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ABSTRACT: A valuable organocatalytic vinylogous Mannich
reaction between alkylidenepyrazolones and isatin-derived keti-
mines has been successfully established. Squaramide organo-
catalyst, prepared from quinine, catalyzed the diastereo- and
enantioselective vinylogous Mannich addition, affording a range of
aminooxindole-pyrazolone adducts (24 examples) with excellent
outcomes: up to 98% yield with complete diastereoselectivity and
excellent enantioselectivity (up to 99% ee). Additionally, different
synthetic transformations were performed with the chiral
pyrazolone-oxindole adducts.

The direct catalytic asymmetric vinylogous reaction
represents a powerful tool in synthetic organic chemistry

to introduce stereocenters at the γ-position or even more
remote positions of the functional groups in organic
compounds in an atom-economical and efficient way.1 In
this research area, the asymmetric vinylogous Mannich
reaction is a powerful, direct, and straightforward C−C
bond-forming reaction leading to the synthesis of optically
active δ-amino-α,β-unsaturated carbonyl derivatives.1d This
class of compounds is a significant building block for the
synthesis of biologically active compounds and drugs.
On the contrary, pyrazolone derivatives represent one of the

most important five-membered heterocycles containing nitro-
gen atoms, which are present in several bioactive natural
products and pharmaceuticals.2 Therefore, the enantioselective
synthesis of chiral pyrazolones has received the attention of the
synthetic organic chemists in the last several years.3 In this
context, the asymmetric vinylogous nucleophilic γ-addition of
α,β-unsaturated pyrazolone bearing γ-hydrogen atoms to
electrophiles has been explored for the construction of chiral
pyrazolones. However, these examples are restricted to the use
of α,β-unsaturated compounds4 or Morita−Baylis−Hillman
carbonates5 as electrophiles. As far as we know, the
corresponding asymmetric nucleophilic 1,2-addition of alkyli-
denepyrazolones to carbonyl compounds or imines has not yet
been described in the literature (Scheme 1A).
During our recent studies on the enantioselective Mannich

addition of pyrazolones to imines,6 we envisioned that the
corresponding asymmetric vinylogous Mannich reaction could
be feasible. Using α-isopropylidenepyrazolone as a nucleophile,
remote γ-exocyclic functionalization of the diazaheterocycle
could be possible using isatin-derived ketimines as electro-
philes and bifunctional organocatalysis. The nucleophilic
addition to isatin-derived ketimines constitutes a straightfor-
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Scheme 1. Asymmetric Vinylogous Alkylation of
Alkylidenepyrazolones
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ward methodology to synthesize enantioenriched amino
oxindole compounds.7 Numerous natural products and
pharmacologically active compounds contain in their structures
the amino-oxindole scaffold, showing the importance of this
structural motif in synthetic organic chemistry.8 In light of the
pharmacological and biological activities of pyrazolones and
amino oxindoles, the combination of both structural motifs
into one molecule could result in novel and interesting chiral
alkylidenepyrazolones bearing a quaternary aminooxindole
stereocenter that may be useful for drug discovery (Scheme
1B).9

Initially, we selected the enantioselective vinylogous
Mannich reaction of α-isopropylidenepyrazolone 2a, which
was easily prepared from the commercially available edaravone
and acetone, and isatin-derived N-Boc ketimine 1a in CH2Cl2
at room temperature. With these conditions, several bifunc-
tional organocatalysts were tested, and the results are
summarized in Table 1. We selected bifunctional organo-
catalysts10 with a tertiary amine responsible for the activation
of the nucleophile (deprotonation of the γ-hydrogens of the

α,β-unsaturated pyrazolone) and a hydrogen-bonding donor
moiety with the purpose of activating the electrophile (the
isatin-derived N-Boc ketimine). When quinine (I) was used as
catalyst, the yield of the Mannich product 3aa was very low
(6%), but the enantioselectivity was moderate (50% ee). We
observed large amounts of N-methylisatine from the hydrolysis
of ketimine 1a. Takemoto’s thiourea II and quinine-derived
thiourea III exhibited high stereocontrol (90% ee); however,
the yield of product 3aa was still low (∼20%). Delightfully,
quinine-derived squaramide IV gave excellent enantiomeric
excess (98%), and the yield increased to 42% after 3 days of
reaction (entry 4). When benzylic (V)- and tert-butyl (VI)-
substituted squaramides were used as catalysts, product 3aa
was obtained in similar yield but with somewhat lower
enantioselectivity. The squaramide VII, prepared from
dihydroquinine, displayed similar reactivity and stereoselectiv-
ity, and product 3aa was obtained in 41% yield with 97% ee
after 3 days. Squaramide VIII, prepared from quinidine, gave a
similar yield (39%) and enantiomeric excess (96% ee) as
quinine-based IV, but the opposite enantiomer was obtained.
We chose IV to continue the optimization process of the
reaction conditions. Different solvents were tested, achieving
high enantioselectivities but lower yields than CH2Cl2 (entries
9−13). To improve the yield of the reaction, we studied the
variation of the equivalents of the electrophile (entry 14) or
nucleophile (entry 15); however, the yields were lower. We
observed in all cases the formation of N-methyl isatin, the
corresponding hydrolysis product of 1a. To avoid the
hydrolysis of the ketimine and increase the yield, we performed
the reaction under an anhydrous nitrogen atmosphere (entry
16). In this case, the yield of the Mannich product 3aa
increased to 57%, maintaining the enantioselectivity (98%).
Finally, we increased the reaction scale to 0.2 mmol and
obtained similar results (entry 17).
With the optimized reaction conditions in hand (entry 16,

Table 1), we evaluated the scope of the vinylogous Mannich
reaction with an assortment of isatin-derived ketimines 1 with
several substituents in different positions (Scheme 2). Initially,
substitution with different groups such as methyl, benzyl, or
allyl at the N-1 of the oxindole was evaluated (3aa−3fa),
providing the corresponding products in good yields (52−
68%) with high enantioselectivities (97−98% ee). We also
tested isatin-derived ketimines with Ph, −CH2OMe, and H
substituents at the N-1 and obtained excellent enantioselectiv-
ities (92−96% ee) but lower yields (30−42%). Because the
best yield was obtained with N-benzyl isatin-derived ketimines,
we evaluated the effect of the substitution pattern of several N-
benzylisatines. Electron-withdrawing (Br or Cl) or electron-
donating (MeO) groups were tolerated at the five-position of
the isatin-derived ketimine, affording the corresponding
products 3ha and 3ia in good yields with excellent
enantioselectivities in all cases. However, with the ketimine
prepared from 5-bromoisatin, the yield was low (28%).
Furthermore, isatin-derived ketimines with substituents at the
six- or seven-positions reacted efficiently, providing the
Mannich products 3ja and 3ka in good yields (67−75%)
with excellent stereoselectivities. Also, the disubstituted
ketimine 1l could be used, affording the corresponding
product 3la with excellent enantioselectivity (98% ee) in
66% yield. The reaction could be accomplished on a 1 mmol
scale, improving the yield of product 3ba (83%) and
maintaining the enantioselectivity of the reaction (96% ee).
We also tested the reaction on a 1 mmol scale lowering the

Table 1. Optimization of the Reaction Conditionsa

entry catalyst solvent t (days) yield (%)b ee (%)c

1 I (5%) CH2Cl2 4 6 50
2 II (5%) CH2Cl2 4 16 91
3 III (5%) CH2Cl2 3 19 89
4 IV (5%) CH2Cl2 3 42 98
5 V (5%) CH2Cl2 3 41 92
6 VI (5%) CH2Cl2 3 44 94
7 VII (5%) CH2Cl2 3 41 97
8 VIII (5%) CH2Cl2 3 39 96d

9 IV (5%) ClCH2CH2Cl 3 40 96
10 IV (5%) CHCl3 3 28 97
11 IV (5%) EtOAc 3 33 91
12 IV (5%) Et2O 3 55 92
13 IV (5%) toluene 3 42 95
14e IV (5%) CH2Cl2 3 38 97
15f IV (5%) CH2Cl2 3 42 97
16g IV (5%) CH2Cl2 3 57 98
17g,h IV (5%) CH2Cl2 3 52 98

aReaction conditions: 1a (0.1 mmol), 2a (0.1 mmol), and 5 mol % of
organocatalyst in 1 mL of solvent at rt under an air atmosphere.
bIsolated yield of 3aa after column chromatography. cDetermined by
chiral HPLC. dOpposite enantiomer was obtained. e0.12 mmol of 1a
was used. f0.12 mmol of 2a was used. gReaction was performed under
a N2 atmosphere. hReaction was performed on a 0.2 mmol scale.

Organic Letters pubs.acs.org/OrgLett Letter

https://doi.org/10.1021/acs.orglett.1c02571
Org. Lett. 2021, 23, 7391−7395

7392

https://pubs.acs.org/doi/10.1021/acs.orglett.1c02571?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.orglett.1c02571?fig=tbl1&ref=pdf
pubs.acs.org/OrgLett?ref=pdf
https://doi.org/10.1021/acs.orglett.1c02571?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


catalyst amount to 2 mol % of IV. In this case, we observed a
similar enantioselectivity (95% ee) but a lower yield (54%).
Next, we turned our attention to further explore the

substrate scope with respect to the alkylidenepyrazolones 2
(Scheme 3). Alkyl groups (Et, Pr, and cyclopropyl) other than
Me were well tolerated at the five-position of the pyrazolones
(3bb−3bd), providing excellent yields (84−98%) and
enantioselectivities (95−96% ee). 2,5-Diphenyl and 2,5-
dimethyl alkylidenepyrazolone were also examined under the
optimized reaction conditions, providing products 3ae in 68%
yield with 94% ee and 3bf in 73% yield with 99% ee. Moreover,
when alkylidenepyrazolone derived from acetophenone was
tested with ketimines 1a and 1b, the corresponding Mannich
products 3ag and 3bg were obtained with excellent results.
Finally, the reaction proceeded efficiently with pyrazolones
with different substituents (NO2, Cl, Me, and MeO) on the N-
aryl group, providing the corresponding products in high yields
(63−90%) with high enantiomeric excesses (93−97% ee).
The double-bond configuration and absolute configuration

of the stereogenic center present in compound 3ea were
ascertained to be (S, Z) by X-ray crystallographic analysis

(Scheme 4); the configuration of the remaining Mannich
products 3 was assigned on the assumption of a uniform
mechanistic reaction pathway. A plausible transition-state
model is illustrated in Scheme 4, where the squaramide
catalyst IV is responsible for the preorientation and the

Scheme 2. Scope of the Catalytic Enantioselective
Vinylogous Addition of Alkylidenepyrazolone 2a to Isatin-
Derived Ketimines 1a

aReaction conditions: 1 (0.2 mmol), 2 (0.2 mmol), and IV (5 mol %)
in 1 mL of CH2Cl2 at rt under a N2 atmosphere. Isolated yield of 3
after column chromatography. Determined by chiral HPLC. b1 mmol
scale reaction using 5 mol % of IV. c1 mmol scale reaction using 2 mol
% of IV.

Scheme 3. Scope of the Catalytic Enantioselective
Vinylogous Addition of Alkylidenepyrazolone 2 to Isatin-
Derived Ketimines 1a

aReaction conditions: 1 (0.2 mmol), 2 (0.2 mmol), and IV (5 mol %)
in 1 mL of CH2Cl2 at rt under a N2 atmosphere. Isolated yield of 3
after column chromatography. Determined by chiral HPLC. bVIII
was used.

Scheme 4. Proposed Reaction Mechanism for the
Asymmetric Vinylogous Mannich Reaction and X-ray
Crystal Structure of 3ea
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activation of the substrates of the reaction. Whereas the methyl
group of alkylidenepyrazolones is first deprotonated by the
quinuclidine moiety of the organocatalyst to form the
corresponding diene enolate, the isatin-derived N-Boc-
ketimine moiety is activated upon the formation of hydrogen
bonds between the N-Boc group and the squaramide moiety of
the organocatalyst. The pyrazolone enolate will be directed to
the Re-face of the ketimine, thus accounting for the observed
enantioselectivity.
To demonstrate the versatility and usefulness of our

organocatalytic vinylogous methodology, we performed several
chemical modifications of the Mannich products (Scheme 5).

A relevant structural feature of the obtained vinylogous
Mannich adducts is that they preserve the exocyclic
unsaturation of the initial pyrazolone substrate. This olefinic
group could be used to further functionalize the compound,
thus increasing the molecular complexity of the pyrazolone
products. For example, compound 3ba was stereoselectively
epoxidated with meta-chloroperoxybenzoic acid (mCPBA),
affording the spirooxirane 4 (Scheme 5A) with three
quaternary stereocenters in 90% yield with good diastereose-
lectivity (84:16 dr) and maintaining the enantiomeric excess.11

We could obtain crystals of the major diastereoisomer 4, which
allowed us to determine the configuration of the epoxide.
Moreover, compound 3ba could be subjected to a conjugate
addition of NaCN,12 providing the corresponding product 5 as
a single diastereoisomer in good yield (73%) and maintaining
the enantiomeric excess (Scheme 5B). Finally, the reaction of
compound 3ba with methyl bromoacetate in the presence of
NaH13 afforded the highly functionalized chiral pyrazole 6 in
89% yield and preserved the optical purity of the starting
material (Scheme 5C).
In summary, we have established an organocatalytic

diastereo- and enantioselective vinylogous Mannich reaction
of alkylidenepyrazolones with isatin-derived ketimines using a
quinine-derived squaramide organocatalyst, obtaining the
corresponding chiral Mannich adducts in moderate to high
yields (up to 98%) with complete diastereoselectivities toward
the Z double bond and excellent enantioselectivities (up to
99% ee) under mild reaction conditions. The reaction showed

a wide substrate scope for different N-Boc-ketimines and
alkylidenepyrazolones. The new compounds feature pyrazo-
lone and amino-oxindole moieties, which are privileged
structures in medicinal chemistry. Moreover, several synthetic
transformations of the chiral Mannich product 3ba have been
performed, showing the potential applicability of the present
methodology. Studies on extending the scope of the reaction
are currently ongoing in our laboratory.
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