KC GWAS results
(Methods), which identified that there was significant enrich-
ment for the gene-sets ‘T cell selection’ (P-value = 2.1 × 10−7,
Bonferroni-corrected P-value = 0.002) and ‘keratin filament’
(P-value = 1.9 × 10−6, Bonferroni-corrected P-value = 0.02).

As a parallel approach we performed a transcriptome
wide association study (TWAS), as implemented in MetaXcan,
using two skin and a whole blood expression set from GTEx
Supplementary Material, Tables S5, S6 and S7. This approach
determines the genetically predicted change in gene expression
due to variants associated with KC, and can predict the
potential functional target gene at loci that reach significance

(Materials and Methods) in the MTAG analysis. In addition
TWAS can identify additional regions where imputed gene
expression levels are associated with KC at significance but
no single SNP reaches genome-wide significance. A number
of imputed genes are associated with KC in regions identified
in the single SNP MTAG results, and an additional gene on
chromosome 10 is significantly associated with KC (SLC35G1
P-value = 1.69 × 10−6 sun-exposed skin, highlighted in bold in
(Supplementary Material, Table S5). When considered together,
the FastBAT and TWAS approaches highlight a total of four genes
in three loci (ASXL2, RABEPK, HSPA5, SLC35G1) that are significant
a P-value <0.05 corrected for the number of genes and are not
identified in the single SNP analyses.

Discussion
In this well-powered analysis of keratinocyte cancer, we have
assembled large GWAS datasets examining BCC, SCC and, for
the majority of cohorts, KC. We showed substantial genetic
correlation between discrete GWAS of BCC, SCC and the KC
phenotype (Fig. 1, Supplementary Material, Table S1), and lever-
aged this correlation in a multiple trait combined KC GWAS anal-
ysis to identify 83 independent genome-wide significant genetic
variants in 63 loci (Table 2, Supplementary Materials, Tables S2
and S3). Thirty-four of these loci have been previously reported
for BCC or SCC alone using a range of approaches (9–12,14),

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddz121#supplementary-data
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Table 3. Annotation of novel KC loci

CHR BP SNP eQTL skin eQTL whole blood eQTL other tissue PheWAS summary

1 110 724 488 rs535930 - - - Educational level
1 114 303 808 rs6679677 - - - Hyper/hypothyroidism,

medications for cholesterol,
blood pressure, T1D, RA

1 154 984 363 rs1870940 ZBTB7B,
ADAM15

- ZBTB7B, ADAM15, DCST2,
RP11-307C12.11

Anthropometric measures,
BMI, BMR

1 242 023 898 rs4149909 - - - -
2 5 684 786 rs62112661 - - - -
2 7 704 860 rs79522206 - - - -
2 37 189 296 rs3845780 - STRN GPATCH11, STRN Leg fat percentage
2 38 298 139 rs1800440 - - - -
2 88 554 351 rs6707137 - - - -
2 204 734 487 rs231779 - - CTLA4 Hyper/hypothyroidism
3 98 447 140 rs7620634 DCBLD2,

ST3GAL6-AS1
- ST3GAL6, ST3GAL6-AS1,

PDLIM1P4
-

5 149 192 846 rs17110447 - - - -
6 4 979 956 rs1246946 - - RPP40, RP11-428J1.4,

RP11-428J1.5
-

6 90 976 768 rs72928038 - - - Asthma, T1D,
hypothyroidism

7 6 418 673 rs836489 DAGLB DAGLB, FAM220A RAC1, DAGLB, FAM220A Anthropometric measures
7 29 132 279 rs117744081 - - CTB-113D17.1 -
7 50 176 163 rs10228836 - - C7orf72 -
8 98 367 884 rs4735451 - - - -
8 120 082 971 rs13261635 - - MAL2, NOV, COLEC10 Height
9 106 858 192 rs3739737 - SMC2 SMC2, RP11-82L2.1 -
10 10 771 564 rs12767525 - - - -
10 64 402 433 rs10995255 - ADO ADO -
11 64 107 735 rs663743 CCDC88B,

PPP1R14B
AP003774.1 AP003774.1, CCDC88B,

PPP1R14B, PLCB3
-

11 65 580 638 rs12576996 CTSW, EIF1AD,
KRT8P26, MAP
3K11

MAP 3K11 BANF1, CTSW, EFEMP2,
EIF1AD, FIBP, KRT8P26, MAP
3K11, NEAT1, OVOL1, SNX32

Asthma, allergy, eczema,
arm impedance

12 96 379 806 rs3213737 HAL,
RP11-256L6.3

AMDHD1, RP11-256L6.3 Tanning

13 32 954 561 rs7328654 - - - -
14 75 935 908 rs77100309 - - - -
19 1 106 845 rs2075710 GPX4 - GPX4 -
20 49 399 007 rs62202837 KC∗

Hg19 chromosome (CHR) and base pair (BP) positions are provided for each SNP. Only genes reaching the significance threshold of 2 × 10−6, or for PheWAS traits
reaching 5 × 10−8 are shown. KC, keratinocyte cancer; BMI, body mass index; BMR, basal metabolic rate; T1D, type 1 diabetes; RA, rheumatoid arthritis. Full details are
provided in Supplementary Material, Table S2. ∗Associated with KC at genome-wide significance in the UKBB alone.

while 29 of them are novel (Supplementary Material, Table S2).
Most of the variants affected both BCC and SCC, with a
small subset affecting only one or the other of these cancers
(Supplementary Material, Table S8). However, few loci, which
were GWAS significant in previous studies, were not replicated
in our study (e.g. rs192481803 (2p22.3), rs74899442 (11q23.3) for
SCC (11) and rs78097823 (22q 12.1), rs1050529 (6p 21.33) for BCC
(12). Some of these were rare SNPs (rs192481803, rs74899442) and
were filtered out in MTAG analysis.

For the first time we found an SNP in the cytotoxic
lymphocyte-associated antigen-4 (CTLA4) gene associated
with KC risk (2q33.2, rs231779 OR = 0.94; 95% CI = 0.92–0.95,
P-value = 9.7 × 10−15; Supplementary Material, Table S2). The
importance of this finding is that the CTLA4 protein plays a key
role in activating the anti-tumour response against cancer cells
(50). In addition, according to a previous animal study CTLA4
mediates the effects of UV-induced immunosuppression, which
is particularly important in the development of skin cancer (51).

Ipilimumab (antibodies targeting CTLA4) are currently in use
to treat melanoma patients with stage III or IV disease (43,50).
However, this particular SNP has not been identified in GWAS
of melanoma (52,53). Identification of this SNP highlights the
potential future avenue to use Ipilimumab for KC therapy.

SNP rs7563677 at 2q24.2 is an eQTL for ITGB6, representing a
putatively novel drug target for KC, with an associated drug
STX-100 currently in a Phase I clinical trial for melanoma.
This SNP only reaches formal significance in the BCC anal-
ysis, although in practice this particular SNP fails quality
control (QC) in some KC/SCC only datasets. However, the
effect estimates of the proxy SNP, rs6736111 LD (r2 = 0.55)
were similar across all traits suggesting that it is a KC SNP
(see Supplementary Material, Table S8). Furthermore, the KC
associated SNP rs12576996 (11q13.1) is an eQTL for a gene (MAP
3K11) that is a potential drug target (CEP-1347), which is currently
in clinical trials for Parkinson’s disease, and our findings may
support repurposing for KC.

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddz121#supplementary-data
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Table 4. Novel loci from meta-analysis of BCC or SCC GWAS

CHR BP SNP EA/NEA P OR [95% CI] Nearest protein coding gene

2 11 526 716 rs12466910 A/G 2.97 × 10−8 0.95 [0.94–0.97] ROCK2
2 161 356 717 rs7563677 C/G 4.58 × 10−8 0.93 [0.91–0.96] RBMS1
5 44 412 065 rs11741260 A/G 8.74 × 10−10 1.07 [1.05–1.10] FGF10
5 67 751 221 rs42905 A/C 2.82 × 10−8 1.05 [1.03–1.06] PIK3R1
6 15 535 321 rs9383064a C/G 1.29 × 10−8 1.10 [1.06–1.14] DTNBP1
6 150 353 556 rs12205199 A/C 1.13 × 10−8 1.05 [1.03–1.07] RAET1L
8 116 632 819 rs2721936 A/T 2.06 × 10−9 1.05 [1.03–1.07] TRPS1
9 681 645 rs9408674 A/G 2.88 × 10−9 1.05 [1.03–1.07] KANK1
9 19 059 865 rs60269255 C/G 1.94 × 10−8 1.07 [1.04–1.09] HAUS6
10 13 740 917 rs1887004 T/C 6.65 × 10−10 0.95 [0.93–0.96] RP11-295P9.3
15 79 237 293 rs2289702 T/C 2.57 × 10−9 1.09 [1.06–1.11] CTSH
19 50 151 686 rs7508601 A/T 3.23 × 10−8 0.95 [0.94–0.97] SCAF1
20 37 746 454 rs209901 T/G 2.84× 10−8 0.95[0.93–0.97] DHX35

CHR, chromosome; BP, base pair position; SNP, single nucleotide polymorphism; EA, effect allele; NEA, non-effect allele; P, P-value, OR [95% CI], odds ratio, 95%
confidence interval. aThe chromosome 6 region with peak SNP rs9383064 is associated with SCC; all other tabulated regions are associated BCC. We reported the
nearest protein coding gene; for more detailed gene annotation see Supplementary Material, Table S3.

Table 5. Annotation of novel loci from meta-analysis of BCC or SCC GWAS

CHR BP SNP eQTL skin eQTL whole blood eQTL other tissue PheWAS

2 11 526 716 rs12466910 - - LINC00570 -
2 161 356 717 rs7563677 - - ITGB6 -
5 44 412 065 rs11741260 - - - -
5 67 751 221 rs42905 - - - -
6 15 535 321 rs9383064a - - DTNBP1 -
6 150 353 556 rs12205199 - - - Alopecia areata
8 116 632 819 rs2721936 - - - Anthropometric measures
9 681 645 rs9408674 - - KANK1 -
9 19 059 865 rs60269255 - - HAUS6 -
10 13 740 917 rs1887004 - - - -
15 79 237 293 rs2289702 CTSH CTSH CTSH Lung cancer, T1D
19 50 151 686 rs7508601 - - - Hypothyroidism/myxoedema,

vitiligo
20 37 746 454 rs209901 - - - -

CHR, chromosome; BP, base pair position; SNP, single nucleotide polymorphism; T1D, type 1 diabetes mellitus. aThe chromosome 6 region with peak SNP rs9383064 is
associated with SCC; all other tabulated regions are associated BCC. Full details are provided in Supplementary Material, Table S3.

One of the novel KC SNPs we identified, rs7328654, lies in an
intron of BRCA2 (13q13.1). BRCA2 is a tumor suppressor gene; rare
variants in this gene, including rs11571833, are associated with a
dramatically increased risk of various cancers including breast,
lung, ovarian and prostate (54–57). A recent study conducted
by Rafnar et al. (58) identified that K3326∗ variant (BRCA2) is
associated with SCC of the skin (OR = 1.69; 95% CI = 1.26–2.26,
P = 4.2 × 10−4) However, similar effect estimates were noted
(OR = 1.94; 95% CI = 1.10–3.38) for rs11571833 (A/T) with a P-value
of 0.02 in our SCC meta-analysis. The common variant that we
identified (rs7328654) is not in LD with the rare high penetrance
variants (e.g. for rs11571833 r2 = 0.001; the other pathogenic
BRCA2 variants are also very rare and so cannot be in strong
LD with our common variant). The common variant we identify
(rs7328654) has not been reported for any cancer although it is
associated with LDL cholesterol levels (59).

As expected, many of the KC risk variants are involved in
pigmentation. rs6059655 (ASIP) in 20q11.22, rs1805007 (MC1R) in
16q24.3, rs12203592 (IRF4) in 6p25.3, rs1126809 (TYR) in 11q14.3
and rs16891982 (SLC45A2) in 5p15.33 are non-synonymous SNPs,
or enhancers, which regulate gene expression. These SNPs have
previously been found to be associated with SCC, BCC and

melanoma risk (9–12,51–53,60–62). We found an association
between rs3213737 (HAL, 12q23.1) and KC. This SNP was
recently identified as associated with vitamin D levels (63) in
the GeneATLAS database of UKBB data (64), and is genome-
wide significantly associated with ease of skin tanning. This
gene encodes an enzyme required to produce urocanic acid,
which protects skin against UVR damage and UVR-induced
immune suppression (65). A study conducted by Welsh et al.
(66) did not find association for rs7297245 (HAL) with overall
BCC or SCC risk; however, stratified analysis revealed that
rs7297245 (A/A) (LD r2 = 0.2 with our lead SNP rs3213737) is
associated with SCC in women alone. While we are unable
to perform sex-stratified analyses, the T allele of rs7297245
[Haplotype reference consortium (HRC) reports for the other
strand] is not associated with KC (UKBB MTAG output for
rs7297245 P = 0.3) suggesting our signal is independent to the
one reported by Welsh et al. Several of the implicated genes
are involved in functions relating to immune response. Our
gene-set enrichment analysis implicated the positive T-cell
selection pathway. As previously reported for BCC and SCC,
we identified associations in the major histocompatibility
complex (MHC) region (rs9271611/HLA-DQA16 in p21.32, and
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rs9277332/HLA-DPA1 in 6p21.32, rs2507999/HLA-B in 6p21.33)
(67,68). In addition to the previously mentioned CTLA4 locus,
the new loci with peak SNPs rs6679677 and rs72928038 are
associated with autoimmune-related traits (Table 3).

In addition to the multi-trait analysis of KC, we also
performed individual separate meta-analyses of BCC and SCC,
as the differing clinical outcomes and high but incomplete
genetic correlation between SCC and BCC suggests that there
may be both overlapping and discrete genetic risks for these
conditions. While the majority of the loci overlapped with the KC
analysis, there were a further 12 BCC and 1 SCC loci that did not
overlap (Supplementary Material, Table S3). In terms of genes/
loci common to both BCC and SCC, in addition to pigmentation
genes (e.g. MC1R), overlapping pathways include immune
response (e.g. rs2507999/HLA-B and rs231779/CTLA4) and telom-
ere length (rs9419958/OBFC1) (Supplementary Material, Table S8).
Associations of note specific to BCC include rs78378222 near
TP53, which is critical for DNA repair and cell cycle control (69),
and rs9383064 near DTNBP1, which is associated with SCC alone
(Supplementary Material, Table S8).

Of note, identification of these novel loci associated with
KC improves the predictability of polygenic risk scores, but
marginally as the new variants have relatively smaller effect
sizes.

Strengths and limitations

Our study is the largest genetic study of KC to date and as a
result we have more than doubled the number of significant loci.
One major advantage of using MTAG is it allows the combination
of genetically correlated traits, which would not necessarily be
clinically similar traits. As we discuss above BCC and SCC are
two different skin cancers with an overlapping risk factors and
genetic susceptibility, and we used a range of approaches to
identify overlapping and unique genetic risks.

Our study comprised (multi-trait) meta-analyses of GWAS
where each individual study included ancestry matched, ethni-
cally homogeneous cases and controls, reducing the likelihood
that our associations were due to differences in population
substructure.

A limitation is that a proportion of our cases were derived
from self-reported data. Since people may misreport the type
of KC they have, this may make it difficult to accurately assess
the true genetic correlations between KC subtypes. Histology
reports were obtained only for a subset of QSkin participants;
the remainder did have histologically-confirmed keratinocyte
cancers but the type-specific histology was not available for
analysis. For this latter group, we included them only in the
combined KC analysis. 23andMe included self-reported data;
however, a separate sub study confirmed the validity of using
self-report of KC type, which had high sensitivity (93%) and
specificity (99%) compared with medical records (11).

We did not perform anatomical site specific analysis of KC
or the analysis to determine genetic basis of having a single,
multiple or recurrent KC lesions because the relevant data was
not uniformly available across the datasets. Another possible
limitation is that we were unable to perform histological
subtype-specific GWAS meta-analysis (e.g. limited to the
micronodular BCC subtype) as we did not have the requisite
data. Even though we implicitly assume that the genetic risk is
similar in all subtypes in our analysis, we acknowledge that the
genetic signals we identify may derive from common subtypes
rather than the rarer because the majority of our samples will
represent the common forms of BCC and SCC.

Our most powerful analysis leveraged the strong genetic
correlation between the input traits to maximize power for
identifying new loci using the MTAG software. MTAG makes
the assumption that the genetic correlations across traits are
relatively homogeneous across the genome; while this seems
likely in our situation (the effect sizes for previously identified
BCC and SCC loci are broadly similar, in keeping with their
high genome-wide genetic correlation), this is difficult to test
formally. While MTAG maximizes our power for KC discovery
generally, as our numbers for SCC are much smaller than those
for BCC there may be additional SCC loci that we failed to identify
due to poor statistical power.

Finally although our analysis identified new genes (including
potential novel drug targets for KC), further fine-mapping and
molecular genetic characterization is essential to pinpoint the
underlying causal variants and to reveal the biological functions
of the peak SNPs. Further, while we report potential drug targets
for genes we identified as associated with KC, these would need
to be assessed through preclinical models and clinical trials to
fully evaluate their efficacy, safety, benefits versus risks before
repurposing.

Conclusions
Keratinocyte carcinomas are the most numerous of the cancers
in countries with populations primarily of European ancestry.
While mortality is low, morbidity is considerable and they
impose substantial burdens on health systems around the world.
With our large GWAS meta-analysis, and by combining a range of
approaches, we were able to identify 45 novel regions associated
with skin cancer risk, providing new insights into disease
etiology and putatively novel drug targets for KC. However,
replication studies are warranted to confirm these novel
genome-wide associations.

Materials and Methods
Study participants

QSkin. QSkin is a large prospective study on KCs; it comprises a
cohort of 43 794 men and women aged 40–69 years (18). The aim
of the study is to identify the environmental and genetic risk
factors for skin cancer. At baseline in 2011, data on participants’
phenotype, lifestyle and exposures to environmental risks
were collected using a self-administered questionnaire. KCs
are not routinely registered in Australian cancer registries, so
health administration data from Medicare were used to identify
treatments for KCs for the period from date of consent though to
June 30, 2014. Exact diagnoses of BCC and SCC were established
through further linkage with pathology records. Medicare is
Australia’s universal health insurance scheme with virtually
100% coverage. The eight Medicare item codes for billing claims
for excision of histologically confirmed KC have very high
concordance (∼97%) with histopathologic diagnoses (19).

Genotyping of 17 965 participants using Illumina Global
Screening Array (San Diego, CA, USA) was conducted in 2017,
which included 8803 individuals undergoing excision for one
or more KC during the follow-up period 2011–2014. Prior to
GWAS QC (see methods). Pathology records were able to confirm
a BCC diagnosis for 2066 of these individuals, and for 854
SCC. Pathology records confirming the specific type of KC was
unavailable for the remaining cases, allowing their use only in
the KC phenotype analyses. Controls were QSkin individuals
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who reported no history of actinic skin lesions prior to baseline,
and for whom no KC excisions were observed during follow-up.

UKBB. The UKBB is a biorepository database, which has
information on genetics and more than 2000 phenotypes
acquired through self-report, hospital records and linkage to
registries for about half a million participants in the UK (20). This
large prospective cohort study data recruitment was conducted
from 2006 to 2010, aiming to collect a wide range of physical,
biological, lifestyle measures and clinical outcomes of these
voluntary participants. Further, these data have been embedded
in national electronic health records for further clarification,
completeness and accuracy (20).

We used clinically and histopathologically defined ICD9 and
ICD10 definitions to classify BCC and SCC cases (Table 1; for full
details of selection of case see the Supplemental Methods). We
selected the cancer-free controls on the basis of not having (a) a
current or prior cancer registry history of cancer, or benign or in
situ tumors, including C44, unspecified malignant neoplasms of
skin; and (b) not having self-reported cancer at the time of enroll-
ment of the study (21) (for final numbers see following sections).
Genotyping was conducted using Affymetrix UK Biobank Axiom
array (Santa Clara, CA, USA) and Affymetrix UK BiLEVE Axiom
array (22).

eMERGE. eMERGE is a database that contains a collection
of genetic and phenotypic data identified through electronic
medical records in five participating groups in the USA (23).
A more detailed description of this cohort is available via the
dbGaP website (dbGaP ID phs000360) (24). Briefly, cases were
those with a KC phenotype, derived from at least two reports of
ICD9 code of 173–173.9, V10.83, 209.31–209.26 or 173.00–173.99.
KC free controls were those without any report of ICD9 code
172–173.99. Prior to GWAS QC (see following sections) there was
GWAS data available for 1666 KC cases and 9643 KC free controls.
eMERGE KC cases and cancer-free controls were genotyped
on the Illumina Human660W-Quad_v1_A array (San Diego, CA,
USA) (24).

23andMe. 23andMe is a personal genetics company located in
Mountain View, California (25). GWAS data were available for
participants who self-reported a history of SCC or BCC (11,12).
A separate, sub study has been performed to ascertain the
validity of self-reported skin cancer status by Chahal et al. (11).
In this, randomly selected patients from the Stanford outpatient
clinics were given the same questionnaire as used by 23andMe
and were followed up in medical records to check the concor-
dance between self-report data and medical records. A high
percentage of true positives and true negatives were identified
(sensitivity, specificity: BCC 93% and 99%, SCC 92% and 98%,
respectively) (11,12). Hence, these figures support the accuracy
of the self-reported questionnaire used in 23andMe data. Geno-
typing was conducted using four different arrays (V1, V2, V3, V4),
which included custom variants as well as content from the Illu-
mina HumanHap550+ BeadChip, and Illumina OmniExpress+
BeadChip arrays (12).

GWAS analyses

QSkin. We filtered out 189 387 SNPs from the Illumina Global
Screening array (San Diego, CA, USA) array data if the GenTrain
score was <0.6, Hardy–Weinberg equilibrium (HWE) P-value was
<1 × 10−6 and/or minor allele frequency (MAF) was <1% using
GenomeStudio and PLINK (v1.9) (26), leaving 496 695 SNPs. We

excluded participants with >5% missing genotypes from the
initial set of 17 965 QSkin participants (remaining N = 17 643).

Using the University of Michigan Imputation Server geno-
types were phased by Eagle 2 (27) and imputed to the
Haplotype reference consortium (HRC) version r1.1 (28) via
minimac version 3 (29). Following imputation, identity by
descent (IBD) as measured by PLINK v1.9 was used to drop
one individual from pairs with >0.1875 PI_HAT scores (N = 400
individuals) from the analysis. Further, we identified and
removed prior to analysis 378 individuals with ancestral
principal component values more than six standard deviations
(SD) away from European HapMap populations. In total, 776
individuals were removed as one IBD pair were also principal
components analysis (PCA) outliers.

Of the 16 687 post QC samples there were 8145 individuals
with any KC diagnosis confirmed by Australian Medicare
records, of which 1995 had a histologically confirmed BCC
diagnosis and 821 a histologically confirmed SCC diagnosis.
There were also 4797 controls who were cancer free without
a history of actinic lesions. Using the same control set we
performed a BCC, SCC and a KC GWAS (Table 1).

SNPs with MAF >0.01 and imputation quality score >0.3
were analysed with PLINK 2.0, with the first 10 principal
components (PC), age, age2

, sex, sex ∗ age and sex ∗ age2

fitted as covariates. Following this we used the univariate
LDSC approach (30) to ensure that our GWAS results were not
inflated due to the biases such as model misspecification,
population stratification and cryptic relatedness. The LDSC
intercept for the SCC, BCC and KC GWAS was 1.01–1.04 indicating
the majority of apparent inflation (λ ∼1.1) is polygenic signal
(Supplementary Material, Table S1).

UKBB. A detailed description of the UKB GWAS QC procedures
has been provided elsewhere (22) and is summarized here. We
restricted our analysis to 438 870 participants who were either
white-British or were genetically similar to white-British UKBB
participants based on PCA (e.g. Irish ancestry) (21). In total, we
included 2274 SCC cases, 16 847 BCC cases and 340 302 cancer
free controls in the study. Using a common control set we
performed a BCC, SCC and by combining the BCC and SCC
case set as a KC phenotype GWAS. Note that there were 583
people who had both BCC and SCC and we included them in the
individual BCC and SCC analyses as a case (Table 1).

The relatedness among individuals in UKBB is higher than
that in a random population sample (30.3% of UKBB participants
had third degree or closer relationships) (22). Hence, we used
BOLT-LMM v1.2 (31) for our association analysis. BOLT-LMM uses
linear mixed models to have better control over population
stratification and cryptic relatedness than standard methods
(31). We first used a sparse set of 368 802 genotyped autosomal
SNPs to calibrate the Bayesian prior used for the actual BOLT-
LMM association tests. We obtained association estimates for
97 million imputed SNPs. SNPs with poor imputation scores
(INFO <0.4) or MAF <0.01 were discarded, yielding results for
7.6 million SNPs. Given that BOLT-LMM assumes that our
trait of interest is quantitative, we applied a formula (32) to
transform the linear-scale beta(s) into values on the log (OR)
scale—using BOLT-LMM in this way is valid for analysis of large,
non-ascertained population cohorts such as UKBB (31). The LDSC
intercepts for the UKBB BCC and SCC GWAS were 1.03 and 1.00,
respectively (Supplementary Material, Table S1).

eMERGE. We performed genotype QC using PLINK v1.90b5.4
(26,33) by removing SNPs with call rate <97%, MAF <0.01 and
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HWE P-value <10−4 in controls and P-value <10−10 in cases.
Individuals with >3% missing genotypes were removed. Autoso-
mal markers were used to compute IBD in PLINK, and one of each
pair of related individuals with PI_HAT scores >0.2 were removed
from the analysis. We conducted the PCA in PLINK using all
the participants and reference samples of Northern European
ancestry (1000G British, CEU, and Finland). We removed the
ancestry outliers with PC1 and PC2 values more than six SD from
the mean of the reference panel. Following QC there were 1565
cases with a KC diagnosis, 8756 cancer free controls, and 310 260
SNPs available for imputation (Table 1).

Phasing of the genotyped SNPs was performed in ShapeIT
(34), and imputation in Minimac3 through the Michigan
imputation server (29). We used HRC version r1.1 (28) as the
reference panel for imputation. SNPs with MAF >0.001 and
imputation quality (r2) >0.3 were used for association analysis.
We performed the association testing using PLINK v2.00a2LM
(26) under an additive genetic model adjusted for sex and
the first 10 PCs. The LDSC intercept for the eMERGE GWAS
was 1.00 [standard error (SE) = 0.007], indicating that there
was very little evidence for stratification or structural biases
(Supplementary Material, Table S1).

23andMe. For detailed QC information see (12,35); this is
summarized briefly here. Individuals with <97% European
ancestry were identified and excluded using an ancestry
deconvolution model (36). SNPs with genotype call rate <95%,
HWE P-value <10−20 were removed from the analysis. If the
allele frequencies were different in 23andMe compared to
the European 1000 Genomes reference panel, they were also
excluded from the analysis. Phasing of genotyped SNPs was
performed using Beagle (version 3.3.1) (37). Imputation to version
3 release of the 1000 Genomes reference haplotypes (38) was
conducted using Minimac2 (35). GWAS data using an overlapping
set of controls were available for European ancestry participants
of 23andMe for SCC (6579 cases and 280 558 controls) and BCC
(12 945 cases and 274 252 controls) (Table 1). In our analysis we
included 9 061 544 SNPs after excluding those variants with
a MAF <0.01 and an imputation score <0.3. LDSC indicated
little to no evidence of residual inflation (intercept SCC 1.04,
BCC 1.06, Supplementary Material, Table S1).

Genetic overlap

In light of the previously identified common risk factors and
shared genes of SCC and BCC risk we hypothesized that BCC and
SCC may have a high genetic correlation. Hence, we explored the
genetic overlap between these skin cancers using the bivariate
LDSC v.1.0.0 method (16). LDSC is a feasible way of estimat-
ing genetic correlations between traits using GWAS summary
statistics (Supplementary Material, Table S1). Furthermore, the
LDSC method appropriately accounts for overlapping samples
when analysing GWAS summary statistics.

Multiple trait analysis of KC

To model the high but incomplete correlation between BCC
and SCC, we conducted a meta-analysis using multi-trait
analysis of GWAS (MTAG), a method-of-moments framework,
which requires only GWAS summary statistics for the included
traits (39,40). MTAG models the incomplete correlation between
the input traits using bivariate LDSC. MTAG has the useful
property that due to the modelling done in LDSC, it accounts
for sample overlap across the input traits (39,40). This feature is

important as some of the datasets used in our analysis have a
large degree overlap among the control sets (Table 1).

We performed a multiple trait combined KC GWAS analysis
using; UKBB KC (18 538 cases, 340 302 controls), eMERGE
KC (1565 cases, 8756 controls), 23andMe BCC (12 945 cases,
274 252 controls), 23andMe SCC (6579 cases, 280 558 controls)
and QSkin KC (8145 cases, 4797 controls) (Methods; Table 1).
MTAG has the advantage of outputting a result for each
input trait adjusted by all other input traits; the results we
present here are the MTAG output for the UKBB KC GWAS.
(Supplementary Material, Table S2). Manhattan plot, Q-Q plot
and the regional plots for the output of the UKBB KC GWAS MTAG
output can be found in Supplementary Materials, Figures S2, S3
and S8.

Conditional analysis and locus assignment

To identify all independent SNPs associated with KC in the
MTAG analysis, we performed a joint conditional analysis using
the GCTA v1.26 software (41), with stepwise model selection
and the parameters set to distance of SNPs 2000Kb, threshold
P-value 5 × 10−8 and the collinearity between the SNPs to
0.05 (Supplementary Material, Table S2). A LD reference panel
was constructed using 5000 randomly selected participants
from the UKBB. Independent SNPs within 1 mb (mega base)
of each other were assigned to the same locus with the
exception of SNPs around ASIP at 20q11 where long-range
LD has been observed and a wider boundary of 2.5 mb was
used.

BCC and SCC meta-analyses

To identify genetic variants specific to BCC and SCC, we
performed meta-analyses of the individual cancers using METAL
(39). For BCC meta-analyses we used samples from UKBB BCC
(16 847 cases, 340 302 controls), 23andMe BCC (12 945 cases,
274 252 controls) and QSkin BCC (1995 cases, 4797 controls).
SCC GWAS was conducted using UKBB SCC (2274 cases, 340 302
controls), 23andMe SCC (6579 cases, 280 558 controls) and QSkin
SCC (821 cases, 4797 controls). The full results for these analyses
can be found in Supplementary Material, Table S3. Conditional
analysis was performed for the BCC and SCC meta-analyses
as above, and BCC and SCC loci were deemed the same as
those identified in the KC analysis if they were within 1 mb
of each other; the LD r2 between lead SNPs and the matching
KC locus can be found in Supplementary Material, Table S3.
Manhattan plots, Q-Q plots and the regional plots for the
output of the BCC and SCC meta-analyses can be found in
Supplementary Materials, Figures S4–S7, S9, S10.

Estimating heritability

We calculated the heritability due to common SNPs (h2
SNP)

estimates on the liability scale using LDSC and assuming that
the prevalence of BCC to be 3.5% and SCC to be 0.5%, respectively,
in the UK (prevalence calculated using the proportions within
UKBB). Briefly, GWAS results for UKBB BCC and UKBB SCC
analyses were filtered to SNPs MAF >0.01%, and present in the
Hapmap3 reference list provided by LDSC.

Then we computed the h2
SNP following the removal of the

GWAS significant loci for BCC and SCC, respectively. For each
loci we filtered out the top independent SNP and all SNPs within
1 mb either side. For HLA and MC1R this window was expanded
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to 2 mb, and for ASIP we removed 31 to 36 mb of chr20 due to the
long range LD exhibited at this locus.

Comparison of effect estimates between BCC, SCC and
KC

To further explore the concordance in effect sizes for genetic
variants identified in the multiple trait combined KC GWAS,
or the BCC and SCC specific meta-analyses, we extracted
the effect sizes and SE for each independent SNP from the
three datasets. We used the difference between SCC and BCC
log (OR) and its SE (computed under the approximation of
independence across the samples) to test for a difference in
log (OR). In total 95 independent SNPs were extracted, and
P-value <∼ 5 × 10−4 was assigned as the significance threshold
(Supplementary Material, Table S8).

Gene-based methods

We performed gene-based tests using the fastBAT (42) software,
based on a Bonferroni-corrected significance threshold of
0.05/23957 = 2.1 × 10−6. Gene-based results with peak single
SNP results >5 × 10−8 (that is, gene-based results not derived
from genes containing a genome-wide significant SNP in their
own right) are shown in Supplementary Material, Table S4.
To ensure we were not capturing long-range LD with loci
discovered in the single SNP GWAS, genes with significant
gene-based results were deemed as novel loci if >1 mb from
an SNP with a single SNP result P-value <5 × 10−8, and that
the peak SNP in each gene region was not in LD (r2 >0.01)
with any single SNP with a GWAS P-value <5 × 10−8 within
2 mb. Adjacent gene-based results were combined into a single
locus if within 1 mb of each other (Supplementary Material,
Table S4).

Post-GWAS analysis

The overall GWAS results for BCC, SCC and KC were further
examined using FUMA (43) to test whether any predefined
gene sets show enrichment, based on the GWAS results
(MAGMA gene set analysis). GWAS loci were also characterized
in terms of eQTL data and potential drug targets using the
Open Targets platform (44) and the Gtex portal (v7) (45) using
the strongest single SNP within in each gene region (Tables 3
and 4; full results are in Supplementary Material, Table S2,
Supplementary Material, Table S3, and Supplementary Material,
Table S4).

Analysis of predicted gene expression

To further understand the biological mechanisms of novel
genome-wide SNPs, we performed a TWAS using the MetaXcan
software, a method for relating predicted tissue expression
levels of genes to phenotypes (46). We specifically investigated
gene expression in whole blood (6759 genes), sun-exposed skin
(7637 genes) and skin not exposed to the sun (5802 genes)
from GTEx (45) (Supplementary Materials, Tables S5, S6 and S7).
Associations were deemed significant at the Bonferroni-
corrected threshold of 0.05/(20 198) = 2.48 × 10−6.

Supplementary Material
Supplementary Material is available at HMG online.
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