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Abstract: In this paper, the steady electrically conducting hybrid nanofluid (CuO-Cu/blood) laminar-
mixed convection incompressible flow at the stagnation-point with viscous and gyrotactic microor-
ganisms is considered. Additionally, hybrid nanofluid flow over a horizontal porous stretching
sheet along with an induced magnetic field and external magnetic field effects that can be used in
biomedical fields, such as in drug delivery and the flow dynamics of the microcirculatory system.
This investigation can also deliver a perfect view about the mass and heat transfer behavior of blood
flow in a circulatory system and various hyperthermia treatments such as the treatment of cancer.
The simple partial differential equations (PDEs) are converted into a series of dimensional ordinary
differential equations (ODEs), which are determined using appropriate similarities variables (HAM).
The influence of the suction or injection parameter, mixed convection, Prandtl number, buoyancy
ratio parameter, permeability parameter, magnetic parameter, reciprocal magnetic prandtl number,
bioconvection Rayleigh number, coupled stress parameter, thermophoretic parameter, Schmidt num-
ber, inertial parameter, heat source parameter, and Brownian motion parameter on the concentration,
motile microorganisms, velocity, and temperature is outlined, and we study the physical importance
of the present problem graphically.

Keywords: nanoparticle mass; hemodynamics; chemical reaction; hybrid nanofluid; induced mag-
netic field; blood; gyrotactic microorganisms; drug delivery

1. Introduction

Bloodstream investigation in a human circulatory framework has developed amazing
revenue in biotechnology and the world of medicine since most human diseases were
caused by unsatisfactory supplies of blood to the lungs, veins, corridors, tissues, and systole
stages. Numerous circulatory framework problems, including atherosclerosis embolism,
aspiratory embolism and a blockage of blood supply in veins, nerves, and corridors,
instigate a heart attack, stroke and ischemic thoracic inconvenience. By increased the blood
temperature of 39 ◦C through 42 ◦C (hyperthermia) from average body temperature, the
heart output doubles and the circulation increases. Nanomaterials have recently received
a lot of attention in the field of biomedicine because of their useful applications, such
as anticancer drug delivery, biosensing, antibacteria, and cell imaging, etc. Magnetic
nanoparticles are extremely useful in magnetic drug targeting and magnetic resonance
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imaging agents, among other applications. Numerous studies have been conducted to
determine the significance of nanoparticles in biological sciences. Chauhan and Tiwari [1]
worked on non-Newtonian Herschel–Bulkley liquid and analyzed the heat transfer on
blood movement in previous veins. They saw higher accuracy paper estimates generally
decrease the blood velocity in veins. It is used for many positive therapies, such as cancers,
cardiac drugs, and malignant development (Deussen [2] and Deniz [3]). With the aid of
peristaltic and nanofluid, Bég and Tripathi [4] proposed the reconstruction of Mathematica’s
bioengineering concept. Kothandapani and Prakash [5] found a heating source on an
asymmetrical pointing channel on a non-Newtonian excessive digression nanofluid model.
Akbar [6] examined delayed blood propagation of metal-based nanomaterial through the
shaped stenotic route and explained nanomedicine applications. In Bhatti’s study [7], the
properties and implementations of the vector viscosity blood clot model were investigated.
The two-step model of peristalsis was considered in Dinarvand [8]. The constant laminar-
blended mixture viscous and hybrid (CUO-Cu/blood) hybrid fluid flows near the plane
stagnations on a level, permeable, linearly stretched board with an adjustable magnetic flux
through a new nanoparticle and based liquid measurement [9]. Majee et al. conducted a
methodical report on shaky blood progression with magnetic nanoparticles and is supposed
to carry out the design of streams and nanoparticles in an infected blood vessel section that
has atherosclerosis. Varshney [10] mathematically researched the pulsatile movement of
blood going through a tightening vein, while the speed increase in the body is rambling.
Jinga’s [11] research was conducted by combining a hybrid discrete component and a
unit monitoring approach to calculate and stress the transmission behaviors of fractured
crystalline rocks. The inspiration is the significance of insightful pressure impacts on the
behavior, which are critical for the estimation of the environmental protection of many rock
building projects, of the impurity transportation of broken crystalline rocks. Noorishad [12]
presents a new means for the accurate testing of liquid stream lead in cracked permeable
media, which is presented here. To do this, mechanical and liquid stream limits of both
permeable and breakage media are used as part of an increase in Blot’s three-dimensional
union hypothesis. Ellahi [13] introduced the peristaltic fluid stream between two coaxial
cylinders of different forms and designs. The nanofluid consists of gold particles, while
the pair of pressure fluids are filled as solvents. Choi and Eastman [14] created the term
nanofluid, and this fluid is generated through a dilute inspection of solid particulate matter
of 1–100 nm in constant fluids (oil, water, etc.). By the inclusion of ZnO, Cu, SiO2, TiO2,
and Al2O3 nanopowders, the efficiency of the heat transfer of regular fluids has been
greatly increased. In recent years, several investigators have discovered hypothetically
and experimentally the characteristics of heat transfer from different nanoparticles in
many manufacturing processes, development processes, and the application of renewable
energy [15–21]. Researchers have developed various models for studying the Tiwari and
Das model of nanofluids. Late in life, various researchers hypothetically and provisionally
identified warmth motion attributes for several mechanical cycles, manufacturing, and
environmentally friendly energy applications of different nanoparticles [15–21]. Specialists
in nanofluids in which the Tiwari and Das model was presented with different models.

The macroscopic movement of fluid induces additional flexibility in swimming mi-
croorganisms, known as bioconvection, as a consequence of the 3-D variant in density
over one region. The self-driving mobile microorganisms aim to boost the base fluid,
creating a bioconvective stream in a specific direction. The travelling microorganisms
are classified into different categories of chemical or oxytactical, gyrotactic, and negative
gravitational characteristics. Nanoparticles are not self-regulated in comparison to mobile
microorganisms, and the influence of the Brownian motion and the effect of thermophoresis
is responsible for their motion. Nanofluid bioconvection is supposed to be feasible if the
convergence of nanoparticles is low, and then, the choice for improved fluid thickness
in the base is not sufficient. Basha [22] provided a mathematical response to the blood
nanofluid fluid quality of a vehicle streaming across the plate, wedge, and stagnating
stage. The effects of non-linear radiation, sticky dispersion, convinced magnetic field,
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and material reaction and the pertinence of the microorganism’s properties are evaluated.
Bhatti [23] also studied the behavior of a changeable magnetic field and blood clot model
using Jeffrey fluid nanoparticles and medication models. Ahmed [24] has regarded the
magnetized, non-Darcy, permeable, laminar circulation of nanofluid and gyrotactic mi-
croorganisms. Kuznetsov [25] submitted nanoparticular suspension using the principle
of Buongiorno for gyrotactic microorganisms. Raju [26] issued a mathematical study to
determine Casson nanofluid stream liquid vehicles using gyrotactic microorganisms, which
showed that adding the wedge point limits reduced the microorganism’s thickness. Raju
and Rashad [27] addressed gyrotactic microorganisms’ impact on a chemical nanofluid
flow over a vertical cylinder and noted that the amount of Rayleigh bioconvection in-
creases the density of microorganisms. Liao (1992) [28] has observed that this technique
is fast convergent to the approximate solution, and it is the best fit for the solution of
non-linear problems. We considered an electrically guided coupled pressure crossover
(CuO-Cu/blood) nanofluid stream comprised of gyrotactic microorganisms pushed near
the plane stagnation-point over a level, permeable, extending layer alongside an outer at-
tractive field and prompted attractive field impacts in the current study. This investigation
will also provide a good image of the temperature and mass exchange activity of blood
in a circulatory system, as well as various hyperthermia treatments, such as cancer care.
The Buongiorno model was used to demonstrate thermophoresis and Brownian dispersion.
The sheet is permeable, and the surface of the stretching sheet has an injection effect. Our
model is mathematically formulated by deriving the governing equations and applying
sufficient similarity transformations. Using the Homotopy Analysis process, we can solve
our modeled problem.

1.1. Problem Mathematical Modeling

We are assuming the continuously laminar-varied convection compact viscous and the
electrically guided coupling pressure Darcy–Forchheimer CuO-Cu/Blood hybrid nanofluid
fluids and heat close to the stagnation point on a smooth, directly extending the plate
below an exterior magnetic flux, as defined in Figure 1. The thermophoresis and Brownian
diffusion effects were analyzed using the Buongiorno model. The sheet is permeable,
and the stretching sheet’s surface has an injection effect. Moreover, the suction/injection
velocity of the sheet is V0, while the linear stretching velocity is uw = cx. Furthermore, the
sheet’s temperature depends on the stagnation point, i.e., Tw = T∞ + T0

x
l . The control of

the boundary layer and external magnetic flux towards x- direction can be represented by
ue = ax and He(x) = H0

x
l . We stress that this evaluation is a characteristic length l of the

uniform magnetic field H0 in the upstream infinity. Table 1 display the thermophysical
properties of cp, ρ, k and β. The following principles can be expressed in the following
terms: simple non-linear PDEs.

∂u
∂x

+
∂v
∂y

= 0, (1)

∂H1

∂x
+

∂H2

∂y
= 0, (2)

u ∂u
∂x + v ∂u

∂y −
µe

4πρhn f

(
H2

∂H1
∂x + H2

∂H1
∂y

)
= µe

dµe
dx −

µe
4πρhn f

He
dHe
dx +

µhn f
ρhn f

∂2u
∂y2

− µhn f
ρhn f

u
k∗ −

η0
ρhn f

∂4u
∂y4 +− (ρm−ρ f )(n−n∞)

ρhn f
g− (ρp−ρ f )(C−C∞)

ρhn f
g +

(1−C∞)βρ f (T−T∞)g
ρhn f

,
(3)

u
∂H1

∂x
+ v

∂H1

∂y
− H1

∂u
∂x
− H2

∂u
∂y

= η0
∂2H1

∂y2 , (4)

u
∂T
∂x

+ v
∂T
∂y

=
khn f(

ρcp
)

hn f

∂2T
∂y2 + τ

[
DB

(
∂C
∂y

∂T
∂y

)
+

DT
T∞

(
∂T
∂y

)2
]
+

Q(
ρcp
)

hn f
(T − T∞), (5)

u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 +

(
DT
T∞

)
∂2T
∂y2 − Kr(C− C∞), (6)
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uNx + vNy +
b∗Wc

(Cw − C∞)

(
NCy

)
y = DN Nyy, (7)
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Figure 1. Two-dimensional problem and coordinate system of the Schematic diagram.

Table 1. Nanoparticles and primary base fluid have the following thermophysical properties [8].

Thermophysical Properties Fluid Phase (Blood) Copper Oxide (CuO) Copper (Cu)

cp (J/kgK) 3594 533 385

ρ (kg/m3) 1063 6500 8933

k (w/mK) 0.492 17.65 400

β × 105 (L/K) 0.18 1.8 1.67

Particles size (nm) - 29 5–25

Following to the boundary conditions:

u = uw = cx, v = −V0, ∂H1
∂y = H2 = 0, T = Tw = T∞ + T0

x
l , DB

∂C
∂y + DT

T∞
∂T
∂y , N = Nw at y = 0,

u = µe = ax, H1 = He = H0
x
l , T = T∞, C = C∞, N = N∞ at y = ∞.

(8)

where the position temperature T0, the atmospheric temperature T∞, magnetic permeability
µe, u and v, alongside x− and y− axes H1 and H2 are the velocity units with persuaded
components of the magnetic field on each. The dimension k∗ is the magnetic absorption
potential of the permeable intermediate. Diffusivity g is gravity acceleration, temperature
is T, β is the thermal growth volumetric constant, and Q is the heat generation volumetric
rate/absorption. ρhn f , µhn f ,

(
ρcp
)

hn f and khn f are the density, viscosity, heat power volu-
metric, and hybrid nanofluid thermal conductivity calculated, respectively. These can be
seen from Table 2.

As we note, the experimental type factor of the nanoparticles seen in Figure 2 is the
classic Hamilton–Crosser approximate for real thermal conductivity.

It is worthwhile to mention here that, we suggest φ, ρs and
(
cp
)

s as the equivalent
nanoparticle volume fraction, the equivalent density of nanoparticles and the equivalents
pecific heat at constant pressure of nanoparticles, respectively. Moreover, respectively, φ1
and φ2 are the 1st and 2nd nanoparticles’ volume fraction of these compatible formulae:

ρs =
(ρ1 × w1) + (ρ2 × w2)

w1 + w2
(9)

(
ρcp
)

s =

((
cp
)

1 × w1
)
+
((

cp
)

2 × w2
)

w1 + w2
(10)
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Table 2. Adapted frameworks and thermophysical properties for the hybrid nanofluid.

Property Hybrid Nanofluid

Viscosity (µ) µ f

(1−φ)2.5

Volumetric heat capacity (ρ) (1− φ)ρ f + φρs

Volumetric heat capacity (ρcp) (1− φ)
(
ρcp
)

f + φ
(
ρcp
)

s

Thermal conductivity (k)

k2+(n2−1)k f−(n2−1)φ1(k f−k2)
k2+(n2−1)kn f +φ2(kn f−k2)

× k1+(n1−1)k f−(n1−1)φ1(k f−k1)
k1+(n1−1)kn f +φ2(kn f−k1)

× k f ;

kn f =
k1+(n1−1)k f−(n1−1)φ1(k f−k1)

k1+(n1−1)kn f +φ2(kn f−k1)
× k f

φ1 =
w1
ρ1

w1
ρ1

+
w2
ρ2

+
w f
ρ f

, (11)

φ2 =
w2
ρ2

w1
ρ1

+
w2
ρ2

+
w f
ρ f

, (12)

φ = φ1 + φ2, (13)

More, in Equations (12)–(15), a group of similar variables are introduced, and w1, w2
and w f are the 1st and 2nd nanoparticles and the base fluid masses, respectively.

η =
(

c
ν f

)1/2
y, ψ =

(
cν f

)1/2
x f (η), H1 = H0x

l g′(η),

H2 = −
(

ν f
cl2

)1/2
H0g(η), θ(η) = T−T∞

Tw−T∞
, φ(η) = C−C∞

Cw−C∞
.

(14)

Putting Equation (17) into dimensional administering, Equations (1)–(4), (6), and (11)
tips to accomplish these dimensionless non-linear overseeing ODEs.

KA1 f v + f ′′′ +
1
k1

f ′ −
λρ f

ρhn f
[θ − Nrφ− Rbξ] + A1

(( a
c

)2
+ f f ′′ − f ′2

)
+ βA2

(
g′2 − gg′′ − 1

)
= 0, (15)

Λg′′′ + f g′′ − f ′′ g = 0, (16)

θ′′ +
k f

khn f
A4Prθ′ +

k f

khn f
αθ +

(
kcp
)

f

khn f
A4Pr

[
Nbθ′φ′ + Ntθ

′2
]
= 0, (17)
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Φ′′ + Sc f Φ′ +
Nt

Nb
θ′′ − AΦ = 0, (18)

ξ ′′ − Pe
(
(ξ + σ1)φ′′ + ξ ′φ′

)
− PrLb f ξ ′ = 0. (19)

A1 = A2 ×
(

1−
w1
ρ1

+
w2
ρ2

w1
ρ1

+
w2
ρ2

+
w f
ρ f

+
w1
ρ1

+
w2
ρ2

w1
ρ1

+
w2
ρ2

+
w f
ρ f

ρs
ρ f

)
, A2 =

(
1−

w1
ρ1

+
w2
ρ2

w1
ρ1

+
w2
ρ2

+
w f
ρ f

)

A3 = A2

[
w2
ρ2

w1
ρ1

+
w2
ρ2

+
w f
ρ f

{(
1−

w1
ρ1

w1
ρ1

+
w2
ρ2

+
w f
ρ f

)
+

w1
ρ1

w1
ρ1

+
w2
ρ2

+
w f
ρ f

(ρβ)1
(ρβ) f

+
w2
ρ2

w1
ρ1

+
w2
ρ2

+
w f
ρ f

(ρβ)2
(ρβ) f

}]

A4 =

(
1−

w1
ρ1

+
w2
ρ2

w1
ρ1

+
w2
ρ2

+
w f
ρ f

+
w1
ρ1

+
w2
ρ2

w1
ρ1

+
w2
ρ2

+
w f
ρ f

(ρcp)s
(ρcp) f

)

Comparably, replacing Equation (17) with Equation (7) provides one with the follow-
ing dimensionless boundary conditions:

f (0) = s, f ′(0) = 1, g(0) = g′′ (0) = 0, θ(0) = 1, φ(0) = 1, ξ(0) = 1,
f ′(∞)→ a

c , g′(∞)→ 1, θ(∞)→ 0, φ(∞)→ 0, ξ(∞)→ 0.
(20)

Obviously, primes signify the separation regarding η. In the current issue, admin-
istering parameters, for example, Prandtl number (Pr), suction or injection parameter
(s), penetrability boundary (k1), magnetic boundary (β), blended convection or light-
ness boundary (λ), corresponding magnetic Prandtl number (Λ), inertial boundary (F1),
thermophoretic boundary (Nt), Brownian movement boundary (Nb), coupled pressure
boundary (K), Schmidt number (Sc), and heat source boundary (α), are characterized as:

Pr =
ν f
α f

, s = V0

(cν f )
1/2 , k1 = ck∗

ν f
, β = µe

4πρ f

(
H0
lc

)2
, α =

Qν f
ck f

, Λ = η0
ν f

,

F1 =
υ f cb√

k f
λ = Grx

Re2
x
, Grx = gβ f (T − T∞) x3

(ν f )
2 , Rex = uwx

ν f
= x2c

ν f
,

R = 4σ1T3
∞

k∗k f
, Nb = τDB(Cw−C∞)

ν f
, Nt =

τDT(Ts−T0)
ν f T0

, Sc =
ν f
DB

Nr =
(ρp−ρ f )∆C

ρ f β(1−C∞)∆T , Pe =
b∗Wc
Dm

, Lb = α
DN

, σ1 = N∞
Nw−N∞

, Rb =
(ρm−ρ f )gγ∆n
ρ f β(1−C∞)∆T .

(21)

where the local Grashof number, bioconvection Rayleigh number, bioconvection Peclet
number, bioconvection Lewis number, buoyancy ratio parameter, concentration difference
parameter, and the local Reynolds number, respectively, are denoted by the following
symbols Grx , Rb, Pe, Lb, Nr, σ1, and Rex. The suction and injection should be noted and
correlate to the suction.

1.2. Physical Quantities of Interest

For the above model, the local Nusselt number (Nux), local Sherwood number (Shx),
and skin friction coefficient

(
c f x

)
are clear as follows:

c f x =
τw

ρ f u2
w

, Nux =
xqw

k f (T − T∞)
, Shx =

xqm

DB(C− C∞)
(22)

where
τw = µhn f

(
uy
)

y=0, qw = −khn f
((

Ty
)
− qr

)∣∣∣
y=0

, qm = −DB
(
Cy
)∣∣

y=0 (23)

From above, we have the dimensional form as

[Rex]
1
2 C f =

(
1−

w1
ρ1

+
w2
ρ2

w1
ρ1

+
w2
ρ2

+
w f
ρ f

)
f ′′ (0), [Rex]

− 1
2 Nux = − khn f

k f
θ′(0),

[Rex]
− 1

2 Sh = −φ′(0), NnxRe−1/2
x = −ξ ′(0).

(24)



Molecules 2021, 26, 3954 7 of 22

1.3. Solution by HAM

Boundary conditions (Equation (20)) with Equations (15)–(19) have been resolved via
HAM. Mathematica programming is utilized for this objective.

L_
f
(
_
f ) =

_
f

v
, L_

g
(
_
g ) =

_
g
′′′

, L_
θ
(
_
θ ) =

_
θ
′′

, L_
Φ
(
_
Φ) =

_
Φ
′′

, L_
ξ
(
_
ξ ) =

_
ξ
′′

, (25)

The linear operators are presented as:

L_
f
(e1 + e2η + e3η2 + e4η3 + e5η4) = 0, L_

g
(e6 + e7η + e8η2) = 0,

L_
θ
(e9 + e10η) = 0, L_

Φ
(e11 + e12η) = 0 , L_

ξ
(e13 + e14η) = 0

(26)

The non-linear operatives are chosen as N_
f
, N_

g
, N_

θ
and N_

φ
and are identified in

the following systems:

N_
f

[
_
f (η; ζ),

_
g (η; ζ),

_
θ (η; ζ),

_
Φ(η; ζ),

_
ξ (η; ζ)

]
= KA1

_
f ηηηηη +

_
f ηηη +

1
k1

_
f η

− λρ f
ρhn f

[
_
θ − Nr

_
Φ− Rb

_
ξ

]
+ A1

(( a
c
)2

+
_
f
_
f ηη −

_
f η

2
)
+ βA2

(
_
g

2
η −

_
g
_
g ηη − 1

)
, (27)

N_
g

[
_
f (η; ζ),

_
g (η; ζ)

]
= Λ

_
g ηηη +

_
f
_
g ηη −

_
f ηη

_
g , (28)

N_
θ

[
_
θ (η; ζ),

_
Φ(η; ζ)

]
=
(

1 + 4
3 R
)_

θ ηη +
k f

khn f
A4Pr

_
θ η +

k f
khn f

α
_
θ

+
(kcp) f

khn f
A4Pr

(
Nb

_
θ η

_
φ η + Nt

_
θ η

2
)

,
(29)

N_
Φ

[
_
Φ(η; ζ),

_
f (η; ζ),

_
θ (η; ζ)

]
=

_
Φηη − Sc

_
f
_
Φη +

Nt

Nb

_
θ ηη − A

_
Φ, (30)

N_
ξ

[
_
ξ (η; ζ),

_
f (η; ζ),

_
ξ (η; ζ)

]
=

_
ξ ηη − Pe

((
_
ξ + σ1

)
_
Φηη +

_
ξ η

_
Φη

)
− PrLb

_
f
_
ξ η . (31)

Moreover, BCs are:

∂
_
f (η;ζ)
∂η

∣∣∣∣
η=0

= 1,
_
f (η; ζ)

∣∣∣∣
η=0

= s, ∂2_g (η;ζ)
∂2η

∣∣∣∣
η=0

=
_
g (η; ζ)

∣∣∣∣∣
η=0

= 0,
_
θ (η; ζ)

∣∣∣∣
η=0

= 1,
_
Φ(η; ζ)

∣∣∣∣
η=0

= 1,
_
ξ (η; ζ)

∣∣∣∣
η=0

∂
_
f (η;ζ)
∂η

∣∣∣∣
η=∞

= a
c , ∂

_
g (η;ζ)

∂η

∣∣∣∣
η=∞

= 1,
_
θ (η; ζ)

∣∣∣∣
η=∞

= 0,
_
Φ(η; ζ)

∣∣∣∣
η=∞

= 0,
_
ξ (η; ζ)

∣∣∣∣
η=∞

= 0.

(32)

Here, ζ is the embedding parameter. ζ ∈ [0, 1] is used to standardize the convergence
of the solution of }_

f
,}_

g
, }_

θ
and }_

φ
By choosing ζ = 0 and ζ = 1 [27], we have:

_
f (η; 1) =

_
f (η),

_
g (η; 1) =

_
g (η)

_
θ (η; 1) =

_
θ (η) ,

_
Φ(η; 1) =

_
Φ(η),

_
ξ (η; 1) =

_
ξ (η), (33)
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Develop Taylor’s series for
_
f (η; ζ),

_
g (η; ζ),

_
θ (η; ζ),

_
Φ(η; ζ), and

_
ξ (η; ζ) about the

point ζ = 0:
_
f (η; ζ) =

_
f 0(η) +

∞
∑

n=1

_
f n(η)ζ

n

_
g (η; ζ) =

_
g 0(η) +

∞
∑

n=1

_
g n(η)ζ

n

_
θ (η; ζ) =

_
θ 0(η) +

∞
∑

n=1

_
θ n(η)ζn

_
Φ(η; ζ) =

_
Φ0(η) +

∞
∑

n=1

_
Φn(η)ζn

_
ξ (η; ζ) =

_
ξ 0(η) +

∞
∑

n=1

_
ξ n(η)ζ

n

(34)

_
f n(η) =

1
n!

∂
_
f (η;ζ)
∂η

∣∣∣∣
p=0

,
_
g n(η) =

1
n!

∂
_
g (η;ζ)

∂η

∣∣∣∣
p=0

,
_
θ n(η) =

1
n!

∂
_
θ (η;ζ)

∂η

∣∣∣∣
p=0

,

_
Φn(η) =

1
n!

∂
_
Φ(η;ζ)

∂η

∣∣∣∣
p=0

,
_
ξ n(η) =

1
n!

∂
_
ξ (η;ζ)

∂η

∣∣∣∣
p=0

.
(35)

Moreover, BCs are:

_
f (0) = s,

_

f ′(0) = 1,
_
g (0) =

_
g′′ (0) = 0,

_
θ (0) = 1,

_
Φ(0) = 1,

_

f ′(∞)→ a
c ,

_
g (∞)→ 1,

_
θ (∞)→ 0,

_
Φ(∞)→ 0.

(36)

Now:

<
_
f

n (η) =
µhn f /µ f
ρhn f /ρ f

_
f

v

n−1 +
_
f
′′′

n−1 +
1
k1

_
f
′
n−1 −

λρ f
ρhn f

[
_
θ n−1 − Nr

_
Φn−1 − Rb

_
ξ n−1

]
+A1

(( a
c
)2

+
w−1
∑

j=0

_
f w−1−j

_
f
′′

j −
_
f
′2

n−1

)
+ βA2

(
_
g
′2
n−1 −

w−1
∑

j=0

_
g w−1−j

_
g
′′
j − 1

)
,

(37)

<
_
g
n (η) = Λ

_
g
′′′
n−1 +

w−1

∑
j=0

_
f w−1−j

_
g
′′
j − 2

w−1

∑
j=0

_
f
′′

w−1−j
_
g j, (38)

<
_
θ
n (η) =

(
1 + 4

3 R
)(_

θ
′′

n−1

)
+

k f
khn f

A4Pr
_
θ
′
n−1 +

k f
khn f

α
_
θ n−1+

(kcp) f
khn f

A4Pr

(
Nb

w−1
∑

j=0

_
θ
′
w−1−j

_
φ
′
j + Nt

_
θ
′′ 2

n−1

)
,

(39)

<
_
Φ
n (η) =

_
Φ
′′

n−1 − Sc
w−1

∑
j=0

_
f w−1−j

_
Φ
′
j +

Nt

Nb

_
θ
′′

n−1 − A
_
Φn−1, (40)

<
_
ξ
n (η) =

_
ξ
′′

n−1 − Pe

(
w−1

∑
j=0

(
_
ξ w−1−j + σ1

)
_
φ
′′

j +
w−1

∑
j=0

_
ξ w−1−j

_
φ
′
j

)
− PrLb

w−1

∑
j=0

_
f w−1−j

_
ξ
′
j. (41)

Additionally,

χn =

{
0, if n ≤ 1
1, if n > 1.

(42)

2. Results and Discussion

We now deliberate the consequences of the current exploration from the relevant
sketched graphical features on velocity, temperature, and concentration profiles.

2.1. Velocity Profile

The impacts of β, k1, λ, K on velocity fields f ′(η) are demonstrated in Figures 2–5. The
impacts of the magnetic parameter (β) on the dimensionless velocity field f ′(η) is seen in
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Figure 2. It is clear that as (β) increases, f ′(η) decreases. The velocity profile in the domain
decreases as the magnetic parameter (β) is increased, as seen in the sketch. Physically, this
happens when the Lorentz force increases as the magnetic parameter increases, resulting
in a decrease in liquid velocity, as seen in Figure 2. Figure 3 illustrates how increasing the
porosity factor increases the system’s resistance. Physically, this causes a decrease in fluid
flow due to increased frictional force. The impacts of the couple-stress parameter K on
the velocity field is also seen in Figure 4. The velocity profile increases as the value of the
couple-stress parameter K is raised, as can be seen in this graph. For broad values, however,
the rise in velocity would be negligible. That is, large values would result in a pure viscous
fluid. The effect of λ on f ′(η) is depicted in Figure 5. It is reasonable to assume that f ′(η)
has higher values of λ based on Figure 5. Enlarging λ induces an enrichment of pliable
force, which causes the boundary layer to extend, as seen in Figure 5.
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Figure 5. The effect of λ on f ′(η) when β = 1.0, k1 = 1.2, Rb = 0.4, Nr = 2.0.

2.2. Dimensionless Induced Magnetic Field along x − Direction g′(η)
The impacts of β, s, a

c on the dimensionless-made magnetic field along the x− direction
g′(η) have been shown in Figures 6 and 7. The impacts of the magnetic parameter (β) and
the (a/c) suction or injection parameter on g′(η) are shown in Figure 6. It is very clear that
by growing the values of (β), g′(η) reduces. We notice that an increment in (β) summons
an attractive field upgrade (Lorentz power increase) and furthermore dimensionless g′(η).
Figure 6 also shows the effect of (a/c) on g′(η). As a result, a decrease in (a/c) leads to
reducing g′(η). Figure 7 portrays the impact of the suction/injection parameter over the
velocity profile g′(η). Increasing the suction or injection parameter initially reduces the
g′(η) profile, but at that point, as we grow in the direction of the center of the hydrodynamic
edge stream, its pattern changes to the reverse direction.
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Figure 7. The effect of s > 0, s < 0 on g′(η) when β = 1.5, a
c = 4.0, Λ = 1.0.

2.3. Temperature Profile

Figures 8–12 show the effects of physical factors Pr, Nb, Nt, α on the temperature
distribution θ(η). The results of the Prandtl number on temperature and concentration
profiles are seen in Figure 8. The temperature profile indicates a decrease with rising
Pr values, as can be seen in Figure 8. Physically, raising the Prandtl number creates a
decrease in thermal diffusivity, which is caused by a decrease in the temperature profile.
The investigation of the heat source parameter α on θ(η) is depicted in Figure 9. When
more heat is applied to the layer, the temperature of fluid particles in the whole domain
increases, while in the case of a heat sink, the reverse result occurs, as seen in Figure 10.
In the sink situation, the layer loses a lot of heat, dropping the temperature of the fluids.
The effect of the thermophoresis boundary (Nt) on the heat profile is shown in Figure 11.
The temperature dispersion and the warm limit layer shows expanded conduct for the
expansion of the thermophoresis boundary. Truly, the reformist idea of the thermophoretic
boundary brings about an expansion of the thermophoretic power inside the liquid system,
following improvement in the temperature profile and related limit layer. The effect of
the Brownian dispersion boundary (Nb) on the heat profile is shown in Figure 12. For the
Brownian movement boundary, truly, the reformist nature warms the actual arrangement.
This warming winds up moving nanoparticles from the colder extending sheet district to
the quiet liquid locale.
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2.4. Concentration Profile

The outcome of physical factors Sc, Nt, Nb has been examined for concentration dis-
tribution Φ(η) in Figures 13–15. The graphical results for Sc are displayed in Figure 13.
This is very clear that Sc increases as the concentration profile Φ(η) declines. Therefore,
the concentration decreases, Sc and kinematic viscosity physically increase due to the
reduction of molecular diffusion. Figure 14 shows that the growth in the parameter of the
Brownian motion Nb produces the reduction in the concentration profile Φ(η) of the fluid
because nanoparticles move from the high concentration region to the region with less
concentration. It is obvious that the increase in motion of the nanoparticles produces a
high Brownian motion, and this irregular Brownian motion from high concentration areas
to lower concentration regions reduces the momentum of the fluid. Figure 15 demonstrates
that the escalation in the thermophoresis boundary Nt produces the high concentration
profile Φ(η) of the stream. These meet with zero at the boundary stream layer. The small
variation in the thermophoresis boundary prompts fast movement in the liquid particles,
making an abundance of heat energy and prompting a gigantic expansion in the focus
dispersion. With an improvement in the calculation of Nt, Figure 15 indicates a huge
expansion in the focus dissemination.
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2.5. Microorganism Distribution

The portrayed behavior of several estimations of the bioconvection Lb and Peclet
number in Figures 16 and 17 indicates that improving the bioconvection and Peclet number
induces a fast reduction in the thickness for motile microorganisms. That is, the thickness
of motile microorganisms was decreased, and to be sure, by reinforcing the bioconvec-
tion Lewis number and Peclet number, the decrease in microorganisms’ dispersion was
deciphered. This produces the thickness and limit layer thickness slumped for motile mi-
croorganisms by raising the worth in Lb and Pe. Figure 18 depicts the effect of the σ1 on the
rising parameters, which slows down the density of motile microorganisms. Figures 19–22
show h-curves graphs of f ′′ (0), θ′(0), Φ′(0), and ξ ′(0), respectively.
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2.6. Tables Discussion

Table 3 shows that c f x increased when the values of F1, k1, β increased. The c f x is
decreased when the value of K increased. Table 4 shows that Nux increased when the values
of R, α increased. The Nux decreased when the values of Pr, Nb, Nt increased. Table 5 shows
that Sh increased when the value of Sc increased. The Sh decreased when the values of
Nb, Nt increased. Table 6 shows that Nnx increased when the values of Lb, σ1, Pe increased.
Table 7 is the comparison between the ND solves method and HAM method.

Table 3. The effect on the Skin friction Res
1
2 C f =

(
1−

w1
ρ1

+
w2
ρ2

w1
ρ1

+
w2
ρ2

+
w f
ρ f

)
f ′′ (0), with the microorganism

of different physical parameters. The impact of various physical parameters over.

F1 k1 β K Nr λ (1−
w1
ρ1

+ w2
ρ2

w1
ρ1

+ w2
ρ2

+
wf
ρf

)f”(0),

0.3 0.3 0.5 0.4 1.0 0.6 2.5313646
0.5 2.6768415
0.7 2.8147213

0.3 1.2310745
0.4 1.3324613
0.6 1.4345015

0.5 0.6156063
1.0 0.8367109
1.5 1.1348550

0.4 3.5157305
0.8 3.1516109
1.0 3.0357126

1.0 2.9461262
2.0 3.5240782
3.0 3.7180281

0.6 2.0146849
1.0 1.6130745
1.5 1.2154047
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Table 4. The effect on the Nusselt number − khn f
k f

(
1 + 4

3 R
)

θ′(0) with the microorganism of different
physical parameters.

α Pr Nt Nb − khnf
kf

(1+ 4
3 R)θ

′
(0)

−0.5 8.5 0.7 0.5 3.6374583
−0.5 3.4584563
−1.0 3.1524204

8.5 2.3482139
9.5 2.6434058
10.5 2.8464381

0.2 2.7125861
0.4 2.5439308
0.6 2.1643615

0.5 0.9614792
0.7 1.4739615
0.9 1.7905246

Table 5. The effect on the Sherwood number Rex
1
2 Shx = −φ′(0). with the microorganism of different

physical parameters.

Nt Nb Sc −φ
′
(0)

0.2 0.3 1.0 1.9352426
0.4 2.2568761
0.6 2.5917425

0.3 1.2518701
0.7 1.4507817
0.9 1.7591572

1.0 1.4523497
1.3 0.5248979
1.5 0.1935468

Table 6. The effect on the motile NnxRe−1/2
x = −ξ ′(0) with the microorganism of different physical

parameters.

Pe σ1 Lb −ξ
′
(0)

0.2 0.3 0.5 3.3467521
0.3 3.2674302
0.4 3.1459609

0.3 4.2670293
0.4 4.1523549
0.5 4.0795164

0.5 2.3895186
1.5 2.1384597
2.0 2.0634175
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Table 7. A comparison between ND solves and HAM methods.

η f ′(η) θ(η) φ(η) ξ(η)

NDSolve HAM NDSolve HAM NDSolve HAM NDSolve HAM

0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.5 1.267861 1.267872 1.034338 1.034340 0.583358 0.583360 0.8434886 0.8434888
1.0 0.838512 0.838518 1.021331 1.021333 0.307213 0.307215 0.7330826 0.7330829
1.5 −0.03184 −0.03188 0.965956 0.965958 0.143647 0.143650 0.6444098 0.6444100
2.0 −0.82835 −0.82837 0.874652 0.874654 0.057064 0.057066 0.5616697 0.5616700
2.5 −1.08151 −1.08153 0.754801 0.754804 0.016656 0.016658 0.4770605 0.4770600
3.0 −0.64058 −0.64060 0.614284 0.614286 0.001988 0.001990 0.3896790 0.3896793
3.5 0.2365287 0.2365289 0.461086 0.461088 0.000735 0.000736 0.3012565 0.3012567
4.0 1.0290494 1.0290496 0.302960 0.302963 0.004461 0.004460 0.2111275 0.2111277
4.5 1.2528515 1.2528517 0.147122 0.147125 0.006107 0.006110 0.1139330 0.1139333
5.0 0.7499995 0.7499997 0 0 0 0 0 0

3. Conclusions

In this exploration, we analyzed the persistent laminar-blended convection of thick
viscous and electrically leading sets of nanofluid cross breed Darcy–Forchheimer CuO-
Cu/Blood stress stream close to the stagnation-point in the plane past a level permeable
extending load up. This is utilized in biomedical fields, for example, the miniature round-
about framework’s stream elements and particularly in the inventory of medications. The
fundamental partial differential equations (PDEs) are modified to a bunch of dimensionless
ordinary differential equations (ODEs) with the assistance of reasonable comparability
variables. These coupled ODEs are then solved by utilizing the Homotopy Analysis
Method (HAM).

After detail study of the work, that the following conclusions were observed:

• When increasing the value of the magnetic field parameter, the porosity factor velocity
profiles decrease.

• The velocity profile rises with a rise in the value of couple-stress parameter K.
• The velocity profile displays a rising feature for greater values of λ.
• With the enhancement of the strength of the thermophoresis parameter and the

Brownian diffusion parameter, the temperature profile increases.
• With the enhancement of the strength of the heat source (s > 0), the fluid temperature

increases; on the other hand, an increase in the heat sink strength (s < 0) decreases
the temperature.

• By increasing the value of the Prandtl factor, the fluid temperature decreases.
• With an increase in the strength of the thermophoresis parameter and Brownian

diffusion parameter, both have reverse impact on the concentration profile.
• With an increase in the value of Sc, the concentration profile decreases.
• The Φ(η) portrayed a decreasing tendency with the rising number of Le.
• The density of the moving microorganisms inside the fluid reduces for large values of Pe.
• The density number reduces to increase Lb.
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Abbreviations
Symbol Discription
uw stretching velocity (m/s)
u and v velocity components along x- and y-axes (m/s)
H1 and H2 magnetic field components along x- and y-axes
η0 Magnetic diffusivity
β Magnetic field parameter
β volumetric thermal expansion coefficient
µhnf viscosity of hybrid nanofluid
khnf thermal conductivity of hybrid nanofluid
Sh Sherwood number
φ nanoparticle volume fraction
k* mean absorption coefficient
s suction or injection parameter
w1, w2 the first nanoparticle, the second nanoparticle
λ mixed convection or buoyancy parameter
µe Magnetic permeability
α heat source parameter
Sc Schmidt number
Cf Skin friction coefficient
ρS density of nanoparticles
Cw Surface concentration
T Temperature of the fluid (K)
C Concentration of the fluid
Nn Concentration of the fluid
V0 suction/injection velocity
F1 Inertia coefficient
θ Dimentionless temperature (-)
ρf Density (kg ×m−3)
f’ Dimentionless velocity (-)
Rb Bịoconvectịon Rayleigh number
µf Dynamic viscosity (kg ×m−1 × s−1)
Pe Bioconvection Peclet number
T∞ Ambient temperature (K)
T0 Reference temperature (K)
k Dimensional permeability
g acceleration due to gravity (m/s2)
λ1 diffusive constant parameter
Q volumetric rate of heat generation/absorption
ρhnf Density of hybrid nanofluid (kg ×m−3)
(ρcp)hnf volumetric heat capacity of hybrid nanofluid (m2 × s−2 × K−1)
Rex Reynolds number
φ1, φ2 volume fraction of first and second nanoparticles
(cp)s specific heat at constant pressure of nanoparticles (m2 × s−2 × K−1)
wf base fluid masses
k1 Non-dimensional permeability parameter
Nt thermophoretic parameter
Λ Reciprocal magnetic prandtl number
K coupled stress parameter
Nux Nusselt number
Pr Prandtl number
Tw Surface temperature (K)
Nb Brownian motion parameter
l characteristic length (m)
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σ concentration difference parameter
Gr Grashof number
k Thermal conductivity (W ×m−1 × K−1)
Nr Buoyancy ratio parameter
Φ Dimentionless concentration (-)
η Similarity variable
νf Kinematic viscosity (m2 × s−1)
(ρc)p Effective heat capacity of nanoparticles (m2 × s−2 × K−1)
Lb Bioconvection Lewis number
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