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For decades, low- and moderate-dose radiation therapy (RT) has been shown to exert 
a beneficial therapeutic effect in a multitude of non-malignant conditions including 
painful degenerative muscoloskeletal and hyperproliferative disorders. Dupuytren and 
Ledderhose diseases are benign fibroproliferative diseases of the hand/foot with fibrotic 
nodules and fascial cords, which determine debilitating contractures and deformities 
of fingers/toes, while keloids are exuberant scar formations following burn damage, 
surgery, and trauma. Although RT has become an established and effective option in the 
management of these diseases, experimental studies to illustrate cellular composites 
and factors involved remain to be elucidated. More recent findings, however, indicate 
the involvement of radiation-sensitive targets like mitotic fibroblasts/myofibroblasts as 
well as inflammatory cells. Radiation-related molecular mechanisms affecting these 
target cells include the production of free radicals to hamper proliferative activity and 
interference with growth factors and cytokines. Moreover, an impairment of activated 
immune cells involved in both myofibroblast proliferative and inflammatory processes 
may further contribute to the clinical effects. We here aim at briefly describing mecha-
nisms contributing to a modulation of proliferative and inflammatory processes and to 
summarize current concepts of treating hyperproliferative diseases by low and moderate 
doses of ionizing radiation.

Keywords: low-dose radiation therapy, hyperproliferative diseases, fibroblasts/myofibroblast, cytokines, 
antiproliferative effect, anti-inflammatory effect

iNTRODUCTiON

The capacity of ionizing radiation to inhibit proliferation of malignant cancer cells are well explored 
(1–3) and widely used in clinical practice. By contrast, application of radiation therapy (RT) for 
non-malignant conditions is not a fully accepted practice in medicine. In line with that, the use of 
RT in the management of hyperproliferative non-cancerous disorders is controversially discussed 
and inadequately recognized by doctors from disciplines others than RT. However, long-term 
experiences impressively indicated a clinical benefit for patients (4, 5). Accordingly, treatment with 
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irradiation concepts not exceeding a single dose of 5  Gy and 
total doses of 30  Gy [low- or intermediate-dose RT (LD-RT)] 
is an established and effective modality in the management of a 
variety of non-cancerous inflammatory, degenerative, and hyper-
proliferative/fibroproliferative disorders (4–6). The latter include, 
among others, heterotopic ossifications, symptomatic vertebral 
hemangiomas, Gorham–Stout syndrome, prophylaxis of keloid 
relapse after surgical excision (7), and, most prominent, palmar 
and plantar fibromatosis also known as Dupuytren disease (DD) 
and Ledderhose disease (LD) (8). The most effective treatment 
schedule, the radiobiological basis, and molecular/cellular 
mechanisms contributing to the modulation by ionizing radiation 
of these benign hyperproliferative disorders are far from being 
fully explored. Consequently, this review aims at summarizing 
current clinical concepts and antiproliferative as well as immune 
modulating properties of low- and moderate-dose irradiation 
focusing on DD, LD, and keloids. This may display a prerequisite 
for future systematic investigations to enhance clinical irradiation 
protocols.

USe OF RT TO TReAT BeNiGN 
DiSORDeRS

Non-malignant indications for LD-RT comprise about 10–30% 
of all patient cases treated in most academic, public, and private 
RT facilities in Germany (4, 9). In total, more than 50,000 patients 
per year are treated by LD-RT with the largest group suffering 
from painful degenerative musculoskeletal diseases, followed by 
symptomatic functional and hyperproliferative disorders with 
the latter to increase in numbers by 28.8% from 1999 to 2004 (8).

In 1831, Baron Guillaume Dupuytren described for the first 
time a fibrotic contracture of the palmar fascia of the hand, while 
fibrotic contractures of the plantar fascia of the foot were initially 
described by the German physician Georg Ledderhose in 1897 
(4). DD is a prevalent disease with incidences varying between 
populations with up to 29% in the Western countries (10). Men 
are affected more often and earlier in life as women with a gender 
ratio from 3:1 to 6:1 (11) and with an onset of symptoms usually 
in the third to fourth decade of life (12). Concerning the etiol-
ogy and pathogenesis of DD, several studies report on a strong 
genetic background (13, 14) apart from environmental risk 
factors including alcohol, smoking, hand trauma, and manual 
work (15–17).

In spite of a documented occurrence of 1.75 cases per 100,000 
hospital admissions, the precise incidence of LD remains not 
exactly specified (18). It is known that men are affected twice as 
often as women, and in 25% of patients, both feet are involved. In 
9–25% of patients, concomitant DD has been described (19, 20), 
while a coincidence with knuckle pads or Peyronies’s disease has 
been observed in 4% of cases (21).

Another clinically relevant example of benign hyperprolifera-
tive diseases are keloids, which are considered as dermal disorders 
in predisposed individuals caused by injuries to the deep dermis, 
including burn damage, surgery, and trauma. The classic descrip-
tion of a keloid is “an exuberant scar formation that extends 
beyond the borders of the original wound.” Keloids are relatively 

common diseases occurring in 5–15% of wounds (22) and tend 
to affect both sexes equally. The frequency of keloid occurrence in 
persons with highly pigmented skin is 15 times elevated compared 
to those with less pigmented skins (23). Surgical resection is the 
standard in treating keloid patients, but excision alone results in 
unacceptably high recurrence rates of 45–100% (24).

According to a recent guideline from the German Society 
of Radiation Therapy and Oncology (DEGRO), single doses of 
0.5–1.0 Gy (total doses of 3.0–6.0 Gy) and two or three fractions 
per week are recommended in patients with painful degenerative 
and inflammatory diseases (6, 8). By contrast, different sched-
ules are advised when treating hyperproliferative diseases like 
DD, LD, and keloids (5, 25). So far, total doses exceeding 20 Gy 
applied in single fractions of 3 Gy have been shown to comprise 
the most clinically relevant schedules. However, at present, only a 
few controlled studies have reported on alternative fractionation 
concepts. Against this background, a randomized study compar-
ing no treatment versus either 21 or 30 Gy applied in 3-Gy single 
fractions over 2 weeks (7 Gy × 3 Gy) or by repeated 5 Gy × 3 Gy 
at intervals of 12 weeks has been conducted in patients with DD. 
After a median follow-up of 8 years, both regimes were signifi-
cantly superior regarding disease progression and avoidance of 
preceding surgery compared to the control group (9). In a huge 
retrospective cohort, Betz et  al. further analyzed a total of 135 
DD patients (208 hands) treated with a total dose of 30 Gy, in two 
intervals of 5 daily fractions of 3.0 Gy, separated by 6–8 weeks. 
At a median follow-up of 13 years, early-stage disease was more 
likely to respond to treatment in terms of prevention of progres-
sion (26), and 66% of the patients showed a long-term relief of 
symptoms, while RT was not associated with increased complica-
tions following salvage surgery in case of progression and late 
skin toxicity (atrophy, dry desquamation).

In contrast to DD, only a few clinical investigations have 
been published concerning RT of LD. After a median follow-up 
of 22 months, Heyd et al. reported a complete remission of the 
nodes in 33.3% of cases and a decrease or numerical reduction in 
54.5% of the cases following weekly fractions of 3.0 Gy (15 Gy), 
repeated after 6  weeks. About 70% of the patients indicated a 
reduction of pain and an improvement of their gait pattern (18).

As mentioned before, keloid scars tend to display high recur-
rence rates of 45–100% following surgical debulking or resection 
(24). By contrast, adjuvant RT has been shown to result in the 
avoidance of renewed excessive scar formation and good cosmetic 
outcome with a 60–90% success rate (22, 27, 28). There is conclu-
sive evidence that single doses of 2.0–5.0 Gy and total doses of 
16–20 Gy/series with five fractions per week are effective for the 
prevention of local relapses after surgical excision of keloids (5). 
RT can be applied with low-energy X-rays (150–200 kV), low-
energy electrons (4–10 MeV), or brachytherapy (29). To obtain 
the optimal antiproliferative effect, radiation should be initiated 
immediately after the surgical excision, preferably within the  
first 24 h.

In conclusion, the clinical/empirical experience of different 
dose requirements and treatment schedules to treat degenerative 
and hyperproliferative benign diseases may indicate distinctive 
cellular components and mechanisms to be affected in response 
to ionizing radiation. In case of hyperproliferative disorders, both 
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antiproliferative and anti-inflammatory effects may account for 
elevated dose requirements that will be reviewed below.

BASiC MeCHANiSMS OF RADiATiON 
eXPOSURe AND CANCeR RiSK 
ASSeSSMeNT AFTeR RT OF BeNiGN 
DiSeASeS

In the last decades, there has been increasing interest in the 
physical and molecular cellular response following exposure to 
ionizing radiation. Initial events cover damage to DNA by direct 
hits of photons or electrons or generation of radicals, e.g., reactive 
oxygen species (ROS), that indirectly cause DNA double-strand 
beaks (DSBs), the most severe kind of damage (30, 31). Induction 
of these lesions promptly results in the activation of DSB damage 
repair processes, most importantly non-homologous end joining 
or homologous recombination, and subsequently triggers execu-
tion of a multitude of cellular signaling pathways referred to as 
the DNA damage response (DDR) (2, 32). These responses cover 
posttranslational modifications and/or altered gene expression of 
proteins to initiate cell cycle alterations (e.g., radiation-induced 
arrest) or execute cell death by mitotic catastrophy, apoptosis, 
autophagy, or induction of senescence (2, 3, 32). Importantly, 
the classical paradigm in radiobiology on (nuclear) targeted 
effects, indicating that DNA DSBs are solely responsible for 
the biological consequences of radiation exposure, is now chal-
lenged by reports on non-(DNA) targeted effects. These effects 
cover, among others, bystander or abscopal effects and adaptive 
responses and are considered to be involved in the regulation of 
intercellular communication and modulation of the activity of a 
multitude of immune components by low- or intermediate-dose 
ionizing radiation [reviewed in Ref. (33)]. Accordingly, although 
not proven experimentally at present, one may assume that RT 
of hyperproliferative disorders may include both targeted (cell 
proliferation/death) and non-targeted effects of ionizing radia-
tion (modulation of immune components).

Due to reports from the sixties of the last century on 
increased mortality from leukemia and anemia (34), LD-RT is 
still considered unfashionable in some countries. However, risk 
assessment of carcinogenesis after low-dose radiation treatment 
of benign diseases is challenging due to a relatively small number 
of patients treated worldwide, latency of carcinogenesis, which 
requires a long-term follow-up, and different treatment regimes 
and techniques that are not directly comparable with the present 
advanced methodology (35, 36). In general, the risk to develop 
radiation-induced cancer can be estimated by calculation of the 
equivalent dose of a specific tissue or organ using the effective 
dose (E) concept as proposed by the International Commission 
of Radiological Protection (37). These estimations, however, are 
controversially discussed and problematic in cases where organs 
receive heterogenous exposure, and calculation of the effective 
dose might overestimate the true probability in some cases and 
underestimate it in others (38). An alternative and more accurate 
approach for the estimation of the risk to develop malignancies 
is a direct assessment from epidemiological data of patients 
who have undergone radiotherapy for benign diseases (35, 38). 

However, these data are still scarcely available, and follow-up 
times are often too short. In summary, estimation of cancer risk 
after radiation treatment for benign diseases is challenging, but 
for current clinical protocols regarded to be small especially for 
older patients (36). By contrast, the balance of risk and benefit 
has to be considered carefully for younger patients, and children 
should not be subjected to LD-RT at all.

CeLLULAR AND MOLeCULAR BASiS OF 
HYPeRPROLiFeRATive DiSeASeS

Dupuytren disease and LD are among the best-described dis-
eases with proliferation of fibrous tissue to form two structurally 
distinct elements, nodules and cords, which have features in 
common with benign fibromatosis (39, 40). Aberrant cellular 
proliferation is involved in the formation of these elements, which 
are induced by a genuine unknown reason, injury, or a variety 
of trigger mechanisms (41). Histologically, nodules present a 
highly vascularized tissue with a high percentage of fibroblasts 
and myofibroblasts, while cords are more avascular, acellular, and 
collagen-rich tissues. As mentioned before, the prominent cel-
lular components in the nodules are fibroblasts/myofibroblasts. 
The latter comprise differentiated cells that share characteristics 
of fibroblasts and, by the expression of α-smooth muscle actin, 
contractile properties similar to those of smooth muscle cells 
(15, 42, 43). These myofibroblasts originate from several sources 
including quiescent tissue fibroblasts, circulating cluster of dif-
ferentiation (CD)34+ fibrocytes, and a phenotypic conversion of 
various cell types including epithelial and endothelial cells.

Several studies further indicated infiltration of multiple 
immune cells in Dupuytren’s contractures. These cover different 
lineages of lymphocytes including CD3, CD4, CD8, CD45RA+ 
naïve and CD45RO+ activated cells, CD68- and S100-positive 
macrophages (44), and Langerhans cells. Further, compared to 
peripheral blood detection, transcription factor FOXP3-positive 
regulatory T-cells were more abundant in fibrotic tissue. Notably, 
immunoscope analysis indicated a restricted T-cell receptor 
αβ repertoire, indicating an (auto)antigen-driven expansion of 
intralesional T-cell clones with Th1-/Th17-weighted immune 
responses (44). Finally, in favor of a causal involvement of inflam-
matory processes in DD, elevated levels of the pro-inflammatory 
cytokines interleukin (IL)-6 and an abundant expression of trans-
forming growth factor-β1 (TGF-β1) have been reported (44).

In contrast, keloids present reddish tumor-like lesions extend-
ing beyond a surgical scar (28), which do not respect the borders 
of the original wound area. Functionally, keloids arise from either 
insufficient degradation and remodeling of extracellular matrix 
(ECM) components due to an imbalance in expression of matrix 
metalloproteinases or excessive ECM deposition by an increased 
activity of fibroblasts and myofibroblasts (45). Furthermore, 
keloid stem cells have been described, which share characteris-
tics with skin progenitor cells and are transformed from dermal 
progenitor cells in a pathological niche of keloid tissues. These 
keloid stem cells are self-renewal and, by asynchronous divisions, 
continually generate new keloid cells, thus leading to overgrowth 
of keloid tissue and posttherapy recurrences (46).
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Recently, to assess characteristics of cellular composition, tis-
sue specimens from 28 keloid patients were subjected to immuno-
histochemical analyses (47). An increased number of CD20- and 
CD3-positive lymphocytes, CD68-positive macrophages, and 
CD1α+ Langerhans cells were recorded, indicating character-
istics in keloid tissue similar to autoimmune diseases (47). This 
notion was further strengthen by the detection of elevated levels 
of TGF-β1; vascular endothelial growth factor (VEGF); platelet-
derived growth factor-α in line with inflammatory cytokines IL-6, 
IL-8, and IL-18; and chemokine-like factor 1 (48, 49).

PROLiFeRATiNG MiTOTiC FiBROBLASTS/
MYOFiBROBLASTS ARe RADiOSeNSiTive 
CeLLS

Concerning radiation responsiveness, the course of DD and LD 
comprises three consecutive phases. These include a radiosensi-
tive initial hyperproliferative period characterized by increased 
numbers of fibroblasts/myofibroblasts in line with an excessive 
deposition of ECM components, especially collagen, fibronectin, 
elastin, and proteoglycans (50, 51). The initial period is followed by 
an involutional phase with decreased radiation sensitivity in line 
with the formation of fiber bundles causing contractures. Finally, 
this phase is followed by a non-RT responsive residual phase with 
a predominant establishment of collagen filaments in the connec-
tive tissue (4, 42). Thus, the clinical implementation and clinical 
efficacy of RT to treat hyperproliferative DD and LD are strictly 
stage dependent, with a clinical efficacy most pronounced in the 
early nodular stage. With regard to target cells, the proliferative 
phase is characterized by the presence of radiation-responsive 
fibroblasts and/or myofibroblasts preceding the formation of 
nodular contractures (52, 53). These myofibroblasts differentiate 
from fibroblasts triggered by activation with fibrogenic cytokines 
secreted by macrophages or other cellular compounds (15, 51). 
This differentiation/activation process results in proliferation and 
excessive production of ECM components as mentioned before 
(54). The cellular source(s) of these myofibroblasts are still not 
entirely clear; however, they may be multiple (55). In addition 
to resident mesenchymal cells, myofibroblasts are derived from 
epithelial or endothelial cells in a process termed epithelial–mes-
enchymal transition or endothelial–mesenchymal transition 
(56–58). Moreover, a unique circulating fibroblast-like cell 
derived from bone marrow stem cells (59, 60) further accounts 
for myofibroblast development. These blood-born mesenchymal 
progenitors have a fibroblast/myofibroblast-like phenotype as 
they express CD34, CD45, and type I collagen and are commonly 
called fibrocytes.

Notably, in the field of radiation biology, an alternative defini-
tion of fibrocytes exists that differs from the immunological one 
given above that may cause some confusion. In their reports, 
Bayreuther and Rodemann indicated fibrocytes to constitute ter-
minally differentiated postmitotic fibroblasts (PMF) with down-
regulation of transcription factor c-fos and a specific capacity for 
the synthesis of collagen types I, III, and V and proteoglycans  
(39, 61, 62). Taking this definition into account, single-dose irra-
diation in the range of 1–8 Gy has been shown to induce terminal 

differentiation of these cells into senescent fibrocytes at a high 
percentage level. By contrast, irradiation of long-term cultures 
with repeated doses of 10 times 0.6 Gy or 10 times 1.0 Gy revealed 
a marked reduction of their proliferative capacity (63, 64). This 
has even been demonstrated for densely ionizing irradiation 
(65). In line with that, the life span of non-proliferating PMF is 
limited and shortened by more than 40% following irradiation 
in comparison to physiological conditions (66). Moreover, these 
populations require a permanent renewal from a mitotically 
active progenitor fibroblast pool (67). Consequently, interference 
with the differentiation processes in line with eradicating mitotic 
precursor fibroblasts may display a substantial fundament for the 
clinical effects of antiproliferative low-dose irradiation.

From a mechanistic point of view, RT results in reduction of 
fibroblast proliferation, cell cycle arrest, and induction of cellular 
senescence as has been shown in irradiated long-term cultures 
of healthy human fibroblasts. Following an immediate cell cycle 
arrest, a period of a few weeks with premature differentiation and 
senescence was observed (68). Inhibition of cell proliferation and 
induction of cellular senescence were mediated by interruption 
of the cell cycle with an extended GO/G1 phase, in line with 
upregulation of cell cycle regulators TP53 and CDKN1A (p21) 
and senescence-associated genes p16 and p27 at protein levels  
(68, 69). Notably, concerning radiation-induced cell death, 
primary lung fibroblasts were able to prevent radiation-induced 
apoptosis by activation of protein kinase C (PKC), while PKC 
inhibition or attenuation results in downregulation of prosurvival 
and antiapoptotic signaling proteins and apoptosis induction (70).

Another study investigated the effect of irradiation on pri-
mary keloid fibroblasts (KFb) (71). X-ray exposure inhibited 
KFb proliferation and induced cell senescence in a dose- and 
time-dependent manner. On a molecular basis, mRNA and 
protein expression of senescence-associated genes p16, p21, 
and p27 increased after 4  Gy irradiation in a time-dependent 
manner. Responsible for this is considered a dynamic feedback-
loop, triggered by activation of p21, followed by mitochondrial 
dysfunction and increased levels of ROS, resulting in elevated 
DNA damage and ongoing DDR (72). However, the fate of the 
fibroblast after irradiation-induced cell cycle arrest is not only 
determined by persistent DNA damage and p21 levels but also 
essentially depends on cellular Cdk2/p21 ratio (73).

iMPAiRMeNT OF PROLiFeRATive 
ACTiviTY OF FiBROBLASTS/
MYOFiBROBLASTS BY FRee RADiCALS

It is a well-established fact that levels of ROS including superox-
ide (O2−), hydrogen peroxide (H2O2), and hydroxyl radical (⋅OH) 
dramatically increase following exposure to ionizing radiation, 
resulting in damage to macromolecules and DNA in line with 
disturbance of a multitude of signal transduction pathways 
(74–77). These pathways, in a direct way, stimulate production of 
inflammatory and fibrogenic mediators that include chemotactic 
cytokines, mitogens, and mediators to modulate differentiation of 
the fibroblast/myofibroblast/fibrocyte axis (78, 79). Accordingly, 
the microenvironment in contracture tissue is characterized by 
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the presence of a multilevel network of inflammatory/fibrogenic 
cytokines, ROS, and antioxidants that in sum may interfere with 
the clinical effectiveness of LD-RT. A close connection between 
ROS production and local ischemia was further confirmed in 
an early study showing elevated quantities of hypoxanthine and 
xanthine oxidase activity to catalyze elevated levels of O2− and 
H2O2 in palmar fascia of patients with DD (80). Besides this, 
addition of free oxygen radicals to cultures of fibroblasts derived 
from DD palmar fascia dose dependently increases collagen type 
III expression at low concentrations or inhibits proliferation at 
higher doses (81). This possibly may indicate that ionizing radia-
tion induces a level of ROS production that exceed a threshold to 
inhibit proliferation of fibroblasts and/or myofibroblasts.

CYTOKiNeS AND GROwTH FACTORS 
COMPRiSe TARGeTS OF RADiATiON iN 
HYPeRPROLiFeRATive DiSeASeS

Analogous to inflammatory diseases and fibrotic disorders, levels 
of cytokines and growth factors secreted by a multitude of cell 
types including platelets and macrophages have extensively been 
analyzed in DD, LD, and keloid specimens (82–84). These mol-
ecules cover fibroblast growth factor, PDGF, epidermal growth 
factor, connective tissue growth factor, TGF-β1, IL-1, IL-6, VEGF, 
and tumor necrosis factor-α (TNF-α) (41, 83, 85–87). TGF-β1 
is well documented to constitute a key player (84, 88), which is 
undoubtedly among the cytokines most implicated in both the 
process of fibrosis induction and radiation response. TGF-β1, 
which is produced by a wide range of inflammatory, mesenchy-
mal, and epithelial cells, is critical in many facets of the fibrogenic 
process, such as ROS generation and conversion of fibroblasts 
into myofibroblasts (43, 86, 89). The factor transduces its signal 
by a heteromeric complex formation of related type I and type II  
transmembrane receptors, resulting in phosphorylation and 
activation of receptor-regulated mother against decapentaplegic 
homolog 2 (Smad2) and Smad3 molecules (R-Smads). These 
R-Smads in turn associate with Smad4 (Co-Smad) to form a 
heteromeric Smad transcription factor complex that regulates 
expression of a large array of target genes (90). All of these compo-
nents were reported to have increased expression patterns in DD, 
resulting in accelerated TGF-β signaling (88, 91). Importantly, 
Wong and Mudera further reported on a negative feedback inhi-
bition of TGF-β1 in Dupuytren’s fibroblasts. In their study, the 
group reported on lower doses (1–10 ng/ml) to increase myofi-
broblast activation in an experimental collagen model, whereas 
higher concentrations (20–30  ng/ml) impaired contraction in 
DD fibroblasts (92). Accordingly, it is convincible to assume 
that increased TGF-β1 transcription and secretion triggered by 
ionizing radiation in endothelial cells and fibroblasts/fibrocytes 
(18, 63, 64) may result in inhibition of fibroblast/myofibroblast 
proliferation and ECM deposition in irradiated tissue.

More recently, TNF-α was identified as an additional key 
regulator involved in the fibrotic process and differentiation of 
fibroblasts into myofibroblasts in the palm of patients affected by 
DD, via activation of Wnt signaling pathway (13, 87). Moreover, 
TNF-α directly regulates TGF-β1 expression, as shown in lung 
fibroblasts (93). Finally, targeting TNF-α by the use of neutralizing 

antibodies diminished the contractile activity of myofibroblasts 
derived from DD patients, reduced the expression of α-SMA, and 
mediated disassembly of the contractile apparatus, thus qualify-
ing the cytokine as a therapeutic target in DD.

iMPACT OF MACROPHAGe ACTiviTY 
AND eNDOTHeLiAL CeLLS ON 
PROLiFeRATiON OF MYOFiBROBLASTS

While factors affecting the beginning and development of DD 
and LD as well as keloids have been extensively studied (15, 25, 
82, 94), the mechanistic basis for the regulation of proliferative 
elements remains not entirely resolved. These processes, however, 
may include several prominent elements: a fibrogenic/angio-
genic element associated with proliferation and an immune cell 
component. Indeed, histological studies identified the presence 
of clusters of macrophages and T-lymphocytes in early DD and 
keloids and a correlation between the numbers of macrophages 
and the quantity of myofibroblasts (87, 95, 96).

Notably, with regard to cytokine production, a hampered 
pro-inflammatory TNF-α and IL-1 secretion from human RAW 
264.7 or murine macrophages stimulated by lipopolysaccharides 
has been reported following LD-RT (97–99). Mechanistically, the 
hampered cytokine production was correlated to a diminished 
nuclear translocation of the immune relevant transcription factor 
nuclear factor kappaB (NF-κB) subunit RelA (p65) in line with 
a lowered induction of NF-κB upstream p38 mitogen-activated 
protein kinase and downstream protein kinase B (Akt) (99, 100). 
In addition, inflammatory macrophages revealed a reduction in 
their capacity to perform an oxidative burst and a diminished 
activity of the enzyme inducible nitric oxide synthase upon low-
dose irradiation, resulting in lower levels of ROS and nitric oxide 
(NO) induction (101, 102). Considering the pivotal function of 
macrophages in inflammatory and fibrogenic cascades, a lowered 
production of cytokines, ROS, and NO may essentially contribute 
to a hampered myofibroblast proliferation and to the clinical 
benefit of low- and intermediate-dose irradiation in hyperprolif-
erative disorders (Figure 1).

It further has been shown that a clinically therapeutic effect 
of steroids if given in an early phase of DD, results from a reduc-
tion in leukocyte adhesion/diapedesis (103) as well as increased 
apoptosis of macrophages and fibroblasts (104). In a mechanistic 
manner, endothelial cells are critically implicated in the regula-
tion of (pro-)inflammatory cascades, which are mediated by 
a locally restricted adhesion of immune components from the 
peripheral blood and secretion of an array of cytokines/growth 
factors including TGF-β1 and IL-6 (105–107). In that context, our 
group and others have shown a diminished leukocyte adhesion to 
40–50% of the level of non-irradiated cells most pronounced at a 
4- and 24-h period following LD-RT. This effect is mainly medi-
ated and functionally attributed to the expression of TGF-β1 from 
endothelial cells (106, 108, 109). Accordingly, it is reasonable 
to speculate that a hampered recruitment of monocytes/mac-
rophages from peripheral blood may promote antiproliferative/
inflammatory properties of low- and intermediate-dose ionizing 
radiation and thus contributes to beneficial effects of LD-RT in 
DD, LD, and keloids.
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FiGURe 1 | Model of modulation of cellular components and factors 
by low-dose radiotherapy for the treatment of hyperproliferative/
fibrotic benign diseases. Progenitor mitotic fibroblasts are activated by 
transforming growth factor-β1 (TGF-β1) and additional factors to differentiate 
into myofibroblasts/fibrocytes, resulting in increased extracellular matrix 
(ECM) synthesis and deposition. In contrast, irradiation might interfere with 
these processes by increasing free radicals, inactivating radiosensitive mitotic 
fibroblasts/myofibroblasts, and promoting terminal differentiation into 
senescent fibrocytes. Further, low-dose irradiation modulates inflammatory 
components in modulating cytokine expression, macrophage, and 
endothelial cell activity. Abbreviations and details are given in the text.
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CONCLUSiON AND FUTURe 
PeRSPeCTiveS

The pathogenesis of hyperproliferative/fibrogenic disorders is 
complex, considered to evolve from system biology diseases based 
on a multitude of (patho)physiological networks (110), and still 
remains elusive despite extensive investigation. Accordingly, one 
may assume that the empirically proven beneficial efficacy of (low 
dose) RT is mediated by the modulation of a variety of pathways 
and cellular targets involved (Figure  1). Among these targets, 
the fibroblast/myofibroblast system originating from several 
sources comprises a characteristic connector, linking DD, LD, 
and keloid diseases. Radiation-related molecular mechanisms 
affecting these cellular components include a direct influence on 
cell cycle regulation, production of oxygen radicals to diminish 
their proliferative capacity, and interference with growth factor 
and cytokine expression (15). Moreover, reduced numbers of 
activated immune cells implicated in concomitant inflamma-
tory processes, and proliferation of fibroblasts/myofibroblasts 
(111, 112) may further contribute to the therapeutic effects of 
radiation. Consequently, the use of low- or moderate-dose RT for 
early-stage DD and LD and postsurgical keloids not only covers 
a robust radiobiological rationale but also has been proven as 
low-cost and effective treatment with clinically acceptable acute 
and long-term toxicity (8). Even though remarkable progress 

has been achieved during the last years in the knowledge of 
radiobiological mechanisms most prominent after a low-dose 
exposure (33, 113), a therapeutic efficacy in hyperproliferative 
disorders may originate from an overlap of antiproliferative and 
immune-modulatory effects as documented by different dose 
requirements in daily clinical applications.

As stated before, the number of patients annually treated 
with low- and intermediate-dose irradiation at least in Germany 
continuously increases in line with a growing acceptance from 
other medical disciplines. Moreover, based on preclinical radio-
biological considerations (113), recent trials confirmed a clinical 
isoeffect of single dose of 0.5 and 1 Gy irradiation (total dose 3 
or 6 Gy) in terms of pain relief and long-term response at least 
in degenerative skeletal disorders (114, 115). Consequently, for 
radiation protection purposes and decreasing putative radiation 
risk, standard use of 0.5 Gy/3 Gy schedules is now recommended 
for the treatment of these diseases (6). Although comparable opti-
mization studies are still lacking in hyperproliferative disorders, 
one may draw the conclusion by analogy that a dose reduction 
may further increase acceptance of RT in the clinical manage-
ment of DD, LD, and keloids and increase numbers of patients 
treated for these indications worldwide. Moreover, in terms of a 
decrease in single and total doses, combined modality treatment 
with, e.g., anti-inflammatory drugs should be addressed in future 
clinical investigations to boost treatment routines including RT.

Very recently, a modular assay for detailed immunopheno-
typing of peripheral whole blood samples of patients following 
low-dose radon spa therapy (RAD-ON01 study) (116, 117) and 
low-dose X-irradiation (IMMO-LDRT01: http://ClinicalTrials.
gov identifier: NCT02653079) have been developed. These mul-
ticolor flow cytometry approaches may be well adapted for a 
detailed monitoring of immunological properties in patients 
with DD, LD, and keloids. Accordingly, to the author’s point of 
view, future research activities should concentrate on basic, trans-
lational, and clinical efforts (dose optimization studies, patient’s 
immunophenotyping, and combined modality treatment) and on 
the development of suitable preclinical models for hyperprolif-
erative disorders to further characterize additional factors and 
mechanisms contributing to the clinical effects of LD-RT.
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