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Abstract: Pancreatic ductal adenocarcinoma (PDAC) is the fourth most frequent cause of death from
cancer. Circulating tumor cells (CTCs) with stem-like characteristics lead to distant metastases and
thus contribute to the dismal prognosis of PDAC. Our purpose is to investigate the role of stemness in
CTCs derived from a genetically engineered mouse model of PDAC and to further explore the potential
molecular mechanisms. The publically available RNA sequencing dataset GSE51372 was analyzed,
and CTCs with (CTC-S) or without (CTC-N) stem-like features were discriminated based on a principal
component analysis (PCA). Differentially expressed genes, weighted gene co-expression network
analysis (WGCNA), and further functional enrichment analyses were performed. The prognostic role
of the candidate gene (CTNNB1) was assessed in a clinical PDAC patient cohort. Overexpression of
the pluripotency marker Klf4 (Krüppel-like factor 4) in CTC-S cells positively correlates with Ctnnb1
(β-Catenin) expression, and their interaction presumably happens via protein–protein binding in the
nucleus. As a result, the adherens junction pathway is significantly enriched in CTC-S. Furthermore,
the overexpression of Ctnnb1 is a negative prognostic factor for progression-free survival (PFS) and
relapse-free survival (RFS) in human PDAC cohort. Overexpression of Ctnnb1 may thus promote the
metastatic capabilities of CTCs with stem-like properties via adherens junctions in murine PDAC.

Keywords: pancreatic cancer; PDAC; circulating tumor cells; CTC; stem cells; stem-like; stemness;
adherens junctions; epithelial-mesenchymal transition; EMT

1. Introduction

With 57,000 new cases and 46,000 deaths annually, pancreatic ductal adenocarcinoma (PDAC) is
the 9th most frequent malignant disease in males and 8th most prevalent in females and the 4th most
frequent cause of death in both genders [1]. At the time of diagnosis, only a fraction of patients are
amenable to surgical resection of the tumor. However, even patients who undergo complete surgical
resection are at a high risk of either local or systemic recurrence [2].

In order to study the molecular mechanisms of pathogenesis and metastasis of pancreatic cancer,
several genetically induced mouse models (GEMMs) have been established in recent decades [3–6].
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The most prominent and best-characterized model is the LSL-KrasG12D, LSL-Trp53R172H, Pdx1-Cre (KPC)
mouse model [6].

It is now well established that circulating tumor cells (CTCs) are an integral part of the metastatic
cascade in malignant disease [7–18]. CTCs are shed from the primary tumor, survive in circulation,
and ultimately colonize distant organs where they establish clinically overt metastases [9,16]. However,
while thousands or millions of CTCs are shed into the bloodstream over time, the number of metastases
is several orders of magnitude lower [19]. Therefore, it can be assumed that only a small fraction
of CTCs are actually tumorigenic and thus clinically relevant. In order to achieve the invasive
phenotype required to leave the primary tumor bulk and enter circulation, CTCs from epithelial
tumors undergo a process called epithelial–mesenchymal transition (EMT). During this process,
the cells acquire mesenchymal properties (e.g., migratory capability) while downregulating epithelial
traits [20,21]. This process is reverted during mesenchymal-epithelial transition (MET). As both EMT
and MET dynamically fluctuate, CTCs in circulation exhibit a high degree of plasticity and represent a
heterogeneous population consisting of epithelial, mesenchymal, and intermediary cells [20,22].

In a previous study, CTCs from the GEMM (LSL-KrasG12D, LSL-Trp53flox/flox or flox/+, Pdx1-Cre) were
isolated and submitted to single-cell RNA sequencing. The raw data of this experiment was released
to the Gene Expression Omnibus (GEO) database, and it is available for analysis [23]. In previous
studies from our own group, we were able to demonstrate that, apart from immune evasive capabilities,
CTCs also possess stem cell properties [13,17]. The main goal of this study was therefore to investigate
the role of stem cell properties in murine CTCs of PDAC and to further characterize CTCs with stem
cell properties.

2. Results

Details regarding the study workflow are depicted in Figure 1.

2.1. Pancreatic CTCs Can Be Clustered into Stem-Like and Non-Stem like Categories

After pre-processing, we kept 72 samples for the following study, and 11,931 genes were obtained
(Figure S1A,B). In order to classify CTCs into subgroups, the top 3000 genes that presented the highest
variability in expression were chosen for the principal component analysis (PCA) [19,24,25]. From these
3000 genes, epithelial (Epcam, Krt7, Krt8, Krt18, and Krt19) [23], mesenchymal (Fn1, S100a4 and
Vim) [26], stemness/pluripotency markers (Aldh1a1, Aldh1a2, Cd24a, Cd44, and Klf4) [25,27,28] and
the proliferation marker Mki67 [29] were included in subsequent analyses.

All 72 individual CTCs could be divided into three clusters (Figure S2A, B). However, this study
focuses on whether the CTCs have stem-like features or not, a dichotomous classification; therefore,
the CTCs were divided into clusters based on stem-like features. According to the PCA loading plot
(Figure 2A), the cluster located in the first quadrant (blue dots) exhibited stemness markers and was
defined as CTC-S (CTCs with stem-like features) (Figure 2B). The other two clusters were merged (red
dots) and named CTC-N (CTC without stemness features. The correlation heatmap with hierarchical
clustering showed a similar result (Figure 2C).
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Figure 1. Illustration of the workflow in the integrative bioinformatics analysis. Data set GSE51372 from
the Gene Expression Omnibus (GEO) database was used, which contains 75 murine pancreatic CTCs
single-cell sequencing datasets. After filtering out three samples with low quality, we further excluded
low expression genes, and EdgR transformed the remaining 72 samples. CTCs with stem-like features
(CTC-S) and CTC with non-stem-like features (CTC-N) were defined based on the principal component
analysis (PCA) of the top 3000 most variable genes. We performed weighted gene co-expression
network analysis (WGCNA) on these 3000 genes, while all read counts of 11,931 genes were used
to analyze the differentially expressed genes. Further functional enrichment analysis, including the
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, Gene Ontology (GO) aspects on both
differentially expressed genes and WGCNA results was performed. The cytoHubba plugin of Cytoscape
3.5.1 was employed to identify hub genes. Candidate pathways (adherens junction) and genes (Ctnnb1)
were identified. The clinical value of KLF4 and CTNNB1 was validated in the TCGA (The Cancer
Genome Atlas) pancreatic adenocarcinoma (PDAC) cohort. The workflow was plotted using ProcessOn
(available online: https://www.processon.com/diagrams, accessed on 23 March 2020).

Figure 2. Cont.

https://www.processon.com/diagrams
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Figure 2. Defining the CTC-S and CTC-N subgroups. (A) Principal component analysis (PCA) loading
plot of the marker set. The x and y axes represent the principal components 1 (PC1) = 16.6% variance
and PC2 = 6.1% variance, respectively. 3 of the 5 stem markers (Aldh1a1, Aldh1a2, and Klf4) are located
in the first quadrant, indicating that stem markers tend to correlate with both PC1 and PC2 positively.
The PCA loading data were download from the ClustVis and visualized by the imageGP (available
online: http://www.ehbio.com/ImageGP/index.php/Home/Index/index.html,accessed on 23 April 2020).
(B) PCA scores plot of 72 samples. All samples were divided into three clusters. The cluster located
in the first quadrant was defined as CTCs with stem-like features (CTC-S) since they present with
stem markers PCA loadings in (A), as the other two clusters were combined and defined as CTC with
non-stem-like features (CTC-N). The corresponding ellipses were plotted based on a 95% probability
from the same group. (C) The correlation heatmap was visualized by MORPHEUS (available online:
https://software.broadinstitute.org/morpheus/, accessed on 7 March 2020). We chose the average linkage
method to perform the hierarchical clustering. The heatmap demonstrates the distinct subgroups of
CTC-S and CTC-N. The colors of the square matrices illustrate the Pearson’s correlation coefficient,
with red indicating a strong correlation and green a weak correlation. All samples are listed in the
same order in both horizontal and vertical axes.

http://www.ehbio.com/ImageGP/index.php/Home/Index/index.html,accessed
https://software.broadinstitute.org/morpheus/
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2.2. Both Epithelial and Mesenchymal Markers are Expressed on CTC-S

To evaluate each cell within their respective subgroups in more detail, we expanded the marker
pool, as not all markers of interest were listed in the 3000 most variable genes. EMT markers (Snai1,
Snai2, Twist1, Zeb1, and Zeb2), epithelial markers (Cdh1, Egfr, Epcam, Krt7, Krt8, Krt18, and Krt19) [23],
mesenchymal markers (Cdh2, Fn1, Itga5, Sdc1, S100a4, and Vim) [20,23], pancreatic cancer stemness
markers (Abcg2, Aldh1a1, Aldh1a2, Cd24a, Cd44, Cxcr4, Met, Prom1, Klf4, Nanog and Sox2) [30,31], and a
proliferation marker (Mki67) were included to plot the heatmap (Figure 3A).

A high degree of expression heterogeneity was observed for most markers. Compared with
CTC-N, CTC-S cells demonstrated an increased expression of epithelial markers such as Egfr, Epcam,
and keratins. Parallelly, the mesenchymal markers Fn1 [log2(fold change) (FC) = 4.07, false discovery
rate (FDR) = 1.42 × 10−5] and Vim (log2FC = 6.37, FDR = 5.89 × 10−10) were up-regulated in the
CTC-S group, resulting in a phenotype with both epithelial and mesenchymal characteristics. Notably,
stemness transcripts showed variable expression, while Aldh1a2 (log2FC = 4.98, FDR = 1.61 × 10−8) and
Klf4 (log2FC = 9.41, FDR = 1.45× 10−21) were enriched in CTC-S, Cd44 was significantly down-regulated
(log2FC = −2.57, FDR = 0.012) (Figure 3A).

2.3. The Adherens Junction Pathway is Functionally Enriched in CTC-S

Compared with CTC-N, 1475 genes were significantly up- and 247 significantly down-regulated
in the CTC-S group (Figure S3A, B).

We next constructed a protein–protein interaction (PPI) network of up-regulated genes by STRING
(available online: https://string-db.org/, accessed on 19 August 2019) [32], establishing 1412 nodes and
6695 interactions (Figure not shown). We used the cytoHubba plugin in Cytoscape to narrow this
number down to 43 genes, which were subsequently defined as hub genes.

The biological domains of biological process (BP), cellular component (CC), and molecular
function (MF) were utilized to describe the biological domain of genes enriched in the CTC-S group.
The cellular components’ anchoring junction [Gene Ontology (GO): 0070161, fold enriched = 3.56,
FDR = 1.55 × 10−40] and adherens junction (GO: 0005912, fold enriched = 3.53, FDR = 9.73 × 10−39)
were significantly functionally enriched. The enrichment of cell adhesion molecule binding (GO:
0050839, fold enriched = 3.34, FDR = 6.48 × 10−31) was observed in the MF domain (Figure 3B).

While GO enrichment analysis focuses on the functions of the genes, the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis mainly reflects the interaction network and the signaling
pathways of the requested genes. In this analysis, several signaling pathways were significantly
enriched, including adherens’ junction (KEGG: 04520, fold enriched = 3.42, FDR = 1.47 × 10−5) and
fluid shear stress and atherosclerosis pathways (KEGG: 05418, fold enriched = 2.61, FDR = 2.05 × 10−5)
(Figure 3B).

In order to gain deeper insight into the molecular biology of the CTC subsets, we used a weighted
gene co-expression network analysis (WGCNA) in this study.

After network construction (Figure S4A, B), we identified five gene co-expression modules
(blue, brown, green, turquoise, and yellow) with sizes between 67 and 1384 genes in the 72 samples
(Figure 4A). Both brown and turquoise modules correlated with stemness (correlation coefficient > 0.7,
adjusted p-value <0.001), but the results of the brown module were more significant (correlation
coefficient = 0.95, adjusted p-value = 3.6 × 10−37).

https://string-db.org/
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Figure 3. Differentially expressed genes between CTC-S and CTC-N groups. (A) MORPHEUS-generated
heatmap showing the expression of the marker set in CTC-S and CTC-N groups. The maximum and
the minimum values in each row are displayed red and green, respectively. The marker names, groups,
log2(Fold Change (FC)) values, and false discovery rate (FDR) values were listed on the right side. (B) The
functional enrichment analysis of up-regulated genes in the CTC-S subgroup was visualized by imageGP
(available online: http://www.ehbio.com/ImageGP/index.php/Home/Index/index.html, 23 April 2020),
top 5 enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, Gene Ontology (GO)
terms for biologic processes (BP), cell components (CC) and molecular functions (MF), each aspect was
shown (fold enriched >2 and FDR <0.010).

http://www.ehbio.com/ImageGP/index.php/Home/Index/index.html
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We therefore used the brown module in the functional enrichment analysis. In the brown module,
645 genes were functionally enriched in the adherens junction pathway (KEGG: 04520, fold enriched
= 3.71, FDR = 3.59 × 10−3), which is consistent with the results of the analysis of the differentially
expressed genes. In addition, anchoring junction (GO: 0070161, fold enriched = 3.27, FDR = 2.22× 10−13),
adherens junction organization (GO: 0034332, fold enriched = 4.29, FDR = 8.11 × 10−3) and regulation
of adherens junction organization (GO: 1903391, fold enriched = 13.11, FDR = 8.12 × 10−3) were all
significantly enriched again (Figure 4B).

To identify the pathways with the strongest influence on the CTC-S phenotype, we intersected
functional enrichment pathways from the results of differentially expressed genes and WGCNA.
This resulted in six pathways, including focal adhesion (KEGG: 04510), adherens junction (KEGG: 04520),
ECM-receptor interaction (KEGG: 04512), AGE-RAGE signaling pathway in diabetic complications
(KEGG: 04933), proteoglycans in cancer (KEGG: 05205) and fluid shear stress and atherosclerosis
(KEGG: 05418) (Figure 5A). Since adherens junction organization (GO: 0034332) was also significantly
enriched in the GO: BP aspect of functional enrichment analysis of both differentially expressed genes
and WGCNA, we identified the adherens junction as a pathway of interest in CTC-S. In addition,
double enriched GO terms, such as the regulation of adherens junction organization (GO: 1903391),
cell–cell junction (GO: 0005911), and cell–cell junction assembly (GO: 0007043) provide further evidence
that adherens junctions are biologically relevant in the CTC-S group.

Figure 4. Cont.
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Figure 4. Weighted gene co-expression network analysis (WGCNA) of 72 pancreatic CTCs. (A) The
cluster dendrogram of 3000 genes, five modules (blue, brown, green, turquoise, and yellow),
were identified. The brown module correlates with the stem trait most significantly (r = 0.95,
adjusted p-value = 3.6 × 10−3). (B) The functional enrichment analysis of genes in the brown module
(generated by imageGP, available online: http://www.ehbio.com/ImageGP/index.php/Home/Index/

index.html, accessed on 23 April 2020), top 5 enriched Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways, Gene Ontology (GO) terms for biological processes (BP), cell components (CC) and
molecular functions (MF) are shown [fold enriched > 2 and false discovery rate (FDR) <0.010].

Figure 5. Cont.

http://www.ehbio.com/ImageGP/index.php/Home/Index/index.html
http://www.ehbio.com/ImageGP/index.php/Home/Index/index.html
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Figure 5. The adherens junctions pathway is significantly enriched in the CTC-S group. (A) Venn plot of
enriched pathways in differentially expressed genes and weighted gene co-expression network analysis
(WGCNA). Six pathways included focal adhesion (KEGG: 04510), ECM-receptor interaction (KEGG:
04512), adherens junction (KEGG: 04520), AGE-RAGE signaling pathway in diabetic complications
(KEGG: 04933), proteoglycans in cancer (KEGG: 05205) and fluid shear stress and atherosclerosis
(KEGG: 05418) were significantly enriched in both differentially expressed genes and WGCNA. (B) The
intersection of enriched genes in the adherens junction pathway of differentially expressed genes,
enriched genes in the adherens junction pathway of the brown module in WGCNA, and hub genes.
Ctnnb1 is at the intersection of all three lists. (C) Gene expression in the adherens junction pathway was
plotted by PATHVIEW [33]. Red represents up-regulated genes, while green represents down-regulated
genes in the CTC-S group. The Venn plots in this study were generated by imageGP (available online:
http://www.ehbio.com/ImageGP/index.php/Home/Index/index.html, accessed on 23 April 2020).

In order to identify the key genes in the adherens junction pathway and the entire PPI network.,
hub genes of up-regulated genes in the PPI, genes enriched in the adherens junction pathway of
differentially expressed genes and the WGCNA were intersected. The gene Ctnnb1 (log2FC = 3.24,
FDR = 2.40 × 10−4) was found significant in all three analyses (Figure 5B). The adherens junction
pathway map and gene expression heatmap are plotted in Figure 5C and Figure S5.

2.4. Ctnnb1 and Klf4 Positively Correlate

Next, we evaluated the correlation between Ctnnb1 and stemness/pluripotency markers (Aldh1a2,
Met, and Klf4), which were significantly up-regulated in the CTC-S group (Figure 6). Among these,
we found that Ctnnb1 overexpression most significantly correlates with Klf4 upregulation (r = 0.50,
FDR = 4.99 × 10−5).

http://www.ehbio.com/ImageGP/index.php/Home/Index/index.html
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Figure 6. The correlation analysis of the candidate gene (Ctnnb1) and stem markers (Aldh1a2, Met and
Klf4) demonstrates the positive correlation between Klf4 and Ctnnb1. Gene expression histograms are
represented on the diagonal. The lower left part is the scatter plots and the numbers in the upper right
part correspond to the Pearson’s correlation coefficient. *** FDR < 0.001; **, 0.001 < FDR < 0.010;. 0.050
< FDR < 0.100.

2.5. CTNNB1 Is a Negative Prognostic Factor in Human PDAC

As reported above, Klf4 and Ctnnb1 were significantly up-regulated in murine pancreatic CTCs
with stem-like features. To explore whether KLF4 and CTNNB1 are differentially expressed between
pancreatic tumor and normal tissues, the visualization web tool Gene Expression Profiling Interactive
Analysis 2 (GEPIA 2) (available online: http://gepia2.cancer-pku.cn, accessed on 7 March 2020) was
utilized [34]. When evaluating The Cancer Genome Atlas (TCGA) data, both KLF4 and CTNNB1 were
up-regulated in PDAC compared to the matched normal tissues and the Genotype–Tissue Expression
(GTEx) data [35] (Figure 7A,B).

http://gepia2.cancer-pku.cn
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Figure 7. The clinical value of KLF4 and CTNNB1. The box-plots with data overlaid dot plots for
KLF4 (A) and CTNNB1 (B), showing expression in TCGA PAAD tumors with correspondent match
PAAD normal tissue and GTEx pancreatic tissue. * p-value < 0.001. Clinical prognostic value of
KLF4, overall survival (OS) (C), progression-free survival (PFS) (D), and relapse-free survival (RFS) (E).
Clinical prognostic value of CTNNB1, OS (F), PFS (G) and RFS (H). Box plots were generated using
GEPIA2 (available online: http://gepia2.cancer-pku.cn/#index, accessed on 7 March 2020).

We further investigated whether candidate genes expression levels correlate with clinical prognosis,
including overall survival (OS), progression-free survival (PFS) and relapse-free survival (RFS)
(Figure 7C–H) in the TCGA cohort [36]. No significant influence of KLF4 on survival was observed.
In contrast, although CTNNB1 expression does not influence OS (Hazard Ratio (HR) = 1.20, log-rank
p-value = 0.373), patients with higher CTNNB1 expression have significantly worse PFS (HR = 1.67,
log-rank p-value = 0.009) and RFS (HR = 2.65, log-rank p-value = 0.023).

3. Discussion

The aim of this study was to identify and characterize pancreatic CTCs with stem-like characteristics
and explore potential underlying mechanisms through integrated bioinformatics analysis.

Numerous molecular markers, including Cd24, Cd44, Prom1 (Cd133), and other genes, have been
applied in order to define pancreatic cancer stem cells (CSCs) [30,37,38]. The CTC subgroup identified
in this study as CTC-S demonstrated heterogeneous expression of stemness and pluripotency markers
in comparison to CTC-N, with some markers showing increased expression (Aldh1a2 and Klf4),

http://gepia2.cancer-pku.cn/#index
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some with reduced levels (Abcg2, Cd44, Cxcr4, Nanog and Sox2) and others with no significant change
in expression (Aldh1a1, Cd24a, Met and Prom1). The mutual exclusivity phenomenon may be due to the
heterogeneous nature of stem-like cells and stemness markers [39]. Similar results have been published
for breast cancer, where CD44high / CD24low defines a cluster of tumor cells with stem-like features [40].
This mutual exclusivity is confirmed in the here-presented results.

The invasive capabilities (e.g., migration and invasion) of tumor cells are a prerequisite for
successful initiation and completion of metastasis. Accumulating evidence suggests that these features
can be acquired through epithelial–mesenchymal transition (EMT), which is considered as a hallmark
of tumor cell dissemination [31,41]. The CTC-S subpopulation exhibits a mixed epithelial/mesenchymal
phenotype, while the CTC-N group exhibits neither epithelial nor mesenchymal markers. This is
consistent with previous studies relating EMT to stemness [42,43]. Furthermore, CTCs with partial
EMT phenotype or stem-like features may predict unfavorable survival in cancers independently [44].

Epithelial markers (most prominently EpCAM) have been widely used as identification and
isolation markers of CTCs, and the prognostic value of EpCAM-positive CTCs is evident [15,45–48],
but previous data have pointed towards a relative down-regulation of epithelial markers on CTCs [13].
The here-presented results draw a more complex image of EpCAM expression in CTCs—it can
be speculated that EpCAM expression on CTCs is a continuum from EpCAM-negative to highly
EpCAM-positive cells. While, in this work, EpCAM seems to be relatively overexpressed on cells with
presumably higher metastatic potential, more research on the role of EpCAM on CTCs is clearly required.

In theory, the loss of cell adhesion molecules during EMT should also coincide with the
down-regulation of genes associated with adherens junctions. While both Cdh1 and Cdh2 (generally
considered a mesenchymal marker) are downregulated in the CTC-S subgroup, most of the genes
in the adherens junction pathway are up-regulated in comparison to CTC-N, resulting in a mixed
epithelial/mesenchymal phenotype of CTC-S. This may represent a transitory state allowing CTC-S to
undergo functional adaptation during the metastatic cascade [49]. Additionally, this overexpression of
adherens junctions may enable CTC-S to bind to endothelial cells prior to extravasation.

Intercellular adhesion has been demonstrated to be crucial for successful metastasis of epithelial
cancers [50]. Among the different types of intercellular adhesions, cell–cell adherens junctions are the
most common and contribute to cell polarity, tissue architecture maintenance, cell movement limitation,
and proliferation [50]. Strong adherens junctions are mediated by the cadherin–catenin complex [51–53].
The here-presented data show that the CTC-S cells express low levels of E-cadherin (Cdh1), while the
other genes from the adherens junction pathway were up-regulated, such as Rhoa and Cdc42, both of
which are necessary for adherens junction maintenance [54,55]. We hypothesized that CTC-S cells are
in the process of forming the adherens junction through actin cytoskeleton remodeling [56].

Besides, another critical component of adherens junctions, plakoglobin (also known as γ-catenin),
was found to be necessary for the formation of CTC clusters and further contributed to the metastatic
cascade [57,58]. In summary, adherens junctions are critical to the formation of CTC clusters,
which can form tumor-microemboli, ultimately outgrowing to overt metastases [57]. These cellular
aggregates have been detected in 81% of PDAC patients with unfavorable OS and PFS [59]. However,
it must be taken into account that all 75 pancreatic CTCs analyzed in this study were isolated
individually, which means there are no data derived from CTC clusters in this dataset; the validity of
the here-presented data concerning CTC clusters is therefore limited.

Numerous studies have explored the Wnt signaling pathway, mainly due to the fact that canonical
Wnt signaling regulates, stabilizes, and promotes the accumulation of the β-catenin by inhibiting its
degradation [60,61]. A few studies have demonstrated that Wnt/β-catenin signaling plays a crucial
role in the plasticity of stem cells [62,63]. Furthermore, Wnt signaling is activated in pancreatic CTCs
according to the original study of GSE51372 [64]. Unexpectedly, we found no significant correlation
between Wnt family members and Ctnnb1 in the pancreatic CTC-S group. In fact, according to our
results, these Wnt family members are even expressed at low levels (Figure S6). Given that Klf4 is
overexpressed in the CTC-S group, we believe that Klf4 inhibits Wnt signaling in this context [65].
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Besides, the β-catenin has been determined to be necessary for cell adhesion and pluripotency,
even without Wnt signaling [66].

Klf4 (Krüppel-Like Factor 4) is enriched in CTC-S, which positively correlates with Ctnnb1.
As reported, Klf4 is a versatile marker that can both suppress [67] or support [68] PDAC. Several studies
have investigated Klf4, which encodes a protein that belongs to the Krüppel family of transcription
factors and plays a vital role in maintaining embryonic or induced pluripotent stem cells as well as in
preventing their differentiation [28,69,70]. In a recent study, Zheng et al. [71] found that Klf4 promotes
CTC survival by increasing intracellular reactive oxygen species. Intriguingly, Klf4 can interact with
Ctnnb1 through transcription regulation or direct protein interaction. As Tiwari et al. [72] reported,
Ctnnb1 is one of the direct repression targets of the transcription factor Klf4. On the opposite side,
β-catenin could also bind with the promoter of Klf4 through activating the canonical Wnt pathway,
as reported [73]. However, we found that the canonical Wnt family members are expressed at low
levels, as previously mentioned. The evidence suggests that the interaction between Klf4 and β-catenin
might be happening through the formation of a protein complex rather than via the transcriptional
regulation in the pancreatic CTC-S group. Even though there are studies claiming that Klf4 inhibits
β-catenin [74–76], there are other reports showing that the Klf4 / β-catenin complex is necessary for the
self-renewal capacity of stem/cancer cells [68]. The consensus is that the protein–protein interaction
between Klf4 and β-catenin happens in the nucleus [68,74–76]. According to previously published
results [76,77], the cytoplasmic β-catenin could migrate to the nucleus freely, and there promote the
transcription and translation of β-catenin targeted genes in conjunction with transcription factors.
Among the β-catenin binding proteins extracted from epithelial cells nuclei, a 55-kDa protein could be
identified as being KLF4 [76]. Furthermore, the de novo synthesis of both E-cadherin and β-catenin
increased at a similar rate in order to reconstruct an adherens junction after the proteolytic disruption
of this extracellular interaction in epithelial cancer cells [77].

Clinically, KLF4 expression in the primary tumor does significantly influence survival. CTNNB1
is a negative prognostic marker for RFS and PFS. For OS, a trend can be seen, but it fails to reach
statistical significance. This supports the hypothesis that the high expression of Ctnnb1 in CTC-S
contributes to the formation of adherens junctions, which in turn may promote the survival of CTC-S
in circulation [78]. However, it must be taken into account that the clinical validation was performed
using RNA-seq expression data of bulk tumor cells from the primary tumor rather than single-cell
RNA sequencing of CTCs, which limits its validity.

It is important to reinforce that this study is an in silico analysis of a single pre-existing dataset from
a single pancreatic cancer model, since no other high-throughput sequencing datasets of pancreatic
CTCs are publically available. To reduce the bias from limited study resources, we combined the
analysis of differentially expressed genes, WGCNA, correlation analysis, and added clinical survival
data. The limited sample size, and the absence of prognostic data directly associated with CTC
expression data, may partially limit the results. With all that under consideration, more preclinical
and clinical studies are necessary to confirm our findings. However, despite its exploratory nature,
this study offers new insight into pancreatic CTCs with stem-like characteristics.

4. Materials and Methods

4.1. Data Collection, Data Quality Check, and Normalization

Single-cell RNA-sequencing data of 75 murine pancreatic CTCs with sufficient quality in dataset
GSE51372 were downloaded from the Gene Expression Omnibus (GEO) database (available online:
http://www.ncbi.nlm.nih.gov/geo/, accessed on 19 August 2019). Gene expression and clinical
information profiles for Pancreas Adenocarcinoma (PAAD) patients were obtained from The Cancer
Genome Atlas (TCGA) data portal (available online: https://tcga-data.nci.nih.gov/tcga/, accessed on
19 August 2019) [36].

http://www.ncbi.nlm.nih.gov/geo/
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In the pre-process part, an integrated web tool iDEP 9.0 (available online: http://bioinformatics.
sdstate.edu/idep/, accessed on 7 March 2020) was employed to analyze the 75 CTCs sequencing data [79].
Three samples with a sequencing depth of less than two counts per million (CPM) were excluded,
genes with less than 0.5 CPM in all the samples were also filtered out, and then transformed the
remaining 72 samples with EdgeR: log2(CPM + c), pseudo count c = 4 [79]. (Figure S1) Mitochondrial
RNA (mtRNA) was not used for QC as mtRNA is not contained in the GSE51372 read counts file.

4.2. Principal Component Analysis (PCA)

The top 3000 (approximately equal to 25%) [80] most variable genes were identified by the iDEP 9.0.
Then, we used an open-source web tool named ClustVis (available online: https://biit.cs.ut.ee/clustvis/,
accessed on 7 March 2020) to perform the PCA and generate the PCA score plot [81]. Imputation was
deemed unnecessary since the data were normalized in the aforementioned part. PCA loading data
were downloaded from ClustVis and visualized using imageGP (available online: http://www.ehbio.
com/ImageGP/index.php/, accessed on 23 April 2020). Next, the corresponding stem markers (PCA
loadings) were used to define the distinct PCA score cluster with stem-like features.

4.3. Identification of Differentially Expressed Genes

After pre-processing, read counts of 11,931 genes were used to identify the differentially expressed
genes. Data analysis was performed using the R package DESeq2 [82]. |Fold change (FC) | > 2 and
a corrected p-value, false discovery rate (FDR) < 0.050 (Benjamini–Hochberg procedure) were set
as cutoffs.

4.4. Weighted Gene Co-Expression Network Analysis (WGCNA)

We constructed a gene co-expression network of the 3000 most variable genes using the WGCNA
package [83] in R x64 3.6.1 based on Euclidean distance. Before the topological overlap matrix
construction, we estimated the soft threshold β. The details are described in Figure S4. To identify
the module correlated with stem-like traits, we used the dynamic tree-cut algorithm (automatic
single block method) to cluster dendrogram branches into several modules and assigned them colors.
The minimum module size is set at 30, and the modules with larger than 0.9 pairwise correlation were
merged. Only the module which significantly positively correlated with stem-like traits was included
in the subsequent study.

4.5. Definition of Hub Genes

The up-regulated genes were submitted to the STRING 11.0 database [32], and the Protein–Protein
Interaction (PPI) network was reconstructed via the Cytoscape software, version 3.5.1 or higher [84].
In addition to text mining, other basic settings were selected, such as co-expression, co-occurrence,
databases, experiments, gene fusion, and neighborhood as active interaction sources. Besides that,
only interaction pairs that scored >0.9 in the network were selected.

We used the cytoHubba plugin in Cytoscape, which provides 12 topological analysis
methods including cluster coefficient, degree, the density of maximum neighborhood component,
edge percolated component, maximal clique centrality, maximum neighborhood component and six
other centralities (betweenness, bottleneck, closeness, eccentricity, radiality, and stress) for ranking
nodes [85]. If the analyzed genes ranked in the top 10% in more than eight of the aforementioned
methods, they were defined as hub genes.

4.6. Functional Enrichment Analysis

We used g:Profiler (available online: https://biit.cs.ut.ee/gprofiler/gost, accessed on 23 March 2020) [86]
to perform functional enrichment analysis. Several enriched pathways of the Kyoto Encyclopedia
of Genes and Genomes (KEGG) [87] and functional interpretations of gene ontology (GO) [88],

http://bioinformatics.sdstate.edu/idep/
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including biological processes (BP), cellular components (CC) and molecular functions (MF),
were identified [28]. The enrichment of fold >2.0 and FDR <0.010 were set as cutoffs.

4.7. Kaplan-Meier Survival Plot

Pathologically confirmed PDAC samples and their corresponding RNA-seq data from TCGA
were included in this experiment [20]. Pre-processed level 3 data generated using Illumina HiSeq
2000 RNA Sequencing V2 and gene symbols KLF4 and CTNNB1 were used. For each tumor sample
of the patient, the expression level was determined using a combination of MapSplice and RSEM.
The individual sample files were merged in R using the plyr package [89]. In the next visualization
step, GraphPad Prism 8.2.1 was utilized for the Log-rank (Mantel–Cox) test and to generate the
Kaplan–Meier plots.

4.8. Statistical Analysis

Correlations of gene expression were evaluated with cor function (Pearson method by default)
in R with the PerformanceAnalytics package. We calculated the Benjamini–Hochberg FDR. Only FDR
<0.050 was considered statistically significant.

Additional tools used in this study are listed in Table S1.

5. Conclusions

In summary, we performed an integrated bioinformatic analysis of single-cell RNA sequencing
data of pancreatic CTCs derived from the GEMM. We identified two distinct cell populations with
(CTC-S) and without (CTC-N) stem cell-like properties. Various markers, including EMT-transcription
factors, epithelial, mesenchymal, stemness, pluripotency, and proliferation markers, were used to
characterize the CTC-S population. The adherens junction pathway was found to be significantly
enriched CTC-S. This pathway may be activated by up-regulated Ctnnb1 (β-catenin) through its
conjunction with transcription factor Klf4, thus enabling CTC-S to survive in the bloodstream and
promote distant metastasis.

To conclude, this study suggests that pancreatic CTCs with stem-like features might survive in
the bloodstream and reach target organs due to evaluated Ctnnb1 expression and the activation of
intracellular adherens junctions pathway.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4418/10/5/305/s1,
Figure S1: Pre-processing the raw data of the pancreatic circulating tumor cells (CTCs); Figure S2: The classification
of 72 samples; Figure S3: The differential expressed genes; Figure S4: The construction of the weighted gene
co-expression network of 72 pancreatic CTCs; Figure S5: The heatmap of genes involved in adherens junction
pathway; Figure S6: Correlation analysis of Ctnnb1 and Wnt family members in pancreatic CTC-S group. Table S1:
Online web tools utilized in this study.
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