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Abstract: Obesity has its epidemiological patterns continuously increasing. With controlling both
diet and exercise being the main approaches to manage the energy metabolism balance, a high-
fat (HF) diet is of particular importance. Indeed, lipids have a low satiety potential but a high
caloric density. Thus, focusing on pharmacologically targetable pathways remains an approach with
promising therapeutic potential. Within this context, trefoil factor family member 2 (Tff2) has been
characterized as specifically induced by HF diet rather than low-fat diet. TFF2 has also been linked to
diverse neurological mechanisms and metabolic patterns suggesting its role in energy balance. The
hypothesis is that TFF2 would be a HF diet-induced signal that regulates metabolism with a focus
on lipids. Within this review, we put the spotlight on key findings highlighting this line of thought.
Importantly, the hypothetical mechanisms pointed highlight TFF2 as an important contributor to
obesity development via increasing lipids intestinal absorption and anabolism. Therefore, an outlook
for future experimental activities and evaluation of the therapeutic potential of TFF2 inhibition is
given. Indeed, its knockdown or downregulation would contribute to an antiobesity phenotype. We
believe this work represents an addition to our understanding of the lipidic molecular implications in
obesity, which will contribute to develop therapies aiming to manage the lipidic metabolic pathways
including the absorption, storage and metabolism via targeting TFF2-related pathways. We briefly
discuss important relevant concepts for both basic and clinical researchers.
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1. Focusing on Lipids in Obesity and Metabolic Disorders

Since lipid metabolism is the main component of energy balance, we can expect that
humans will have hormone(s) which are specific sensors for high fat (HF) intake in order
to command the brain to stop eating. Still, no such hormone has been identified. The best
strategy to develop a treatment for fat intake is to target the time before meal ingestion [1].
Based on this principle, our idea is to identify the HF-diet induced satiety hormone/peptide
differentially regulated between 30 min to 3 h after HF compared to low fat/high carbohy-
drate (LF) meal and fasting in order to develop a potential drug given before the meal as a
part of antiobesity therapy. Obesity, metabolic syndrome, cardiovascular disease (CVD)
and type 2 diabetes (T2D) are complex multifactorial clinical conditions with altered energy
balance and potentially similar candidate genes and therapeutic factors, involving complex
gene–gene and gene–environment interactions [2–18]. Dietary lipids are among the most
important environmental factors in all these diseases [19–21]. Obesity, considered as a
disease [22] and epidemic in industrialized countries brings obesity as a very critical risk
factor for various diseases, [23] including the ongoing COVID-19 pandemic [24,25]. For
instance, in 2015, there were over 600 million adults and over 100 million children that were
obese worldwide and the numbers are continuously increasing [26]. This epidemic has a
tremendous impact on public health, since obesity, especially intra-abdominal fat mass,
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is associated with a dysregulation of lipoprotein-lipid metabolism and several patholo-
gies and health problems including CVD, T2D, liver disease, impaired regeneration, and
cancers [8,27–33]. Studies have shown that obesity also independently impacts mortal-
ity [28,29,34,35]. Weight loss based on either caloric restrictions or pharmacological agents
simultaneously improves most CVD risk factors [36–38]. However, limited FDA-approved
drugs are available, and all of them have important drawbacks. Moreover, body weight
management represents a growing and multibillion dollar market [39].

Obesity, also suggested to be a neuroendocrine reprogramming combined to a broken
energy homeostasis [40,41], can result from the cumulative effect of a repeated energy
imbalance, with minor excesses in energy intake (EI) over energy expenditure (EE) [42]. HF
food promotes weight gain through both EI and EE, according to the high caloric density,
low satiety effect and high palatability of HF nutrients, as well as the weak potency for fat
oxidation and EE that are associated to fat ingestion [19–21]. Thus, the acute control of fat
intake is a major determinant in the etiology of obesity. Feeding behaviour is controlled
by short-term circulating nutrients and hormones, as well as signals derived from the
peripheral tissues in response to a meal and changes in energy stores. The hypothalamus is
a key brain center upon which all these peripheral signals converge to regulate feeding
behaviour and EI [43]. Therefore, as a preliminary step to discover the peripheral factor
controlling fat intake and other determinants of energy balance, we previously used
functional genomic strategy to investigate gastric, intestinal, fat, and hypothalamic genes
differentially regulated by the ingestion of HF and LF meals [44–47].

Importantly, whereas we have insulin as a signal triggered by glucose that contributes
to balancing metabolism and glycemia, there is a need to further explore lipids-specific
signals. This would represent an additional step toward controlling/influencing the energy
balance with a focus on the HF diet and its related signals.

2. Trefoil Factor 2 (Tff2) as a High-Fat-Induced Gene

Functional genomics have been proved as a strong tool to characterize many
genes specifically induced by different conditions including those related to obesity and
within the context of diet and exercise [48–50]. For instance, we have identified hundreds
of genes modulated after HF or LF meals using the serial analysis of gene expression
(SAGE) method [44–47].

In our previous study [51], the differentially expressed transcripts after LF or HF meals
compared to fasting condition were classified into one of the three following patterns: meal
responsive (commonly modulated by both meals), LF-specific (modulated only in LF
condition) and HF-specific (modulated only in HF condition). Then, using the following
criteria, we have selected new candidate genes for controlling appetite and satiety: (1) HF-
or LF-specific genes, since lowering fat appetite or increasing satiety could lead to efficient
and safe therapies for obesity compared to the interventions decreasing the overall food
intake. (2) Genes coding for secreted proteins. Feeding behaviour is controlled by short-
term circulating nutrients and hormones as well as signals derived from the peripheral
tissues in response to a meal and changes in energy stores. In addition, when the facility
of drug delivery method is taken into account, it is reasonable to target secreted proteins.
(3) Genes not coding for nutrient’s digestion and absorption. The characterization of
proteins involved in lipid digestion and absorption has already been studied for decades.
Since the lipase inhibitor Orlistat has undesirable side effects [39], new drugs targeting
different pathways or functions are needed. (4) Gene not coding for known appetite/satiety
signals, since new candidates are of interest. (5) Genes with potential interest based on
published literature. These include genes whose relationship with known appetite/satiety
genes has been reported, as well as genes whose involvement in energy balance has
been reported but not in feeding behaviour. (6) Patterns and magnitude of expression.
These include genes strongly modulated by LF or HF meal, genes showing modulation
at interesting time points, and groups of genes showing similar pattern of expressions.
(7) Genes with their expression levels confirmed by other methods, such as quantitative
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real-time PCR (Q_RT-PCR) and Western blot. As a result, trefoil factor 2 (Tff2) was the
top ranked new candidate gene. Since, we found no work focusing on TFF2 implications
within either obesity or HF diet, it was important to focus our next exploration on the
mechanisms of TFF2 involvement in energy balance from in vitro to in vivo.

3. TFF2 Metabolic Properties and Implications

TFFs constitute a family of polypeptides with a distinctive structural module char-
acterized by six cysteine residues [52]. This structural feature has a stabilizing effect via
intramolecular disulfide bridges which are responsible for the remarkable protease resis-
tance of TFFs [53], resulting in a distinct and unusual supersecondary structure clearly
identifying the trefoil polypeptide domain as a unique growth factor-associated module,
structurally unrelated to other highly disulfide-linked modules such as those in epidermal
growth factor and insulin-like growth factor-I [54–57]. TFFs are small secreted proteins
involved in protection of the mucosal lining of the gastrointestinal tract [58,59]. They pro-
tect against gastrointestinal damage by stimulating the migration of adjacent epithelial
cells, a process termed “restitution”, and by virtue of their interaction with mucins and
other proteins [60–62].

Tissue localization analyses show the highest expression of TFF2 (also known as SP;
SML1) in stomach/duodenum [63]. TFF2 has structural homology with growth hormone
and has been detected in blood streams [54,64,65]. Moreover, Tff2 is specifically upregulated
by HF meals in gastrointestinal mucosa, whereas downregulated in hypothalamus [44,66].
This is in agreement with the expression pattern of a peripheral signal secreted to inform
the brain to stop eating fat. We have shown that Tff2 knockout (KO) mice have increased
EI, EE, and excretion, as well as lower abdominal adipose tissue [66].

Studies with Tff2-deficient mice have not only shown the evidence of decreased gastric
cell proliferation, increased acid secretion, and increased susceptibility to gastric mucosal
injury [67], but have also revealed new aspects of Tff2’s role in the immune response such
as changes in the expression of diverse crucial genes involved in innate and adaptive
immunity [68,69], including defensins which regulate the composition of the intestinal
bacterial microbiome [70]. The innate and adaptive immunity as well as microbiota are
dysregulated in obesity and metabolic disorders such as insulin resistance [71,72]. More-
over, TFF2 secretion can be regulated by both pro-inflammatory and anti-inflammatory
cytokines including tumor necrosis factor alpha (TNF-α), interleukin 4 (IL-4), and IL-13,
and in turn influence cytokine release and activation (i.e., IL-1, IL-6) [69], as well as immune
cell recruitment [73]. This correlates with its suggested roles both as anti-inflammatory [74]
and in reducing immune-mediated damage [75].

Furthermore, expression of apolipoprotein A-IV (Apoa4) which has an anti-inflam-
matory effect and inhibits gastric motility, emptying and acid secretion [76,77], has been
shown to be upregulated in the stomach and duodenum of Tff2-deficient mice [68,69].
Importantly, apoA-IV is a satiety signal induced by lipid ingestion [78]. Moreover, the
circadian rhythm of pancreatic polypeptide expression, which is known to regulate food
intake, is negatively correlated with gastric Tff2 circadian rhythm [79]. Tff2 expression has
been shown to be regulated by peroxisome proliferator-activated receptor (PPAR) γ [80],
which is established as an important target for the treatment of T2D and other disorders
associated with HF intake [81]. Finally, the repression of Apoa4 was followed by Tff2 whose
modulation was concomitant with fat intake [44]. Therefore, this evidence suggest that Tff2
might be a novel candidate gene for fat satiety control. However, the roles of this protein in
the regulation of feeding behaviour, energy balance and development of obesity are yet
to be fully understood. Therefore, the characterization of the mechanisms will be the first
step to understand its roles, as well as to develop new therapeutic targets to control food
and fat intakes.
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It is widely accepted that TFFs exert their biological action through a cell surface recep-
tor [82]. Concordantly, several membrane proteins are found to interact with TFF2 [83–86].
Recently, Dubeykovskaya et al. demonstrated an ability of TFF2 peptide to activate
Ca2+-Akt-ERK1/2 (for extracellular-signal-regulated kinases 1/2) signaling pathway via
chemokine (C-X-C motif) receptor 4 (CXCR4). Interestingly, CXCR4 was first reported as
bovine neuropeptide Y (NPY) Y3 receptor [87]. Moreover, following 12 weeks of feeding,
Tff2 KO mice exhibited lower abdominal adipose tissue and diameter of retroperitoneal
adipocytes compared to the wild-type mice [66]. Furthermore, the Tff2 KO mice showed
increased EE and excretion, whereas higher EI were observed. Digestive energy efficiency,
duodenum mucosal length, glycemia, as well as insulin and leptin levels, were lower in
KO mice [66]. Appetite signal, agouti-related protein (Agrp), expression was higher in
the hypothalamus [66]. Thus, TFF2 seems to be a mastermind regulator of overall energy
balance. Consequently, it is important to investigate the various mechanisms of action of
TFF2 on energy balance corresponding not only to new, but also multiple opportunities to
eventually prevent and treat obesity, which remains to this day a major challenge to public
health providers.

In order to identify the mechanisms whereby TFF2 regulates feeding, we need to
explore the pathways of TFF2 action on feeding. Tff2 KO mice showed HF-specific in-
crease in meal intake [66]. Any satiety signal induced by food intake (FI) may reach the
central nervous system (CNS) either through blood circulation or vagal nerve afferences
relaying gastrointestinal stimuli. Since Tff2 is expressed in the gastric mucosa, and that
oral/systemic administration of radioactive TFF2 was found in blood, digestive tracts, and
brain, TFF2 might act as a peripheral signal to the CNS [64]. It is worth noting that no
adverse metabolic effect has been reported with oral/systemic administration of TFF2 [64].

On the other hand, regarding the biological links, there are connections between
CXCR4 and appetite/satiety signals (possibly involving TFF2, Figure 1). Indeed, TFF2
receptor, CXCR4, is localized within areas rich in dopaminergic (DA) neurons [88]. Mesolim-
bic/mesocortical DA neurons are essential for reward and motivational behaviours [89].
Thus, there would be an important addition to elucidate whether CXCR4 is expressed in the
same neurons expressing appetite (Npy/Agrp)/satiety (proopiomelanocortin, Pomc/cocaine-
amphetamine regulated transcript, Cart and corticotrophin releasing hormone, Crh) signals.
We have shown higher Agrp expression in the hypothalamus of Tff2 KO mice [66]. To
elucidate how TFF2 modulates energy expenditure, there is a need to focus on energy
expenditure since there are evidences that a regulatory control on EE is exerted through
the sympathetic nervous system, especially on BAT thermogenesis by uncoupling protein 1
(UCP1) [90]. The TFF2 receptor, CXCR4 is involved in mesolimbic/mesocortical DA system
to modulate locomotor activity and our data showed higher locomotion activity in Tff2
KO mice [91]. These suggest the involvement of mesolimbic/mesocortical DA system in
the modulation of locomotion activity in Tff2 KO mice via CXCR4. Therefore, behavioural
activity after TFF2 injection with or without pre-infusion of CXCR4 is to be investigated as
well [66,91]. Importantly, expression of CXCR4 in other tissues including digestive tract
and metabolic tissues [92–100], could suggest a metabolic action of TFF2 via CXCR4 within
these tissues.

Regarding the EE during HF or LF feeding, we have demonstrated that Tff2 KO mice
exhibited higher locomotor activity and total EE than WT animals [66]. The metabolic
exploration of Tff2 KO mice revealed interesting patterns for the lipid intake and excretion
as well as the energy balance within the key metabolic tissues, as well the body and tissue
weights [101]. Briefly, the Tff2 KO in mice resulted in lower glucose, triglycerides (TG),
and glycerol serum levels with a metabolism towards less fat storage and increased EE by
enhancing lipid and glucose utilization via oxidative phosphorylation in the key metabolic
tissues (muscle, liver and adipose tissues) [101]. The Tff2 KO also led to reduced body and
adipose tissues weights [101].
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Figure 1. Possible connection between CXCR4 and appetite/satiety signals. Meal-modulated hor-
monal and neuronal signals from the gut are received via the blood in the area postrema (AP) and 
through vagal afferent fibers in the nucleus of the solitary tract (NTS), respectively. These sensory 
inputs are transmitted via the ventral tegmental area (VTA) to other centers, including the amyg-
dala (AMY) and nucleus accumbens (Nac), where dopaminergic (DA) and other signals act in re-
ward processes. Inputs from these pathways are integrated with circulating signals of nutritional 
state which are detected in the arcuate nucleus (ARC) via the median eminence. Within the ARC, 
the activity of neurons expressing proopiomelanocortin (POMC) is stimulated, while that of neu-
rons expressing neuropeptide Y (NPY) is inhibited by leptin. Axons from both types of neurons 
project in parallel to the paraventricular nuclei (PVN) and lateral hypothalamus (LH). Release of 
α-melanocyte-stimulating hormone by POMC-expressing neurons leads to activation of the mela-
nocortin receptor 4 (MC4R), which lowers food intake and increases energy expenditure (EE). By 
contrast, release of NPY activates Y1 and Y5 receptors, which increases food intake and reduces EE. 
NPY-expressing neurons also release agouti-related protein (AgRP), an antagonist of MC4R. This 
dual innervation within the PVN modulates EE via the thyroid and adrenal axis and the sympa-
thetic nervous system. Abbreviations: CART, cocaine–amphetamine regulated transcript; CXCR4, 
chemokine (C-X-C motif) receptor 4; PFC, prefrontal cortex; TFF2, trefoil factor family member 2; 
VMN, ventromedial nuclei. 

Regarding the EE during HF or LF feeding, we have demonstrated that Tff2 KO mice 
exhibited higher locomotor activity and total EE than WT animals [66]. The metabolic 

Figure 1. Possible connection between CXCR4 and appetite/satiety signals. Meal-modulated hor-
monal and neuronal signals from the gut are received via the blood in the area postrema (AP) and
through vagal afferent fibers in the nucleus of the solitary tract (NTS), respectively. These sensory
inputs are transmitted via the ventral tegmental area (VTA) to other centers, including the amygdala
(AMY) and nucleus accumbens (Nac), where dopaminergic (DA) and other signals act in reward
processes. Inputs from these pathways are integrated with circulating signals of nutritional state
which are detected in the arcuate nucleus (ARC) via the median eminence. Within the ARC, the
activity of neurons expressing proopiomelanocortin (POMC) is stimulated, while that of neurons
expressing neuropeptide Y (NPY) is inhibited by leptin. Axons from both types of neurons project in
parallel to the paraventricular nuclei (PVN) and lateral hypothalamus (LH). Release of α-melanocyte-
stimulating hormone by POMC-expressing neurons leads to activation of the melanocortin receptor
4 (MC4R), which lowers food intake and increases energy expenditure (EE). By contrast, release of
NPY activates Y1 and Y5 receptors, which increases food intake and reduces EE. NPY-expressing
neurons also release agouti-related protein (AgRP), an antagonist of MC4R. This dual innervation
within the PVN modulates EE via the thyroid and adrenal axis and the sympathetic nervous system.
Abbreviations: CART, cocaine–amphetamine regulated transcript; CXCR4, chemokine (C-X-C motif)
receptor 4; PFC, prefrontal cortex; TFF2, trefoil factor family member 2; VMN, ventromedial nuclei.
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4. Experimental Perspectives

In order to complete the puzzle surrounding the molecular mechanisms and pathways
of the multifunctional TFF2 in the context of lipid-related signals along with a possible
connection between fat sensing in gut and the satiety signals in hypothalamus, further
studies can be suggested.

Following fat digestion by lipases, the lipolytic products are absorbed by the entero-
cytes where chylomicrons are formed and secreted. The assembly of these TG-rich lipopro-
teins within the enterocyte is a multistep pathway including: (1) the uptake (CD36 and FA
transport protein 4, FATP4) and translocation of lipolytic products from the brush-border
membrane to the endoplasmic reticulum by FA binding protein 1/2 (FABP1/2); (2) TG
synthesis via monoacylglycerol pathway (monoacylglycerol acyltransferase 2, MGAT2 and
diglyceride acyltransferase 2, DGAT2) and phosphatidic acid pathway; (3) the packaging
of lipid and apolipoprotein components into lipoprotein particles (apoB-48 and apoA-IV);
(4) the transport into the Golgi for secretion (microsomal TG transport protein, MTP) [102].
We have already reported that many genes listed above have been modulated by HF and
LF meal ingestion [44]. Thus, the expression levels of such key genes and proteins involved
in lipid absorption are important to understand.

There are several practical steps that would also allow further exploration of TFF2
metabolic implications. These include injection of this secreted (recombinant protein) pro-
tein to mice orally, intravenously and intracerebroventricularly [103–113]. Brain sections
can be processed for immunocytochemical detection of CXCR4 [88], and in situ hybridiza-
tion of Npy, Agrp, Pomc, Cart and Crh in mice either fasted or refeeding with HF or LF
meal to make a link between the expression of the molecules and the corresponding Tff2
expression depending on the status (fasting, LF feeding and HF feeding). Along with
the expression of other peripheral appetite/satiety signals (ghrelin, cholecystokinin, PYY,
and apoA-IV) [114] combined with c-Fos expression that is particularly reliable to assess
brain activations in response to feeding [103], an in situ hybridization of Npy, Agrp, Pomc,
Cart and Crh mRNA can be performed to determine whether NPY/AgRP, POMC/CART
and CRH cells will be activated [103,105,106]. It has been shown that c-Fos expression is
induced by refeeding [103], and the subcutaneous injection of peptide YY (PYY) in the
nucleus of the solitary tract (NTS) [115] which represents an additional molecular link.
In addition, an in vitro model such as Caco-2 cells, used as a valid model of study for
lipid/lipoprotein homeostasis [114,116], would allow us to study the lipid synthesis, secre-
tion, and metabolism variations with both Tff2 knockdown and overexpression. Similar
studies can be conducted in the diverse existent animal models of obesity as well [117].

5. Conclusions

The functional genomics studies that revealed Tff2 as a HF-induced gene combined
with the observations of the metabolic implications of TFF2, as well as the metabolic
phenotype of Tff2 KO mice allow us to build a hypothetic path regarding a TFF2 mechanism
as a response to HF diet (Figure 2). The HF diet induces an overexpression of TFF2 which
acts not only towards energy balance centers, (Figure 1) but would also facilitate the
lipids intestinal absorption. This explains that the Tff2 KO mice had an increased energy
excretion in form of TG (lipids not absorbed). In addition, the Tff2 KO resulting in an
increased metabolic activity of both lipids and glucose in the mice (that ultimately led
to the protection from the HF diet-induced obesity) points TFF2 as a lipid anabolic (and
possibly a carbohydrates conversion into lipids) factor and explains the reduced adiposity
in Tff2 KO mice. On the other hand, the other properties associated to TFF2 such as
anti-inflammatory [74] and reducing immune-mediated damage [75] would indicate roles
that would balance some of the HF diet consequences, such as inflammation and immune
induction. This correlates with the protective roles TFF2 plays in the digestive mucosa
as well. Since during fat absorption apoA-IV is secreted into intestinal lymph [118], the
upregulation of Apoa4 in Tff2-deficient mice [68,69] could be a regulatory mechanism
aiming to compensate the reduced lipid absorption resulting from the absence of TFF2.
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Taken together, these elements highlight TFF2 as a molecule induced by HF diet in order to
facilitate the absorption of the lipids, their storage, as well as their anabolism, along with
the induction of mechanism that would correct or reduce the negative impacts of HF diet
in terms of inflammation and immune impacts. Ultimately, we would conclude that TFF2,
as a lipid anabolic factor and a lipid absorption facilitator, would contribute to obesity
establishment. Such important molecular implication in obesity pathogenesis fits well and
explains the reported protection from HF diet-induced obesity seen in Tff2 KO mice.
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Figure 2. TFF2 hypothetic implications in obesity development and its potential therapeutic targeting. The high-fat diet
increases TFF2 expression. This would lead to the facilitation of the intestinal lipid absorption, as well as the increase in
lipids storage in part, at least, via increasing anabolism. All these contribute to obesity development. Thus, inhibiting or
reducing the expression or the action of TFF2 would reduce the lipid intestinal absorption as well as the adiposity. That
points targeting TFF2 and its related pathways as a potential antiobesity therapeutic approach. Both TFF2 action and
inhibiting TFF2 mechanisms would involve CXCR4 pathways. Abbreviations: CXCR4, chemokine (C-X-C motif) receptor 4;
TFF2, trefoil factor family member 2.

Within this context, there is a potential to develop new treatments for obesity and
related diseases by characterizing the molecular mechanisms by which TFF2 controls
energy balance and target the related pathways. The next objectives are to identify the
mechanisms by which TFF2 regulates feeding, EE, and energy excretion, as well as explore
the roles of TFF2 in obesity and related diseases. Future studies will allow the characteri-
zation of potential therapeutic targets which can be used for the treatment of obesity and
related diseases by the administration of the pharmaceutical inhibitors of TFF2 pathway
among other options. The ultimate goal is to develop a novel generation of treatments
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and therapeutic targets for obesity and metabolic disorders that would pharmacologically
target TFF2 pathways to mimic the antiobesity effects of Tff2 KO (Figure 2). The putative
advantages of interference with intestinal lipid absorption in course of TFF2 blockade
compared to the well-established therapeutic option of lipase inhibition by orlistat could be
summarized within several points. Unlike orlistat [119,120], the Tff2 KO mice did not have
diarrhea, although they had an increased TG excretion [66]. TFF2 blockade would also lead
to an increased EE. In addition, targeting TFF2 pathway would lead to an antiobesity effect
not only via the interference with intestinal lipid absorption but also through the energy
metabolism control center as well as the key metabolic tissues. However, the involvement
of TFF2 in different functions [86,121–123], such as mucosa protection, imposes a specific
pharmacovigilance for such potential pharmacological approaches such as prioritizing
targeting the peripheral (intestinal) TFF2 pathways rather than the central (brain) path-
ways, such as using a CXCR4 antagonist. Importantly, since intestinal villi increase the
absorptive area and the surface area of the intestinal wall and the implication of TFF2
in the mucosa, possible morphological changes of such pharmacological targeting could
affect nutrients absorption as well. In addition, an assessment of metabolic markers in
the key metabolic tissues including those revealed by the metabolic exploration of Tff2
KO mice [101] would be important for such pharmacological agents. That includes the
fatty acids translocase in the skeletal muscle, as well as the nerve growth factor IB (NGFIB,
also known as Nur77) that both coordinately regulates the expression of genes linked to
glucose metabolism, including insulin sensitive glucose transporter type 4 (Glut4) [124]
and regulates lipolysis and gene expression of Ucp2/3, Pgc1α, Cd36 [125,126]. In the liver,
Nur77 stimulates glucose production and induces expression of genes involved in glu-
coneogenesis [126]. Adiponectin, which is exclusively secreted from adipose tissue, also
affects these insulin-sensitizing processes by stimulating fatty acids oxidation in the skeletal
muscle and repressing hepatic-glucose production [127]. PPARγ is a master regulator of
adipocyte differentiation and function [128]. Thus, along with leptin and adiponectin, these
elements are at the heart of the molecular explorations required towards developing “lipid
metabolism-controlling pills”.
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