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Abstract: The relationship between the current through an electronic device and the voltage across
its terminals is a current–voltage characteristic (I–V) that determine basic device performance.
Currently, I–V measurement on a single-molecule scale can be performed using break junction
technique, where a single molecule junction can be prepared by trapping a single molecule
into a nanogap between metal electrodes. The single-molecule I–Vs provide not only the
device performance, but also reflect information on energy dispersion of the electronic state
and the electron-molecular vibration coupling in the junction. This mini review focuses on
recent representative studies on I–Vs of the single molecule junctions that cover investigation
on the single-molecule diode property, the molecular vibration, and the electronic structure as
a form of transmission probability, and electronic density of states, including the spin state of
the single-molecule junctions. In addition, thermoelectronic measurements based on I–Vs and
identification of the charged carriers (i.e., electrons or holes) are presented. The analysis in the
single-molecule I–Vs provides fundamental and essential information for a better understanding
of the single-molecule science, and puts the single molecule junction to more practical use in
molecular devices.

Keywords: single-molecule junction; current–voltage characteristics; atomic and electronic structure;
vibrational mode; spin state

1. Introduction

Using single molecules as active components in electronic devices is one of the human dreams.
To realize the single-molecule device, a single-molecule junction, which is the basic unit of molecular
device, has been extensively studied since the first discovery in 1974 [1–5]. The single-molecule
junction can be fabricated by using the break junction technique [6,7]. In the presence of target
molecules, a metal atomic contact is mechanically broken. After breaking the metal atomic
contact, a nano gap is formed between metal electrodes. If molecules diffuse to the nanogap
and bridge the metal electrodes, a single-molecule junction is formed. Currently, the electronic
conductance of the single-molecule junctions has been investigated for various molecules from simple
molecule (e.g., hydrogen, oxygen) [8,9] to complex molecules (e.g., supramolecule, polymer) [10–12].
Memory, diode, switch, and other functional properties are reported for the single-molecule
junctions [13–18]. The single-molecule measurement techniques have been applied to the sensors for
biomolecules, such as DNA, RNA, and protein [19–24].

The atomic and electronic structures and spin state of the single-molecule junction is the essential
information to understand the properties of the single-molecule junction. The investigation on
electronic current passing through the single molecule bridging metal electrodes is a direct and
efficient strategy to study the single-molecule junction. The detailed evaluation on the current–voltage
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characteristic provides the information (e.g., diode characteristics, atomic and electronic structure, spin
state) about the single-molecule junction [8,25,26]. In this mini review, we discuss the analysis of diode
characteristics, atomic and electronic structure, and spin state of the single-molecule junction using the
current–voltage characteristics.

2. Diode Characteristics

The diode characteristic of the single-molecule junction can be studied by examining the symmetry
of the I–V curve. Tao’s group succeeded in creating the single molecular diode using the diblock
molecule, in which an electron deficient bipyrimidinyl (acceptor) unit is bound to an electron rich
biphenyl (donor) unit via a covalent bond [15]. The key technique for the single-molecule diode is
the control of the molecular orientation. They terminated the diblock molecule with two different
protecting groups of trimethylsilylethyl (for dipyrimidinyl unit) and cyanoethyl (for diphenyl unit).
First, the cyanoethyl protecting group was de-protected, which exposed the thiol group at the
diphenyl unit. The diphenyl end was bound to the Au substrate via this unprotected thiol group.
Second, the trimethylsilylethyl protecting group was removed, which exposed the thiol group at the
dipyrimidinyl unit. The approaching tip to the molecule caused the bridging of the single molecule
between tip and substrate with a fixed orientation: tip–dipyrimidinyl–biphenyl–substrate junction.
Figure 1 shows the I–V curve of single diblock molecular junction. Electrons preferentially flow from
bipyrimidinyl unit (acceptor) to biphenyl unit (donor). The diode characteristics are clearly observed
for the single-molecule junction. The average rectification ratio is about five at the bias voltage of 1.5 V.
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Chemistry Group 2009. 

The diode characteristics have been observed for host–guest systems, where the guest molecules 
are included in a molecular cage molecule [27]. The number and orientation of the accommodated 
guest molecules can be controlled by using the cage. In addition, the guest molecules are 
noncovalently embedded in the cage, and thus, they can be replaced by other aromatic molecules. 
Fujii et al. used the heterocomplex, where naphthalenediimide (acceptor) and triphenylene (donor) 
were included in the cage, as the molecular diode. Figure 2 shows distribution of the I–V curves of 
the heterocomplex single-molecule junctions. The black curves are examples of the I–V curves, 
exhibiting an asymmetric shape. The larger current flows at the positive bias voltage. The average 
rectification ratio is about five at the bias voltage of 0.5 V. Theoretical analysis reveals that this diode 
characteristic is caused by the stacking order of the encapsulated aromatic molecules against the 
direction of electron transport. In the case of the heterocomplex single-molecule junction, the 
conduction orbital is lowest unoccupied molecular orbital (LUMO). The LUMO is localized on the 
naphthalenediimide unit, and it effectively hybridizes with the metal electrode (left electrode in 
Figure 2c). Due to the asymmetric strength of the metal–molecule coupling at the interface, the 
conduction orbital (LUMO) follows the movement of the Fermi level of the left metal electrode. When 
the positive bias is applied to the left electrode, the LUMO is shifted within the bias window. Electron 

Figure 1. (a) The molecular diode with the diblock molecule. An electron deficient bipyrimidinyl
unit is bound to an electron rich biphenyl unit via a covalent bond. (b) Average I–V curves of
the single-molecule junctions of the diblock molecule. Reproduced with permission from [15],
copyright Nature Chemistry Group 2009.

The diode characteristics have been observed for host–guest systems, where the guest molecules
are included in a molecular cage molecule [27]. The number and orientation of the accommodated
guest molecules can be controlled by using the cage. In addition, the guest molecules are noncovalently
embedded in the cage, and thus, they can be replaced by other aromatic molecules. Fujii et al. used
the heterocomplex, where naphthalenediimide (acceptor) and triphenylene (donor) were included in
the cage, as the molecular diode. Figure 2 shows distribution of the I–V curves of the heterocomplex
single-molecule junctions. The black curves are examples of the I–V curves, exhibiting an asymmetric
shape. The larger current flows at the positive bias voltage. The average rectification ratio is about
five at the bias voltage of 0.5 V. Theoretical analysis reveals that this diode characteristic is caused by
the stacking order of the encapsulated aromatic molecules against the direction of electron transport.
In the case of the heterocomplex single-molecule junction, the conduction orbital is lowest unoccupied
molecular orbital (LUMO). The LUMO is localized on the naphthalenediimide unit, and it effectively
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hybridizes with the metal electrode (left electrode in Figure 2c). Due to the asymmetric strength of
the metal–molecule coupling at the interface, the conduction orbital (LUMO) follows the movement
of the Fermi level of the left metal electrode. When the positive bias is applied to the left electrode,
the LUMO is shifted within the bias window. Electron transport through this molecular orbital leads
to large currents. Meanwhile, when the negative bias voltage is applied to the left electrode, the LUMO
is pushed away from the bias window, which causes the current suppression. Currently, a variety
of single-molecule diodes have been reported, and the rectification ratio of 200 is reported for the
single-molecule junction with the oligomer of thiophene-1,1-dioxide in ionic liquid [28–30].
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Figure 2. The single-molecule diode with the heterocomplex. (a) The naphthalenediimide and
triphenylene are accommodated in the columnar cage; (b) Distribution of I–V curves of the
heterocomplex single-molecule junctions, constructed from 500 I–V traces. Black lines are examples
of I–V curves; (c) Energy diagram of the single-molecule diode. The conduction orbital is lowest
unoccupied molecular orbital (LUMO), and the electronic coupling between LUMO and left electrode
is larger than that of the right electrode. Reproduced with permission from [27], copyright Journal of
the American Chemical Society Group 2015.

3. Vibrational Mode

The interaction between molecular vibration and conduction electrons can cause a change in the
conductance of the single-molecule junction [2]. At the low bias voltage, electrons elastically tunnel
through the junction. Above a threshold voltage, where hν = eV, molecular vibrations can be excited
by conduction electrons, and electrons are inelastically scattered. The threshold voltage corresponds
to the vibrational energy, and thus, the vibrational information can be obtained by measuring the
differential conductance (dI/dV) as a function of bias voltage. Since the conductance change induced
by the excitation of vibrational mode is small (several %), the differential conductance is measured
with the lock in amplifier, in order to detect the weak signal.

The direction of the conductance change induced by excitation of vibrational mode depends on the
conductance of the junction [31]. At the low conductance regime (tunneling regime), the differential
conductance is enhanced at the threshold voltage, while the differential conductance is suppressed
at the high conductance regime (contact regime). The differential conductance measurement at
the tunneling regime is named inelastic electron tunneling spectroscopy (IETS), and the differential
conductance measurement at the contact regime is named point contact spectroscopy (PCS).
The mechanisms of IETS and PCS are shown in Figure 3. In the tunneling regime, excitation of
vibrational mode corresponds to the opening of the additional inelastic channel, together with the
original elastic channel. The differential conductance of the single-molecule junction increases by
the opening of this inelastic channel. The conductance enhancement is noted in the derivative of the
differential conductance, d2I/dV2. In d2I/dV2 curve, a peak and a dip are detected at the positive
and negative bias voltage, respectively. In the contact regime, electrons are delocalized over the
single-molecule junction. The transport of electrons can be examined in the momentum space.
When the positive voltage is applied to the right electrode, electrons moving right occupy higher
electronic states than electrons moving left. Above a threshold bias voltage, a vibrational mode can be
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excited by the conduction electrons. This excitation causes the energy loss of the electrons. Since the
electronic states moving right, at a lower energy, are occupied, electrons should move in the left
direction; that means, electrons are scattered backwards. This backscattering causes the suppression in
the differential conductance. This conductance suppression is viewed as a dip and a peak in d2I/dV2
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Figure 3. (a) Schematic image of inelastic electron tunneling spectroscopy (IETS). The excitation of a
vibrational mode by conduction electrons opens an additional inelastic channel together with the elastic
channel. Above a threshold voltage (V = hν/e), the conductance increases, and peaks are observed
in d2I/dV2 curve; (b) Point contact spectroscopy (PCS): The electrons moving the right direction are
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Figure 4 shows the first PCS spectrum for the hydrogen single-molecule junction with Pt
electrodes [8]. A symmetric downward step is observed around 60 mV in the differential conductance,
and the corresponding dips are observed in its derivative (d2I/dV2). The shot noise, conductance
fluctuation, and theoretical analysis reveal that a single hydrogen molecule bridges Pt electrodes
with its molecular axis parallel to the junction axis. The observed dips in d2I/dV2 are assigned to the
Pt–hydrogen vibrational mode by the theoretical calculation.
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Figure 5 shows an IETS spectrum for a benzene single-molecular junction with Pt electrodes [32].
A symmetric upward step is observed around 40 mV in the differential conductance, and peaks are
observed in d2I/dV2. The benzene single-molecule junction shows the isotope effect. Figure 5 shows
the histogram of the peak energy in IETS for the single 12C6H6 and 13C6H6/Pt junctions. In the
histogram, a peak is observed at 42 meV for the single 12C6H6/Pt junctions, and at 40 meV for the
single 13C6H6/Pt junctions. Under the harmonic oscillator model, frequency (ν) of the vibrational
mode is represented by

ν = k/
√

m (1)

where, m and k are the molecular mass of benzene, and the spring constant of the benzene–Pt bond.
Here, the benzene molecule is assumed to be much lighter than the Pt electrode. The mass ratio
of 13C6H6 and 12C6H6 is 84/78. The vibrational energy for the 13C6H6/Pt junction is predicted to
be 40 meV using the vibrational mode of 42 meV for 12C6H6/Pt junction. The predicted value of
vibrational energy agrees with the experimental value, which supports that the observed peak in
d2I/dV2 originates from the vibrational mode, and that benzene molecule bridges the Pt electrodes.
The vibrational mode is assigned to be hindered-rotation mode (benzene–Pt) using the density
functional theory (DFT) calculation.

Micromachines 2018, 9, x  5 of 15 

 

where, m and k are the molecular mass of benzene, and the spring constant of the benzene–Pt bond. Here, 
the benzene molecule is assumed to be much lighter than the Pt electrode. The mass ratio of 13C6H6 and 
12C6H6 is 84/78. The vibrational energy for the 13C6H6/Pt junction is predicted to be 40 meV using the 
vibrational mode of 42 meV for 12C6H6/Pt junction. The predicted value of vibrational energy agrees with 
the experimental value, which supports that the observed peak in d2I/dV2 originates from the vibrational 
mode, and that benzene molecule bridges the Pt electrodes. The vibrational mode is assigned to be 
hindered-rotation mode (benzene–Pt) using the density functional theory (DFT) calculation. 

 
Figure 5. (a) Differential conductance curve (upper panel) and its derivative (lower panel) of the 
benzene single-molecule junction with Pt electrodes, measured at a zero bias conductance of 0.3 G0; 
(b) Distribution of vibrational energy for 13C6H6 and 12C6H6/Pt junctions. Reproduced with permission 
from [32] copyright Physical Review Letter Publishing Group 2008. 

As discussed, the direction of change in the differential conductance by excitation of vibrational 
mode relies on the junction conductance. This topic has been theoretically analyzed by Paulsson et 
al. [31]. The calculated direction of the change in the differential conductance is shown in Figure 6 as 
a function transmission, and the asymmetry of the metal–molecule coupling. Here, electrons are 
assumed to be transported through a single channel. In the case of symmetric coupling (α = 1), the 
differential conductance increases by the vibrational mode excitation, if the conductance of the 
junction is below 0.5 G0 (tunneling regime). Meanwhile, when the conductance of the junction is 
above 0.5 G0 (contact regime), the conductance decreases by vibrational mode excitation. The 
experimental results for H2, H2O, ethylene, and benzenedithiol (BDT) junctions agree with this 
theoretical prediction [33–36]. 

 
Figure 6. The sign of the conductance change as function of asymmetric factor (α) of metal–molecule 
coupling and transmission of the single-molecule junction, where electrons transport through a single 
channel. At a given α, the transmission (τ) has an upper limit τmax (black curve), and the inelastic 
conductance change undergoes a sign change at τcrossover = τmax/2 (red dashed curve). Reproduced with 
permission from [31] copyright Physical Review Letter Publishing Group 2008. 

Figure 5. (a) Differential conductance curve (upper panel) and its derivative (lower panel) of the
benzene single-molecule junction with Pt electrodes, measured at a zero bias conductance of 0.3 G0;
(b) Distribution of vibrational energy for 13C6H6 and 12C6H6/Pt junctions. Reproduced with permission
from [32] copyright Physical Review Letter Publishing Group 2008.

As discussed, the direction of change in the differential conductance by excitation of vibrational mode
relies on the junction conductance. This topic has been theoretically analyzed by Paulsson et al. [31].
The calculated direction of the change in the differential conductance is shown in Figure 6 as a
function transmission, and the asymmetry of the metal–molecule coupling. Here, electrons are
assumed to be transported through a single channel. In the case of symmetric coupling (α = 1),
the differential conductance increases by the vibrational mode excitation, if the conductance of the
junction is below 0.5 G0 (tunneling regime). Meanwhile, when the conductance of the junction is above
0.5 G0 (contact regime), the conductance decreases by vibrational mode excitation. The experimental
results for H2, H2O, ethylene, and benzenedithiol (BDT) junctions agree with this theoretical
prediction [33–36].

In the above examples, the molecule–metal vibrational modes are observed in the differential
conductance spectra. The intramolecular vibrational mode can be also detected in the differential
conductance spectra [37,38]. Figure 7 shows the IETS of the octane dithiol single-molecule junction.
Vibrational modes are observed at 218, 694, 911, 1129, 1282, 1483, and 2879 cm−1, which are assigned to
Au–S stretching, C–S stretching, C–H rocking, C–C stretching, C–H wagging, C–H scissoring, and C–C
stretching [14]. The vibrational mode is the fingerprint of molecule, and the existence of vibrational
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modes verifies that the single octanedithiol molecule bridges Au electrodes. Song et al. showed the
temperature and modulation voltage dependence of the full width at half-maximum (FWHM) of the
IETS peaks, in order to confirm that the observed peak originated from the molecular vibrational
mode [14]. The FWHM increases with the temperature and AC modulation voltage used for the lock-in
detection. The FWHM of the peaks in the IETS is given by

W = [((1.7Vm)
2 + (5.4kBT/e)2 + WI

2]
1/2

(2)

where Vm, kB, T, and WI are the modulation voltage used for the lock-in detection, the Boltzmann
constant, the temperature, and the intrinsic width [38]. The increase in FWHM with the temperature
originates from the broadening of the Fermi distribution, and the increase in FWHM with the
voltage modulation amplitude originates from the dynamic detection technique. The peaks in the
differential conductance spectra are invisible above 100 K, due to the thermal broadening for the
most single-molecule junctions. Therefore, differential conductance spectroscopy (PCS, IETS) requires
low temperatures. The surface enhanced Raman scattering spectroscopy can be used even at room
temperature, to get the vibrational mode of the single-molecule junction [39,40].
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coupling and transmission of the single-molecule junction, where electrons transport through a single
channel. At a given α, the transmission (τ) has an upper limit τmax (black curve), and the inelastic
conductance change undergoes a sign change at τcrossover = τmax/2 (red dashed curve). Reproduced
with permission from [31] copyright Physical Review Letter Publishing Group 2008.
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Figure 7. (a) IETS spectrum for the octanedithiol single-molecule junction; (b,c) Full width at
half-maximum (FWHM) of the C–H stretching mode peak as a function of alternating-current (AC)
modulation voltage and temperature. Experimental data are indicated by circles, and theoretical values
are indicated by the solid line (b) and squares (c). Insets: examples of IETS spectra for different AC
modulation voltage (b) and temperature (c). Reproduced with permission from [14,38] copyright Nano
Letter Publishing Group 2008 and Nature Material Publishing Group 2006.



Micromachines 2018, 9, 67 7 of 15

4. Electronic Structure

The electronic structure around the Fermi level can be determined by the I–V measurement [41].
The I–V curves can be analyzed based on two different models; single channel transport model [42]
and effective tunneling barrier model (i.e., Simmons model) [43,44]. The effective tunneling barrier
model has been successfully applied to tunneling though highly insulating oxide films [45] and
adapted to tunneling though molecular junctions [44,46–48]. The I–V fit and analysis based on the
Simmons model did not always work well for the molecular junctions [44,47,48]. In contrast to the
insulating oxide films, there exists relatively strong electronic coupling between molecules and metals
in molecular junctions. As a result, fitting molecular junction-data to the Simmons model becomes
ambiguous, because the fit parameters such as barrier height, barrier width, and contact area can
have physically unreal values [47]. Beside the I–V fitting approach based on the Simmons model,
transition voltage spectroscopy (TVS) tuned out to be useful for determining effective tunneling
barrier height of molecular junctions [41,49,50]. In the TVS, I–V curves is replotted as ln(I/V2) vs.
1/V, the so-called Fowler–Nordheim plot [49]. The TVS is based on transition of the charge transport
mechanism from tunneling to field emission as the bias voltage increases. The minimum in the F–N
plot transition corresponds to the transition, and the minimum position is named the transition voltage,
Vtran. The previously combined ultraviolet photoemission spectroscopy (UPS) and TVS study revealed
that Vtran is proportional to the energy difference between the Fermi level of metal electrode and
conduction orbital [50]. Song et al. applied TVS to the single-molecule transistor [14]. Figure 8 shows
TVS for the octanedithiol single-molecule junction with different gate voltages. The Vtran increases with
the gate voltage. At the negative gate voltage, highest occupied molecular orbital (HOMO) approaches
the Fermi level, which causes the high conductivity of the junction. The working mechanism of the
p-type single molecular transistor is revealed by TVS.
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(b) Fowler–Nordheim plots of the I–V curves for octanedithiol single-molecule junction; (c) The VG

-transition voltage (Vtran) plot. Reproduced with permission from [14] copyright Nature Publishing
Group 2009.

In the single channel model, the transmission curve (transmission probability as a function of
energy) of single-molecule junction is represented by the Lorentzian-type function (Equation (3))

τ(E) =
4ΓLΓR

(ΓL + ΓR)
2 + (E− ε)2 (3)
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where Γ is the electronic coupling between molecule and electrodes, and ε is the molecular orbital
energy relative to the Fermi level. Here, α = ΓL/Γ (Γ = ΓL + ΓR) is the symmetric parameter.
Using Equation (3), the electric current is calculated, and it is represented as the arctangent-type
function (Equation (4))

I(V) =
8e
h

α(1− α)Γ
{

tan−1
[

αeV − ε

Γ

]
+ tan−1

[
(1− α)eV + ε

Γ

]}
(4)

Figure 9 shows the example of I–V curves of the di-substituted benzene single-molecule junctions
with different anchoring groups [51]. By fitting arctangent-type function (Equation (4)) with the
measured I–V curves, Γ and ε were determined. The ε was 266 meV for BDT and 197 meV for BDI
(benzene–diisocyanide). The difference in ε is explained by the electron affinity of the molecule.
The Γ was 135 meV for BDT, and 95 meV for BDI. The larger Γ for BDT is explained by the formation
of the strong covalent S–Au bond in the BDT single-molecule junction. The difference in the electronic
structures between BDT and BDI single-molecule junction was evaluated by I–V curves. Komoto et al.
reported the electronic structures of two distinct conductance states for C60 single-molecule junctions
by I–V measurements [52]. Figure 10a shows the distribution of I–V curves for the C60 single-molecule
junctions. Two distinct states are visible in the 2D I–V histogram. The ε and Γ were determined to be
ε = 0.51 eV and Γ = 0.082 eV for the high conductance state, and ε0 = 0.59 eV and Γ = 0.038 eV for the
low conductance state. These results indicate that the conductance difference is mainly caused by the
difference in Γ.
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5. Interface Structure

The metal–molecule coupling strength obtained by the I–V analysis is sensitive to the
metal–molecule interface structure of the single-molecule junction. The interface structure of the
single-molecule junction can be thus determined, based on the analysis of the strength of the
metal–molecule coupling. Figure 11a is the distribution of I–V curves of the BDT single-molecule
junctions [40,53]. Three conductance states are clearly distinguishable. Each conductance state is
labelled as high (H), medium (M), and low (L) conductance state, according to conductance. By fitting
the I–V curves with Equation (4), the Γ and ε values are determined to be 0.12 eV and 0.83 eV for H,
0.05 eV and 0.87 eV for M, and 0.013 eV and 0.76 eV for L state, respectively. The average conductance
(G) is 0.02 G0, 3 × 10−3 G0, and 3 × 10−4 G0 for H, M, and L state, respectively. Three physical
parameters of the single-molecule junction, Γ, ε, and G, can be obtained by analyzing the I–V curves.
The theoretical calculation with the model clusters having different interface structures also provides Γ,
ε, and G. By comparing these parameters between the experimental and theoretical results, the L, M, H
conductance states in I–V curves are assigned to interface structures of the on-top, hollow, bridge site
adsorption, respectively [53].Micromachines 2018, 9, x  9 of 15 
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6. Type of Charge Carriers

Thermoelectric voltage is induced in response to a temperature gradient across the materials
by the Seebeck effect. Recently, thermoelectric power generators, which directly convert heat flux
to electric energy, have attracted attention, because they can convert waste heat into useful electric
power. The previously reported theoretical study predicts large thermopower for the low dimensional
material. Thermopower of the single-molecule junction is currently one of the hot topics [54,55].
Thermopower also provides useful information about the single-molecule junction. The signs of
thermopower, plus or minus, are associated with the type of major carriers, electrons, or holes. In other
words, the thermopower measurements decide whether the electrons flow through the single-molecule
junction via LUMO, or the hole flow via HOMO. As mentioned above, I–V characteristics can determine
the energy difference between the conduction orbital and Fermi level. Thus, combining I–V and
thermopower measurements, we can determine the electric structure of the single-molecule junction
near the Fermi level.

The thermopower of the single-molecule junction can be observed as the offset voltage of I–V
characteristics, as seen in Figure 12a. Figure 12a shows the I–V curve of the C60 single molecule
junction measured at different temperature difference [52]. The offset voltage of ~0.1 mV was observed
at a temperature difference of 10 K, while offset voltage was 0 at a temperature difference of 0.
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Figure 12c shows the averaged offset voltage as a function of the temperature difference. From the
slope in Figure 12c, thermoelectric power of the C60 single molecule junction, was determined to be
−12.6 µV/K. The positive slope corresponds to a negative thermoelectric power, which means that
LUMO was closer to the Fermi level than HOMO. The type of charge carriers (conduction orbital) can
be determined by the I–V measurement. The determination of type of charge carrier has been reported
for various systems (e.g., bipyridine, oligophenyls, alkanes) using I–V measurements [56,57].

In the case of C60 single-molecule junction, the energy difference between conduction orbital
and Fermi level was determined to be 0.5~0.6 eV by the I–V measurement, as discussed above.
The thermopower measurement revealed that the conduction orbital was LUMO. By combining the
results of the I–V and thermoelectric measurements, the electronic structure of the C60 single-molecule
junction was determined as shown in Figure 12d.Micromachines 2018, 9, x  10 of 15 
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7. Spin State

When localized spin is present in the single-molecule junction, a sharp peak or dip, the so-called
Kondo peak, can appear around the zero bias regime in the differential conductance curves [26].
The spin state of the single-molecule junction can be, thus, evaluated by analyzing the Kondo peak
in the I–V curve. The Kondo effect is usually investigated by the temperature dependence of the
electronic conductance. In conventional metal, electronic conductance increases with a decrease in
temperature. When magnetic impurities are present in a metal, the conductance decreases with a
decrease in temperature below a certain temperature. The abnormal conductance decrease originates
from the interaction of the spin of the conduction electrons with the localized spin of the magnetic
impurities. The spin excitation state is created around the Fermi energy due to the Kondo effect,
as shown in Figure 13. Figure 13b shows the creation of the spin excitation state for a single magnetic
atom (4f metal) on a metal surface [26]. A singly occupied 4f state (4f 1) is formed below the Fermi
energy. The 4f 1 state is separated from the 4f 2 state, where two electrons with opposite spins are
occupied, by the Coulomb repulsion energy (U). The spin of the singly occupied 4f 1 state could be
flipped by conduction electrons with opposite spin through process 1 or 2. In the case of the process
1, electron is first removed from the 4f 1 state, and then is refiled. In Process 2, the second electron
is first put into the 4f 1 state, and then one electron is removed from the 4f 2 state. The spin state of
the final 4f 1 state is opposite comparing with the initial 4f 1 state. This spin-flip process creates the
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Kondo resonance around the Fermi level, which causes the Fano-Kondo resonance peak or dip in the
differential conductance curves. The Fano-Kondo resonance is represented by

dI
dV

= g0 +
A

1 + q2
(q + ε)2

1 + ε2 ,ε =
eV − εs

kbTK
(5)

where g0 is flat component, TK is Kondo temperature, q is dimensionless Fano parameter, A is
amplitude of the feature, and kb is Boltzmann’s constant [58]. The Kondo temperature is a characteristic
temperature and determines the peak width of the Kondo resonance in energy dependent density
of state (DOS). The Kondo temperature provides the strength of the interaction between magnetic
moment of magnetic impurity and conduction electrons.

Figure 13 shows the differential conductance curves of the Co atomic junction as a function of
temperature [59]. Kondo temperature is determined to be 120 K by fitting the differential conductance
curve with Equation (6). The amplitude of the Fano feature decreases with the temperature.
The decrease in amplitude is caused by the smearing of the Fermi–Dirac distributions of the initial
state and final states during the spin-flip transition via the intermediate state. It is noteworthy that
the atomic junction of a pure Co (ferromagnet) unexpectedly reveals the Kondo effect, although Co is
ferromagnetic material in bulk. The theoretical calculation shows that d electrons antiferromagnetically
couple with the sp conduction electrons in the ferromagnet nano contact. Therefore, the localized
magnetic moment is screened by the conduction electrons, which causes the Kondo effect in the
Co atomic junction. As for the bulk, sp−d hybridization vanishes, owing to the small anisotropy
of the crystal environment. The Kondo effect and Zeeman splitting have been investigated for
various single-molecule junction and metal atomic junction, in order to discuss the spin state of the
single-molecule junction [60,61].
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Figure 13. (a) Energy-dependent density of state (DOS) for the system where a single magnetic atom
adsorbs on a metal sample; (b) The spin-flip process induced by the interaction between of the singly
occupied state and bulk electron of opposite spin. The spin-flip process (process 1 and 2) form the
Kondo resonance around the Fermi energy (c) Differential conductance curves for the Co atomic
junction measured at different temperatures. Reproduced with permission from [59] copyright Nature
Publishing Group 2017.

Kondo effect can be seen in single-molecule junction with a transition metal complex of
Co(tpy-SH)2 (tpy-SH is 4′-mercapto-2,2′:6′,2′′-terpyridine) [60,61]. The Co complexes have spin
S = 1. Without stretching the junction, dI/dV spectrum exhibit a single peak centered at V = 0,
which is the signature of Kondo-assisted tunneling through the molecule. As the junction is stretched,
the Kondo peak splits into two peaks for the change in electrode spacing that varied from device to
device. The splitting peak is caused by a higher-spin S = 1 Kondo effect, together with the breaking
of degeneracy among the S = 1 triplet ground state by molecular distortion. For an unstretched S = 1
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ion in a ligand field with octahedral symmetry, the triplet states are strictly degenerate. When the
molecule is stretched, the Sz = 0 state is lowered by a zero-field splitting energy below the Sz = ±1
states. This broken degeneracy quenches the Kondo resonance near V = 0 and causes conductance
peaks because of inelastic tunneling.

The Kondo effect is also observed for the organic radical single-molecule junction. Riccardo et al.
reported the Kondo effect in a polychlorotriphenylmethyl (PTM) radical single-molecule junction.
The PTM is all-organic composition without transition metal [60]. Figure 14 shows the conductance
traces of the two different samples together with the dI/dV spectra. The dI/dV spectrum shows a
zero-bias anomaly corresponding to the Kondo effect. Figure 14d is the schematic image of electron
transport through the PTM single-molecule junction. Electrons transport via a spin unpolarized
transport channel (HOMO) and spin-flipping Kondo-mediated transport channel. The Kondo mediated
channel arises from the singly occupied molecular orbital (SOMO). Here, it is notable that the Kondo
peak is not sensitive to the displacement (Figure 14c). The SOMO is localized on the radical carbon
atom protected by three chlorinated phenyl rings, indicating a weak hybridization of the atomic orbital
and its strong atomic character. The strong localization of the SOMO makes the Kondo state stable.
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through the PTM molecule. Reproduced with permission from [60], copyright Nano Letter Publishing
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8. Conclusions

In this mini review, we describe examples of I–V characteristics of single-molecule junction.
The physical parameters obtained by the I–V curve give us information about the diode characteristics,
vibrational movements, type of charge carriers, atomic and electronic structures, and spin state of
the single-molecule junction. Currently, various single-molecule devices are developed, such as
switch, memory, transistor, sensor, diode, light source, and thermopower generators. For practical
use, the single-molecule junction should be well defined. The information obtained by I–V curves is
essential for the characterization of the single-molecule junction. The working principle of the single
molecular devices will become clear using this information, which enables the development of more
advanced single molecular devices. New physical and chemical properties can be also discovered
based on the information obtained by the I–V curves of single-molecule junctions.
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