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All drugs usually have side effects, which endanger the health of patients. To identify potential side effects of drugs, biological and
pharmacological experiments are done but are expensive and time-consuming. So, computation-based methods have been
developed to accurately and quickly predict side effects. To predict potential associations between drugs and side effects, we
propose a novel method called the Triple Matrix Factorization- (TMF-) based model. TMF is built by the biprojection matrix
and latent feature of kernels, which is based on Low Rank Approximation (LRA). LRA could construct a lower rank matrix to
approximate the original matrix, which not only retains the characteristics of the original matrix but also reduces the storage
space and computational complexity of the data. To fuse multivariate information, multiple kernel matrices are constructed and
integrated via Kernel Target Alignment-based Multiple Kernel Learning (KTA-MKL) in drug and side effect space, respectively.
Compared with other methods, our model achieves better performance on three benchmark datasets. The values of the Area
Under the Precision-Recall curve (AUPR) are 0.677, 0.685, and 0.680 on three datasets, respectively.

1. Introduction

Drug treatment of patients’ diseases may be accompanied by
side effects, endangering the life and health of patients.
Therefore, how to quickly and accurately find potential drug
side effect information becomes an important step in the
drug development process. The traditional methods to detect
the side effects of drugs are usually biological and pharmaco-
logical experiments. These approaches often take a long time
and huge capital investment. So, it is necessary to accurately
and quickly predict the potential side effects of drugs through
computation-based methods [1]. Most computation-based
methods for predicting drug side effects usedMachine Learn-
ing (ML) classification models to predict side effect categories
by extracted features from the biochemical characteristics of
drugs. ML has been widely used in the field of computational
biology, containing potential disease-associated microRNAs
[2, 3] or circRNAs [4], O-GlcNAcylation sites [5], prediction

of DNA or RNA methylcytosine sites [6, 7], protein function
identification [8–12], protein remote homology [13], analyz-
ing microbiology [14], electron transport proteins [15], drug-
target interactions [16], drug-side effect association [17, 18],
protein-protein interactions [19, 20], and lncRNA-miRNA
interactions [21].

Pauwels and Stoven develop a predictive model of drug-
side effect association by Ordinary Canonical Correlation
Analysis (OCCA) and Sparse Canonical Correlation Analysis
(SCCA) [1, 22]. The input feature of OCCA and SCCA is
extracted from chemical structures of drugs. Cheng and
Wang proposed the Phenotypic Network Inference Model
(PNIM) [23] to detect new potential drug-side effect associa-
tions. Mizutani and Stoven [24] utilized cooccurrence of drug
profiles and protein interaction profiles to predict side effects.
The Support Vector Machine (SVM) was used to build
Adverse Drug Reaction (ADR) prediction, which is based
on chemical structures, biological properties of drugs, and
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phenotypic characteristics [25]. Zhang et al. [26–28] built an
ensemble method, which was based on the Integrated
Neighborhood-Based Method (INBM) and Restricted
Boltzmann Machine-Based Method (RBMBM). Matrix
Factorization- (MF-) based methods have been widely used
for link prediction in bipartite networks of systems biology.
To predict drug-target interactions, Neighborhood Regular-
ized Logistic Matrix Factorization (NRLMF) [29], Collabora-
tiveMatrix Factorization (CMF) [30], and Graph Regularized
Matrix Factorization (GRMF) [31] were developed via the
MF theory.

In our study, we develop a Triple Matrix Factorization-
(TMF-) based model to identify the associations of drug
and side effect. TMF employs the biprojection matrix and
two latent feature matrices (from drug and side effect space)
to estimate the strength of new drug-side effect associations.
Latent feature matrices are built via Low Rank Approxi-
mation (LRA), which could construct a lower rank matrix
to approximate the original matrix. To improve the per-
formance of prediction, Kernel Target Alignment-based
Multiple Kernel Learning (KTA-MKL) is used to integrate
multiple kernel matrices in drug and side effect space, respec-
tively. Our method can fuse multivariate information (multi-
ple kernels) and obtain new associations through matrix
projection. Compared with other existing methods, our model
obtains better performance on three benchmark datasets.

2. Method

2.1. Problem Description. The dataset of drug-side effect
association can be regarded as a bipartite network, which
has n drugs and m side effects. The relationships of drug
and side effect can be represented as a n ×m adjacent matrix
Y ∈ Rn×m. D = fd1, d2,⋯, dng and S = fs1, s2,⋯, smg are the
drug and side effect sets, respectively. Yi,j = 1 denotes that
drug di and side effect sj are related; otherwise, it is 0. The
associations between drugs and side effect terms are shown
in Figure 1. The solid lines link the known drug-side effect

associations. The hollow circles and filled squares are drugs
and side effects, respectively. The prediction of new associa-
tions is a recommender task.

2.2. Drug Kernels and Side Effect Kernels. To predict the asso-
ciations of drugs and side effects, we need to construct the
relationship between drugs (or side effects). In this study,
we build different kernels (similarity matrices) to describe
the relationships of drugs (or side effects). In drug space,
the fingerprint of 881 chemical substructures is employed
to encode the drug chemical structure, which is shown in
Figure 2. The fingerprint represents whether some substruc-
tures are present (1) or absent (0). What is more, the known
links between drugs and side effect terms (a side effect profile
for a specific drug) are also used to represent the information
of the subjacent network, which is shown on the right side of
Figure 1. In side effect space, the drug profile for a side effect
also represents the subjacent network of side effects.

There are four different types of measure functions,
including Gaussian Interaction Profile (GIP) kernel [32–35],
COsine Similarity (COS) [26], Correlation coefficient (Corr)
[26], and Mutual Information (MI) [36, 37], which are
employed to calculate the similarity between the drugs (or side
effects).

For drug di and dk, the GIP kernel is defined as follows:

KGIP−link,d di, dkð Þ = exp −γ prdi − prdk
�� ��2� �

, ð1Þ

where γ is the bandwidth of the Gaussian kernel. γ is set as 1
in our study. prdi and prdk are the side effect profile of drug di
and dk, respectively.

The COS is defined as follows:

KCOS−link,d di, dkð Þ =
prdipr

T
dk

prdi
�� �� prdk

�� �� : ð2Þ
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Figure 1: The schematic diagram of associations between drugs and side effects.
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The Corr kernel is calculated as follows:

KCorr−link,d di, dkð Þ = Cov prdi , prdk
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var prdi

� �
Var prdk

� �q : ð3Þ

In order to describe the degree of correlation between two
random variables, we further use Mutual Information (MI)
to measure the similarity between the two random variables:

KMI−link,d di, dkð Þ = I prdi , prdk
� �

= 〠
1

u=0
〠
1

v=0
f u, vð Þ log f u, vð Þ

f uð Þf vð Þ
	 


,
ð4Þ

where f ðuÞ (f ðvÞ) denotes the observed frequency of value
u (v) in profile prdi (prdk). f ðu, vÞ is the observed relative
frequency. Similarly, the kernels of the fingerprint (drug
space: KGIP−chem,d , KCOS−chem,d , KCorr−chem,d , and KMI−chem,d)
and drug profile of side effects (side effect space: KGIP−link,s,
KCOS−link,s, KCorr−link,s, and KMI−link,s) can be constructed via
the above functions. The drug space has 8 kernels, and the
side effect space has 4 kernels, which are listed in Table 1.

2.3. Kernel Target Alignment-Based Multiple Kernel
Learning. In our study, the kernel sets for drug space
Kd = fK1,d ,K2,d ,⋯,Kkd ,dg and side effect space Ks = fK1,s,
K2,s,⋯,Kks ,sg are combined via multiple kernel learning,
respectively. kd and ks are the number of kernels in drug
and side effect space, respectively. A heuristic approach of
Kernel Target Alignment-based Multiple Kernel Learning

(KTA-MKL) [38, 39] is employed to calculate the weights
of each kernel. The optimal kernels of K∗

d and K∗
s can be

obtained as follows:

K∗
d = 〠

kd

p=1
βp,dKp,d , Kp,d ∈ Rn×n,

K∗
s = 〠

ks

q=1
βq,sKq,s, Kq,s ∈ Rm×m,

ð5Þ

where βd = fβ1,d , β2,d ,⋯, βkd ,dg and βs = fβ1,s, β2,s,⋯, βks ,sg
are the weights of kernels in drug and side effect space,
respectively. KTA-MKL estimates the weight of each kernel
by COsine Similarity of matrices (drug space):

A P,Qð Þ = P,Qh iF
∥P∥F∥Q∥F

, ð6Þ

where kPkF =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffihP, PiF

p
denotes the Frobenius norm.

hP,QiF = TraceðPTQÞ is the Frobenius inner product. The
value of kernel alignment can describe similarity of two ker-
nels. KTA-MKL estimates the value between the ideal kernel
matrix and the drug kernel (or side effect kernel) as follows:

βp,d =
A Kp,d ,Kideal,d
� �

∑kd
k=1 A Kk,d ,Kideal,dð Þ

, p = 1, 2,⋯, kd ,

βq,s =
A Kq,s,Kideal,s
� �

∑ks
k=1 A Kk,s,Kideal,sð Þ

, q = 1, 2,⋯, ks,

ð7Þ

where Kideal,d = YtrainYT
train ∈ Rn×n and Kideal,s = YT

trainYtrain ∈
Rm×m are the ideal kernels of drug and side effect, respec-
tively, which are built via the training label (known
associations).

2.4. Triple Matrix Factorization-Based Model. Inspired by
MF [29–31, 40], the similarity between drugs (or side effects)
can be approximated by the inner product of two drug (or
side effect) features as follows:

K∗
d ≈AAT , A ∈ Rn×rd ,

K∗
s ≈ BBT , B ∈ Rm×rs ,

ð8Þ

where A and B are the matrices of Low Rank Approximation
and rd and rs are the dimensions of the latent feature space in
drug and side effect space, respectively. The objective func-
tion of TMF is defined as follows:

min J Θð Þ = Ytrain −AΘBT�� ��2
F + λ Θk k2F, ð9Þ

where Θ ∈ Rrd×rs is the biprojection matrix. λ is the regulari-
zation coefficient of Θ. In our study, λ is set as 1.
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Figure 2: An example of the fingerprint vector.

Table 1: Summary of kernels for two feature spaces.

Chemical fingerprint
(drug space)

Side effect
profiles

(drug space)

Drug profiles
(side effect space)

GIP KGIP−chem,d KGIP−link,d KGIP−link,s

COS KCOS−chem,d KCOS−link,d KCOS−link,s

Corr KCorr−chem,d KCorr−link,d KCorr−link,s

MI KMI−chem,d KMI−link,d KMI−link,s
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Let ∂J/∂Θ = 0, so we can obtain functions as follows:

∂ Ytrain −AΘBT
�� ��2

F + λ Θk k2F
� �

∂Θ = 0, ð10Þ

−2AT Ytrain −AΘBT� �
B + 2λΘ = 0, ð11Þ

ATAΘBTB + λΘ =ATYtrainB, ð12Þ

ATAΘ + λΘ BTB
� �−1 =ATYtrainB BTB

� �−1, ð13Þ

ATAΘ + λΘ BTB
� �−1 =ATYtrain BT� �−1, ð14Þ

where Equation (14) is a Sylvester equation. The final predic-
tion can be constructed by

Y∗ =AΘBT : ð15Þ

Drug kernels Side effect kernels

Known associations
(adjacent matrix Ytrain)

Triple matrix factorization-based model

New associations

Weighted (KTA-MKL)Weighted (KTA-MKL)

Figure 3: Overview of our method.

Require: A training matrix Ytrain ∈ Rn×m (known associations), the fingerprint vector fchemdi
∈ R1×881ð1 ≤ i ≤ nÞ for the drug; Two param-

eters: the rd and rs for TMF;
Ensure: The prediction of Y∗ ∈ Rn×m;

1: Constructing the drug and side effect kernels, which are listed in Table 1;
2: Utilizing Equation (7) (KTA-MKL) to obtain the weights βd and βs for drug and side effect, respectively;
3: Building K∗

d and K∗
s via Equation (5), respectively;

4: Calculating A ∈ Rn×rd and B ∈ Rm×rs by Singular Value Decomposition (SVD);
5: Solving Equation (14) (TMF) to estimate Θ;
6: Calculating Y∗ =AΘBT ;

Algorithm 1: Algorithm of our method.

Table 2: Three benchmark datasets.

Datasets Drugs Side effects Associations

Pauwels’s dataset 888 1385 61,102

Mizutani’s dataset 658 1339 49,051

Liu’s dataset 832 1385 59,205
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The overview of our proposed method is shown in
Figure 3 and Algorithm 1.

3. Result

In this section, we employed benchmark dataset to evaluate
our approach and compared it with other existing methods.

3.1. Datasets. In order to test the performance of our model,
three types of datasets are employed in our study. They are
Pauwels’s dataset, Liu’s dataset, and Mizutani’s dataset,
which are collected from the DrugBank [41], SIDe Effect
Resource (SIDER) [42], KEGG DRUG [43], and PubChem-
Compound [44, 45]. Table 2 lists benchmark datasets of
this study.

3.2. Evaluation Measurements. The training adjacent matrix
can be obtained via randomly setting known associations as
0. In this study, we use 5-fold Cross-Validation (5-CV) and
5-fold local Cross-Validation (5 local CV) to test our method.
5-CV randomly sets known associations as 0 in the whole
matrix. 5 local CV is employed to evaluate the prediction of
new drugs, which do not have any side effect information.

5 local CV sets some rows of the adjacent matrix as 0 to test
related drugs. The Area Under the Precision-Recall curve
(AUPR) and Area Under the receiver operating Character-
istic curve (AUC) are utilized to evaluate the performance
of prediction.

3.3. Selecting Optimal Parameters. In this section, we use the
grid search method to get the optimal rd and rs. We test dif-
ferent values of and from 100 to the max value with the step
of 100. The results of the grid search method are shown in
Figure 4 (on Mizutani’s dataset by 5-CV). rd = 700 and
rs = 800 are the best parameters (AUPR) on Mizutani’s
dataset. In Figure 4, the lower value of AURP and AUC is
blue, and the higher value is yellow. On the other two data-
sets, we use the same parameters of rd and rs.

3.4. Performance of Different Kernels.We evaluate the perfor-
mance of multiple kernels and single kernel on three datasets.
The results of prediction are listed in Table 3 and Figure 5.
Obviously, the kernels of KMI−link,d and KMI−link,s have better
performance on Pauwels’s dataset (AUPR: 0.6557, AUC:
0.9079), Mizutani’s dataset (AUPR: 0.6615, AUC: 0.9369),

r
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Figure 4: The AUC and AUPR values (under different rd and rs).

Table 3: The performance of different kernels via 5-fold Cross-Validation.

Models
Pauwels’s dataset Mizutani’s dataset Liu’s dataset

AUPR AUC AUPR AUC AUPR AUC

KGIP−chem,d & KGIP−link,s
a 0.4420 0.8950 0.4735 0.9148 0.4718 0.9145

KCOS−chem,d & KCOS−link,s
a 0.4892 0.8994 0.5343 0.9070 0.5224 0.9067

KCorr−chem,d & KCorr−link,s
a 0.4994 0.8981 0.5217 0.9005 0.5143 0.9026

KMI−chem,d & KMI−link,s
a 0.4978 0.9079 0.5591 0.9214 0.5529 0.9238

KGIP−link,d & KGIP−link,s
b 0.6254 0.9300 0.6623 0.9376 0.6574 0.9398

KCOS−link,d & KCOS−link,s
b 0.5861 0.9035 0.6324 0.9090 0.6252 0.9087

KCorr−link,d & KCorr−link,s
b 0.5833 0.8999 0.6123 0.9014 0.6047 0.9013

KMI−link,d & KMI−link,s
b 0.6557 0.9428 0.6615 0.9369 0.6587 0.9408

Mean weightedc 0.6598 0.9353 0.6724 0.9280 0.6651 0.9285

KTA-MKLc 0.6765 0.9434 0.6847 0.9409 0.6801 0.9426
aThe TMF uses the drug fingerprint and drug profile for side effects. bThe TMF uses the side effect profile for drugs and drug profile for side effects. cThe TMF
uses the drug fingerprint, side effect profile for drugs, and drug profile for side effects.
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Figure 5: Continued.
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and Liu’s dataset (AUPR: 0.6587, AUC: 0.9408). In addition,
the KTA-MKL model achieves the best results on Pauwels’s
dataset (AUPR: 0.6765, AUC: 0.9434), Mizutani’s dataset
(AUPR: 0.6847, AUC: 0.9409), and Liu’s dataset (AUPR:
0.6801, AUC: 0.9426), respectively. KTA-MKL could com-
bine kernels from different sources via the heuristic method,
which is better mean weighted.

In Table 4, we list the weight of each kernel on three data-
sets. We can find that the weights of KMI−link,d and KMI−link,s
are the highest than other kernels. At the same time, their
performance is also the best. KTA-MKL could reduce bias
of kernels by the low weights.

3.5. Comparison with Existing Methods. To evaluate the per-
formance of the TMF model, we compare it with other
methods. The results are listed in Table 5. Obviously, our
method (TMF) achieves the best results on Pauwels’s dataset
(AUPR: 0.677), Mizutani’s dataset (AUPR: 0.685), and Liu’s
dataset (AUPR: 0.680). Zhang et al.’s work (ensemble model)
[26] obtained the good performance of AUPRs (0.660, 0.666,
and 0.661). The best AUCs (0.954, 0.950, and 0.953) are
achieved by Neighborhood Regularized Logistic Matrix
Factorization (NRLMF) [29], which is also based on Matrix
Factorization (MF). The results of other MF-based models,
including Collaborative Matrix Factorization (CMF) [30]
and Graph Regularized Matrix Factorization (GRMF) [31],
are competitive. Local and Global Consistency (LGC) [18]
is our previous work. LGC obtains the second best results

of AUPR (0.668, 0.673, and 0.670) on three datasets,
respectively.

3.6. Local CV and Case Study. In some cases, certain drugs
are new and have no information of side effects. The 5 local
CV is employed to test the performance of the side effect pre-
diction for new drugs. In this section, we also compare TMF
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Figure 5: The ROC and PR curves of different models (single kernel and multiple kernels).

Table 4: The kernel weights on three datasets.

Kernel Pauwels’s dataset Mizutani’s dataset Liu’s dataset

KGIP−chem,d 0.1159 0.1168 0.1167

KCOS−chem,d 0.1224 0.1226 0.1226

KCorr−chem,d 0.1200 0.1203 0.1203

KMI−chem,d 0.1113 0.1122 0.1116

KGIP−link,d 0.0596 0.0621 0.0613

KCOS−link,d 0.1538 0.1533 0.1528

KCorr−link,d 0.1507 0.1498 0.1497

KMI−link,d 0.1664 0.1628 0.1650

KGIP−link,s 0.0151 0.0173 0.0152

KCOS−link,s 0.3286 0.3374 0.3380

KCorr−link,s 0.2909 0.2865 0.2855

KMI−link,s 0.3654 0.3588 0.3613
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with other MF-based models, including NRLMF, CMF, and
GRMF. The results are listed in Table 6 and Figure 6.

The proposed method (TMF) achieves the best results of
AUPRs on Pauwels’s dataset (AUPR: 0.392), Mizutani’s data-
set (AUPR: 0.399), and Liu’s dataset (AUPR: 0.401). Other
MF-based models also are still comparable with our results.
NRLMF obtains AUPRs of 0.374, 0.390, and 0.398 on three
datasets, respectively.

To predict the side effects of a new drug, our model calcu-
lates the strength of associations between the new drug and
all existing side effects. The predictive strength scores of
TMF will be ranked by descending order. The higher the

value of the score, the higher the possibility of associations.
In this section, we discuss two cases (drug caffeine and
captopril on Mizutani’s dataset) of top 10 associations pre-
dicted. The details are listed in Tables 7 and 8. Results are
checked by the masked associations between drug caffeine
(or captopril) and side effects.

3.7. Running Time. We evaluate the performance for predic-
tive models of running time. The results of test are listed in
Table 9. The running time of CMF is less than our method
(TMF), LGC, GRMF, and NRLMF on Pauwels’s dataset
(910 seconds), Mizutani’s dataset (757 seconds), and Liu’s
dataset (846 seconds). TMF costs 977, 873, and 929 seconds,
which are less than the ensemble model [26].

4. Conclusion and Discussion

In this study, we develop a Triple Matrix Factorization-based
model to predict the associations between drugs and side
effect terms. In drug space, several kernels are constructed
from the chemical substructure fingerprint and known side
effect-associated subnet. The side effect kernels are built from
the known drug-associated subnet. The kernel functions
include GIP, COS, Corr, and MI. Above kernels are com-
bined by KTA-MKL in drug and side effect space, respec-
tively. The integrated kernel matrices (including drug and
side effect) are Low Rank Approximation in the TMF model.
Our model (TMF) is tested on three benchmark datasets of
drug-side effect association. Compared with other excellent
methods, TMF achieves the best results (5-CV) on Pauwels’s
dataset (AUPR: 0.677), Mizutani’s dataset (AUPR: 0.685),
and Liu’s dataset (AUPR: 0.680), respectively. In addition,
our model is also compared with CMF, GRMF, and NRLMF
under 5 local CV. The best AUPRs are achieved on Pauwels’s
dataset (AUPR: 0.392), Mizutani’s dataset (AUPR: 0.399),
and Liu’s dataset (AUPR: 0.401). However, our method does
not consider the topological relationship of drugs or side

Table 5: Comparison to existing methods via 5-fold Cross-
Validation.

Datasets Methods AUPR AUC

Pauwels

Pauwels’s methoda 0:389 ± N/A 0:897 ± N/A

Liu’s methoda 0:345 ± N/A 0:920 ± N/A

Cheng’s methoda 0:588 ± N/A 0:922 ± N/A

RBMBMa [26] 0:612 ± N/A 0:941 ± N/A

INBMa [26] 0:641 ± N/A 0:934 ± N/A

Ensemble modela [26] 0:660 ± N/A 0:949 ± N/A

CMFb 0:646 ± 0:007 0:939 ± 0:005

GRMFb 0:643 ± 0:006 0:937 ± 0:005

NRLMFb 0:654 ± 0:005 0:954 ± 0:005

LGCb 0:668 ± 0:008 0:952 ± 0:007

Our method 0:677 ± 0:004 0:943 ± 0:003

Mizutani

Mizutani’s methoda 0:412 ± N/A 0:890 ± N/A

Liu’s methoda 0:366 ± N/A 0:918 ± N/A

Cheng’s methoda 0:599 ± N/A 0:923 ± N/A

RBMBMa [26] 0:619 ± N/A 0:939 ± N/A

INBMa [26] 0:646 ± N/A 0:932 ± N/A

Ensemble modela [26] 0:666 ± N/A 0:946 ± N/A

CMFb 0:645 ± 0:005 0:938 ± 0:006

GRMFb 0:646 ± 0:007 0:937 ± 0:007

NRLMFb 0:660 ± 0:006 0:950 ± 0:005

LGCb 0:673 ± 0:007 0:948 ± 0:007

Our method 0:685 ± 0:006 0:941 ± 0:008

Liu

Liu’s methoda 0:278 ± N/A 0:907 ± N/A

Cheng’s methoda 0:592 ± N/A 0:922 ± N/A

RBMBMa [26] 0:616 ± N/A 0:941 ± N/A

INBMa [26] 0:641 ± N/A 0:934 ± N/A

Ensemble modela [26] 0:661 ± N/A 0:948 ± N/A

CMFb 0:649 ± 0:006 0:938 ± 0:005

GRMFb 0:650 ± 0:007 0:938 ± 0:008

NRLMFb 0:656 ± 0:005 0:953 ± 0:006

LGCb 0:670 ± 0:008 0:951 ± 0:007

Our method 0:680 ± 0:005 0:943 ± 0:006
aResults are derived from [26]. bResults are derived from [18].

Table 6: Comparison with MF-based models via 5-fold local Cross-
Validation.

Datasets Methods AUPR AUC

Pauwels

CMF∗ 0:382 ± 0:006 0:894 ± 0:004
GRMF∗ 0:358 ± 0:008 0:883 ± 0:005
NRLMF∗ 0:374 ± 0:007 0:886 ± 0:004

Our method 0:392 ± 0:008 0:889 ± 0:004

Mizutani

CMF∗ 0:395 ± 0:005 0:889 ± 0:004
GRMF∗ 0:392 ± 0:008 0:890 ± 0:006
NRLMF∗ 0:390 ± 0:006 0:882 ± 0:005

Our method 0:399 ± 0:013 0:886 ± 0:003

Liu

CMF∗ 0:393 ± 0:007 0:894 ± 0:005
GRMF∗ 0:379 ± 0:008 0:895 ± 0:006
NRLMF∗ 0:398 ± 0:006 0:897 ± 0:004

Our method 0:401 ± 0:015 0:891 ± 0:004
∗Results are derived from [18].
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Figure 6: The ROC and PR curves of different methods via 5 local CV.
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effects. In the future, a graph- or hypergraph-embedded
MF-based model will be developed to improve the predictive
performance of drug-side effect association.

Data Availability
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