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Abstract
Interstitial cells of Cajal (ICCs) are pacemaker cells of gastrointestinal motility that generate and transmit electrical slow 
waves to smooth muscle cells in the gut wall, thus inducing phasic contractions and coordinated peristalsis. Traditionally, 
tyrosine-protein kinase Kit (c-kit), also known as CD117 or mast/stem cell growth factor receptor, has been used as the 
primary marker of ICCs in pathology specimens. More recently, the  Ca2+-activated chloride channel, anoctamin-1, has been 
introduced as a more specific marker of ICCs. Over the years, various gastrointestinal motility disorders have been described 
in infants and young children in which symptoms of functional bowel obstruction arise from ICC-related neuromuscular 
dysfunction of the colon and rectum. The current article provides a comprehensive overview of the embryonic origin, distribu-
tion, and functions of ICCs, while also illustrating the absence or deficiency of ICCs in pediatric patients with Hirschsprung 
disease intestinal neuronal dysplasia, isolated hypoganglionosis, internal anal sphincter achalasia, and congenital smooth 
muscle cell disorders such as megacystis microcolon intestinal hypoperistalsis syndrome.
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Introduction

Interstitial cells of Cajal (ICCs) were first described in 
1893 by the Spanish histopathologist and Nobel Prize lau-
reate Santiago Ramón y Cajal as “fibroblast-like cells in the 
muscularis externa and villous stroma of the gastrointesti-
nal tract” [1]. Later, light and electron microscopy studies 
demonstrated that ICCs are neither neurons nor Schwann 
cells [2–4], forming a unique class of cells that are dis-
tinct from the enteric nervous system (ENS) [5]. In the 
1990s, the tyrosine-protein kinase Kit (c-kit), also known 
as CD117 or mast/stem cell growth factor receptor, has 
been identified as the primary marker of ICCs in pathology 
specimens [6, 7]. However, while loss of c-kit positivity 
is not necessarily indicative of loss of ICCs, it also fol-
lows that normal levels of c-kit positivity are not automati-
cally suggestive of normal ICC distribution [8, 9]. This, in 

addition to the finding that c-kit also labels mast cells in the 
circular muscle layer [10], has led recently to the introduc-
tion of the  Ca2+-activated chloride channel anoctamin-1 
(Ano1) as more specific marker of ICCs [11–13].

Today, it is well established that ICCs are distributed 
throughout the entire alimentary tract, from the upper 
esophageal sphincter to the internal sphincter of the anus 
[14–16]. ICCs are located between the nerve endings of 
motor neurons and smooth muscle cells, modulating inhibi-
tory and excitatory signals from the ENS [9, 17]. They play 
a major role in gastrointestinal motility by generating slow-
wave electrical activity, which propagates throughout the 
smooth muscle layers of the gut, giving rise to peristaltic 
waves [8]. In 2013, it was reported that allotransplantation 
of ICCs could not only populate tissues but also establishes 
functional pacemaker activity, where they originally were 
absent [18]. Thus, further research in this field may pro-
vide the basis for a therapeutic treatment of gastrointestinal 
motility disorders in patients, where ICC networks have 
been disrupted or lost, for example due to genetic defects, 
pathophysiological insults or natural aging processes.
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Embryonic origin and development of ICCs

In contrast to Cajal’s opinion, ICCs develop independently 
of neural crest-derived enteric neurons and glia, and origi-
nate mainly from c-kit-positive mesenchymal precursor cells 
[19–22]. Furthermore, it has been shown that the normal 
development of ICCs depends on the expression of c-kit [6, 7]. 
Kit signaling is essential for both the development and main-
tenance of functional ICCs in the embryonic gastrointestinal 
tract, with precursor ICCs expressing c-kit as early as embry-
onic day 11 (E11) in mice [20]. At E12, c-kit-positive cell clus-
ters were found in the periphery of developing murine small 
intestine, just under the serosal surface. C-kit-positive cells 
occur from E15 onwards peripheral to developing myenteric 
ganglia [23]. The late gestational time between E15 and E18 
seems to be a critical period during ICC development as the 
c-kit-positive precursors begin to develop toward a functional 
ICC phenotype. The pharmacological or genetic blockade 
of Kit signaling during late gestation results in the failure of 
ICC networks and pacemaker function to develop in the small 
intestine. However, the ICC network appears to have a certain 
plasticity, allowing for restorative changes and redevelopment 
of functional ICCs [21].

Various studies have investigated the fetal and postnatal 
development of ICCs in the human gastrointestinal tract, 
demonstrating c-kit-positive cells in the stomach from 
9.5 weeks of gestation and in the small and large bowel 
from 12 to 13 weeks [24–26]. ICCs also undergo significant 
changes postnatally. The number of ICC cell bodies and vol-
ume of ICC within the human stomach and colon decrease 
with age at a rate of 13% per decade, with no differences 
according to sex or location in the gastrointestinal tract [27].

Functions and distribution of ICCs

Over a century ago, the Scottish anatomist Sir Arthur Keith had 
already suggested that ICCs might act as pacemaker cells of 
gastrointestinal motility, coordinating phasic contractile activ-
ity [28]. Later on, electron microscopical studies have shown 
a close association of ICCs with nerve terminals and gap 
junctions within smooth muscle cells [5, 29]. Today, numer-
ous gastrointestinal functions are known that are affected by 
ICCs (e.g., generating and active propagation of electrical slow 
waves, depolarization into adjacent smooth musculature, etc.).

Extensive morphological and electrophysiological 
research has revealed multiple complex functions of ICCs 
(Box 1).

Several subtypes of ICCs have been distinguished accord-
ing to their distinct distribution patterns and morphological 
features within the anatomical layers of the gastrointestinal 
tract [34]. Each type of ICCs is determined by the struc-
ture of their adjacent smooth muscle layer, their relation to 

neighboring nerve plexuses and the density of their connec-
tions with other ICCs (Table 1).

Box 1 functions of ICCs

1.   Pacemaker cells that actively propagate electrical 
slow waves to gastrointestinal smooth muscle cells 
[30].

2.   Mediators of both inhibitory and excitatory motor 
neurotransmission from the ENS [7, 30, 31]

3.   Non-neural stretch receptors in gastrointestinal mus-
cle, affecting both smooth muscle excitability and 
slow-wave frequency [32]

4.   Formation of a network with close associations to the 
intramuscular terminals of vagal afferents and may 
also have a role in afferent signaling [33]

Identification and visualization of ICCs

Over the years, the distribution and morphology of ICCs 
have been analyzed by many methods. Historically, tra-
ditional histology stains such as methylene blue, silver 
or Golgi impregnation were used. These specific staining 
techniques led to the previous assumption that ICCs are 
primitive neurons, as they were unable to truly discrimi-
nate between neurons and ICCs. Later, electron microscopy 
was applied to further enable ultrastructural studies of ICCs 
[45–48]. To date, electron microscopy remains the method 
of choice for the examination of the typical ultrastructural 
features of ICCs, including their well-developed smooth 
endoplasmic reticulum, abundant intermediate filaments, 
lack of myosin filaments, numerous caveolae, dense bod-
ies and bands as well as an oval indented nucleus [49–57]. 
Furthermore, ICCs are intercalated between neurons and 
smooth muscle cells and have been shown to form gap junc-
tions with the latter cell type [58]. In addition to the char-
acterization of single cells, the distribution and topography 
of ICCs in various tissues have been investigated in great 
detail. The identification of c-kit expression in ICCs was 
a major scientific breakthrough. This proto-oncogene that 
encodes the receptor tyrosine kinase kit is highly expressed 
in both ICCs and mast cells [7, 30, 31, 59, 60]. Conse-
quently, many studies have been performed showing the 
expression of c-kit-positive ICCs in the gastrointestinal tract 
of several species, including humans [10, 26, 61, 62], mice 
[26], rats [63, 64], and guinea-pigs [65, 66]. These studies 
and further investigations have increased our understand-
ing of the complex architecture of ICC networks in rela-
tion to the ENS and the intestinal smooth muscle layers 
[67]. Recently, Ano1 has been identified as a highly specific 
marker for all subtypes of ICCs within the gastrointestinal 
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tract of mice and humans, and its expression has been 
associated with the generation of electric slow waves [12] 
(Figs. 1, 2 and 3).

The complex relationship of ICCs to the ENS and other 
surrounding structures was traditionally investigated in 
conventional thin histological sections. The development 
of whole-mount preparation has proven to be an effective 
technique for the visualization of the structure of the intrin-
sic networks (e.g., neurons and ICCs) and their patterns of 
branching and interconnection with each other and neighbor-
ing tissue layers (Fig. 4). It facilitates the three-dimensional 
study of the morphology of neuronal and ICC networks [68, 
69], having some obvious advantages compared to conven-
tional histological thin sections, as it enables a more detailed 
examination of the complex morphology of neurons, glial 
cells or ICC within the gut [70]. Whole-mount preparations 

can comprise several layers of bowel wall, including the lon-
gitudinal muscle layer and the adjacent myenteric plexus. 
They are made by separating the muscular layer from the 
submucosal layer, followed by removal of the circular mus-
cle layer from the longitudinal muscle. Subsequently, the 
mucosa is removed from the submucosal layer to better 
visualize the submucosal plexus. The three-dimensional 
configuration of c-kit-positive cells was first described as 
typical for multipolar cells around the myenteric plexus and 
slender bipolar cells within the circular and longitudinal 
muscle layers [61]. Furthermore, close relationships between 
muscular ICCs and neurons with nitric-oxide synthase-like 
immunoreactivity, vesicular acetylcholine transporter and 
substance P-like immunoreactive axonal varicosities have 
been demonstrated in whole-mount preparations of guinea-
pig small intestine [71]. Therefore, it has been assumed that 

Table 1  Summary of ICC subtypes

Tissue layer Distribution pattern and morphological features of ICC network

Submucosa and sub-
mucosal plexus

ICCs are located at the interface between the submucosal layer and the innermost circular muscle layer of stomach and 
colon [35–39]. These multipolar cells form a loose network via their secondary processes [6, 40]

Circular muscle ICCs are bipolar and orientated along the surrounding muscle cells. Their distribution and density vary considerably 
within the gastrointestinal tract. They are sparsely found in the small bowel without forming a network, whereas they 
are strongly expressed along the nerve bundles of stomach and colon [33] (Fig. 1). Within the deep muscular plexus of 
the small bowel, also multipolar ICCs are found along the inner portion of the circular muscle layer in close proximity 
to nerve bundles [41, 42]

Myenteric plexus ICCs show here the greatest density, being multipolar cells with 3–5 primary processes that are connected to each other 
and to neighboring structures (Fig. 2). They form a dense network in the small bowel and are less dense in stomach 
and colon [33]. ICCs also project deep into the circular muscle layer via septa that separate the circular muscle into 
bundles. Their projections may provide a pathway through which slow waves are propagated into the depth of the 
circular muscle layer, which is most likely the case in animals with thicker muscle layers [43]

Longitudinal muscle ICCs are bipolar and similar to those in the circular muscle layer, but less numerous [33] (Fig. 3)
Subserosa ICCs comprise a group of stellate cells in small bowel and colon of mice and guinea pigs [6, 44]

Fig. 1  Whole-mount preparation of circular muscle of human colon, 
nerve fibers stained with NADPH-diaphorase (blue) and muscular 
ICCs stained with anti-c-kit immunohistochemistry (red)

Fig. 2  Whole-mount preparation of longitudinal muscle of human 
colon, myenteric plexus stained with NADPH-diaphorase (blue) and 
myenteric ICCs stained with anti-c-kit immunohistochemistry (red)
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enteric motor neurons, ICC, and smooth muscle cells form 
functional units [71, 72]. The close connections between 
ICCs and the intrinsic nitrergic innervation (e.g., NADPH-
diaphorase-positive nerve fibers) have been shown in the 
human gut [68]. Several investigators have used the whole-
mount preparation technique in specimens from the human 
gastrointestinal tract in combination with various other 

ENS staining methods, ranging from silver impregnation to 
enzyme histochemistry and immunohistochemistry [73–75].

ICCs in gastrointestinal motility disorders 
in childhood

Gastrointestinal motility disorders describe a heterogene-
ous group of conditions in infants and young children in 
which symptoms of functional bowel obstruction arise 
from a neuromuscular dysfunction of the colon and rectum 
(including ICCs or glial cells) [76]. In many cases, the exact 
pathogenesis remains poorly understood. There are a number 
of patients that present with clinical symptoms similar to 
Hirschsprung disease (HD) despite the presence of ganglion 
cells in rectal biopsies. Over the years, various terms such as 
“chronic idiopathic intestinal pseudo-obstruction”, “intes-
tinal hypoperistalsis syndrome” or “pseudo-HD” have been 
used to describe these gastrointestinal motility disorders. In 
1997, the pediatric surgeon Prem Puri suggested that “vari-
ant HD” may be a more appropriate description [77]. C-kit 
labeling has been used to study the pathological variations 
of ICCs in these conditions and absence or deficiency of ICC 
networks was identified.

Hirschsprung disease

HD is one of the most common congenital gastrointestinal 
motility disorders. Clinical symptoms related to functional 
bowel obstruction, such as delayed first passage of meco-
nium, abdominal distension, and bilious vomiting result 
from a congenital aganglionosis in the most distal part of the 
gastrointestinal tract. The distribution of ICCs has widely 
been studied in HD bowel using normal histology sections 
and whole-mount preparation techniques. The focus of these 
investigations has not been restricted to the aganglionic seg-
ment but has extended to the ganglionic segment in HD [61, 
72, 78–84]. Most of these studies have shown a reduced 
number of c-kit-positive ICCs in the aganglionic bowel and 
also in the transition zone of HD patients [72, 78–84]. Major 
pathological features in HD included a reduced number of 
myenteric ICCs and disrupted myenteric ICC networks that 
are only sparsely distributed between hypertrophic nerve 
trunks (Fig. 5). Furthermore, muscular ICCs have been 
found to be markedly reduced in the HD bowel [79, 80]. 
Interestingly, a total reduction of ICCs in the proximal, 
ganglionic colon of HD patients has also been observed in 
comparison to healthy controls [85]. This observation has 
been contested by others, who did not find an overall differ-
ence in the distribution of c-kit-positive ICCs [80, 84, 86, 
87]. However, a marked variability of ICC values in patients 
with HD has been noted, which may be a reflection of the 
heterogeneous character of this disease [86]. In addition, 

Fig. 3  Whole-mount preparation of longitudinal muscle of human 
colon, nerve fibers stained with NADPH-diaphorase (blue) and mus-
cular ICCs stained with anti-c-kit immunohistochemistry (red)

Fig. 4  Whole-mount preparation of mouse small bowel, myenteric 
plexus stained with anti-hu-immunohistochemistry (red) and myen-
teric ICC stained with anti-c-kit-immunohistochemistry (green)
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two studies linked poor clinical outcomes in HD patients 
to very low numbers of ICCs and a low ratio of ICCs to 
neural innervation [86, 88]. More recently, the use of c-kit 
has been replaced by the more specific ICC marker Ano1, 
showing a moderate reduction of ICC fibers in ganglionic 
HD colon, compared to the colon of non-HD patients [89]. 
These contradicting results are likely to arise from small 
study populations, but may have also been biased by the fact 
that the distribution of ICCs can vary with age and location 
in the gastrointestinal tract [8, 85, 89]. Moreover, an impor-
tant question is whether the observed alterations of ICCs 
in HD are truly primary or whether they are secondary to 
long-lasting functional obstruction. Therefore, the role of 
structural ICC abnormalities in persistent bowel dysfunction 
in patients with HD is still to be elucidated.

Intestinal neuronal dysplasia

The pathologist William A. Meier-Ruge described intestinal 
neuronal dysplasia (IND) in 1971 as a hyperplastic mal-
formation of the enteric plexus [90]. A few years later, a 
case of rectosigmoid aganglionosis associated with IND 
of the descending and transverse colon has been reported 
[91]. Nowadays, IND can be classified into two clinical and 

histological distinct subtypes [92]: IND type A (IND A), 
occurring in less than 5% of all IND cases, is characterized 
by congenital aplasia or hypoplasia of the sympathetic inner-
vation. Normally, patients with IND A present in the neona-
tal period with episodes of abdominal distension, intestinal 
obstruction and diarrhea with bloody stools. Conversely, 
IND type B (IND B) is defined by hyperplasia of the para-
sympathetic submucosal and myenteric plexuses, accounting 
for over 95% of all IND cases. Typical histological features 
of IND B include hyperganglionosis, giant ganglia, ectopic 
ganglion cells, and increased activity of acetylcholinesterase 
(AChE) in the lamina propria and around submucosal blood 
vessels [93]. IND occurring in association with HD is invari-
ably IND B. While some authors have found IND in up to 
44% of their HD patients, others have rarely encountered 
IND in association with HD [94]. The existence of IND as a 
distinct histopathological entity remains controversial [95]. 
Hence, several researchers have suggested that the observed 
changes in IND may be either a variant of normal bowel 
development or a secondary acquired phenomenon caused 
by congenital obstruction or inflammation [96]. Neverthe-
less, a reduced number of c-kit-positive ICCs has been dem-
onstrated in the myenteric plexus and muscle layers of IND 
cases [97].

Isolated hypoganglionosis

Isolated hypoganglionosis (HG) is a rare entity, which has 
been classified as a hypogenetic type of intestinal innerva-
tion disorders. The clinical presentation of patients with 
isolated HG is similar to those with classical HD with non-
specific symptoms of severe constipation or bowel obstruc-
tion. It has been shown that congenital and acquired HG are 
two separate entities with different clinical features and his-
tological findings [98]. At present, there are only a few cases 
in the published literature as isolated HG is one of the rarest 
types of gastrointestinal motility disorders and there remains 
controversy regarding it as a distinct isolated histopathologi-
cal entity [96]. Some cases of isolated HG were reported to 
exhibit deficient expression of c-kit-positive ICCs within 
the myenteric plexus and the smooth muscle layer, which 
may contribute to the observed motility dysfunction in the 
hypoganglionic bowel segment. C-kit staining has been 
employed to investigate the expression of ICCs and, thus, 
intestinal pacemaker activity, which is markedly decreased 
or even absent in patients with isolated HG [99].

Internal anal sphincter achalasia

Internal anal sphincter achalasia (IASA) has a similar clini-
cal presentation to HD, but with the presence of ganglion 
cells in rectal biopsies. Previously, IASA was referred to 
as ultrashort-segment HD, which is characterized by an 

Fig. 5  Section of normal bowel (a) and HD bowel (b) stained with 
NADPH-diaphorase and anti-c-kit-immunohistochemistry
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aganglionic segment of 1–3 cm above the pectinate line, 
normal AChE activity in the lamina propria and increased 
AChE activity in the muscularis mucosae [100]. Thus, it 
has been suggested that IASA is a more accurate term for 
this pathological entity as many patients with absence of 
the rectosphincteric reflex on anorectal manometry actually 
showed presence of ganglion cells combined with normal 
AChE activity in rectal biopsies [101]. Despite attempts of 
numerous investigators to determine the pathophysiological 
mechanisms of IASA in more detail, the exact pathogenesis 
remains unknown. Age-related changes in the developing 
intramuscular innervation of the internal anal sphincter 
(IAS) most likely form the basis for the observed motility 
dysfunction [101]. Additionally, a reduced number of c-kit-
positive ICCs has been found in the IAS of patients with 
IASA [97]. The deficiency in nitrergic innervation and ICCs 
may explain the impaired IAS relaxation in these cases.

Megacystis microcolon intestinal hypoperistalsis syndrome

Megacystis microcolon intestinal hypoperistalsis syndrome 
(MMIHS) is an extremely rare condition and the most severe 
form of functional bowel obstruction in the newborn, charac-
terized by massive abdominal distension caused by a large-
dilated non-obstructed bladder, microcolon with malrotation 
and decreased or absent intestinal peristalsis [102]. MMIHS 
was first observed in 1976 in five newborn girls [103]. Since 
then, various hypotheses have been proposed to explain the 
pathogenesis of MMIHS. Genetic, myogenic, neurogenic, 
and hormonal etiologies have been discussed. However, 
most of these theories were derived from case reports due 
to the rarity of this condition. Thus, the etiology remains 
poorly understood. Histological evaluation of myenteric and 
submucosal plexuses has revealed normal ganglion cells in 
77% of the investigated bowel specimens from patients with 
MMIHS. The remaining 23% were shown to have various 
neuronal abnormalities including hyper-/hypoganglionosis 
and immature ganglia [100]. Furthermore, some authors 
found significant anomalies in smooth muscle cells from 
bowel and bladder specimens, such as vacuolar degeneration 
as well as thinning of the longitudinal muscle [104, 105]. 
Likewise, a decreased expression of ICCs in the bladder has 
been observed [97].

Conclusion and future directions

ICCs have a central function in the generation and propa-
gation of gastrointestinal slow-wave activity and their loss 
might result in gastrointestinal motility dysfunction. Most 
of the available research studies have shown that HD and 
allied disorders are associated with either a loss of or defi-
ciency in ICC networks. However, these findings require 

careful interpretation, as our current understanding of the 
nature of the relationships between the loss of ICCs and the 
development of clinical symptoms in humans is incomplete. 
It should be noted that all investigated specimens had pre-
viously been subjected to long-lasting functional obstruc-
tion. Thus, it is difficult to determine whether the loss or 
deficiency of ICCs is the consequence or the cause of the 
disease process. Consequently, further clinical and animal 
studies are necessary to improve our knowledge regarding 
the true importance of the impaired ICC function in infants 
and children with gastrointestinal motility disorders.
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