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ABSTRACT

As next-generation sequencing continues to have
an expanding presence in the clinic, the identifica-
tion of the most cost-effective and robust strategy
for identifying copy number changes and transloca-
tions in tumor genomes is needed. We hypothesized
that performing shallow whole genome sequencing
(WGS) of 900–1000-bp inserts (long insert WGS,
LI-WGS) improves our ability to detect these
events, compared with shallow WGS of 300–400-bp
inserts. A priori analyses show that LI-WGS requires
less sequencing compared with short insert WGS to
achieve a target physical coverage, and that LI-WGS
requires less sequence coverage to detect a hetero-
zygous event with a power of 0.99. We thus de-
veloped an LI-WGS library preparation protocol
based off of Illumina’s WGS library preparation
protocol and illustrate the feasibility of performing
LI-WGS. We additionally applied LI-WGS to three
separate tumor/normal DNA pairs collected from
patients diagnosed with different cancers to demon-
strate our application of LI-WGS on actual patient
samples for identification of somatic copy number
alterations and translocations. With the evolution
of sequencing technologies and bioinformatics
analyses, we show that modifications to current
approaches may improve our ability to interrogate
cancer genomes.

INTRODUCTION

Next-generation sequencing (NGS) has allowed for the
rapid characterization of genomes, exomes and transcrip-
tomes. Such advances have been applied to personalized
oncology, represent a promising approach for identifying

therapeutic options for cancer patients who do not
respond to standard treatments and are key to improving
our understanding of tumorigenesis (1–3). However, al-
though the cost of performing whole genome sequencing
(WGS) has decreased in recent years, it is more costly
compared with exome and RNA sequencing (RNAseq)
when sequencing to 30� coverage. Owing to this caveat
and the existing utility of using deep exome sequencing to
identify potentially targetable small somatic events in
cancer genomes, the need for identifying an alternative
WGS strategy for identifying breakpoints, which charac-
terize structural variants and copy number changes, is
clear.
One option for evaluating larger regions in whole

genome data using sequencing by synthesis (SBS) technol-
ogy is the use of Illumina’s mate pair library preparation
protocol. The standard protocol requires 10 mg of genomic
DNA and supports the evaluation of regions spanning up
to �2–5 kb. However, owing to the limited amount of
DNA that is typically available from tumor biopsies,
this approach is not a viable option for sequencing.
Illumina also recently released a new Nextera Mate Pair
Sample Preparation Kit that requires 1–4 mg of genomic
DNA. However, this approach retains transposome-
mediated fragmentation that results in an enzymatic foot-
print that requires trimming of sequencing data, and still
requires circularization and biotin pull-down, and thus
decreases the ease of library preparation. An alternative
user-friendly strategy that requires lower inputs, that does
not require post-sequencing trimming and that allows for
increased physical coverage and analysis of regions greater
than that accomplished by short insert (SI) sequencing is
thus needed.
We hypothesized that performing shallow WGS using

longer inserts that are �900–1000-bp long increases our
power for identifying breakpoints, and thereby copy
number alterations and translocations, compared with
shallow SI WGS of 300–400-bp inserts, which was used
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by the MI-ONCOSEQ (Michigan Oncology Sequencing
Project) study as the solution for identifying structural
variants and copy number changes (3). Previous research
using alternative methods has also shown that our ability to
identify breakpoints is increased when sequencing longer
inserts (4). In this study, we first tested our hypothesis using
a priori analyses, and subsequently developed a long insert
(LI) whole genome library preparation protocol that
retains the entire insert in the final library, as opposed to
mate pair protocols that enzymatically remove central
insert sequences. We then applied this approach to
tumor/normal DNA pairs collected from three separate
patients diagnosed with different malignancies including
metastatic basal cell carcinoma of the skin, metastatic
papillary renal carcinoma and metastatic bronchial
neuroendocrine cancer. We demonstrate both the feasibil-
ity of LI-WGS and its application in simultaneously iden-
tifying copy number alterations and translocations, key
events that characterize cancer genomes.

MATERIALS AND METHODS

Modeling the relationship between physical coverage
and insert size

To evaluate the relationship between insert size and
physical coverage, we outlined a model for determining
physical coverage. Physical coverage can be calculated
by using the following equation (5):

C ¼
Nð2L+IÞ

G

where C=physical coverage
N=number of aligned reads
L=read length (a multiplier of 2 is used for

paired-end (PE) sequencing)
G=size of human genome
I=inter-read base pair (bp) distance for PE

sequencing such that the insert size
equals 2L+I

The earlier equation can be condensed to the following:

C ¼ 2KL+KI

where K ¼ N
G

Because the approximate number of aligned reads is typ-
ically consistent across human genomes for a given aligner
and the size of the human genome does not change, we
treat K as a constant value. Physical coverage increases as
the distance between reads increases.

Power analysis

We performed power analyses using the following equation:

P ¼ 1� 1� að Þ
C

Where P=power
a=frequency of event

C=physical coverage/number of anomal-
ous reads

Protocol optimization

Development and optimization of LI whole genome
library preparation was performed using Roche human
genomic DNA (catalog# 11691112001) and Illumina’s
TruSeq DNA Sample Prep Kit (TruSeq DNA Sample
Preparation v2 Guide, Part 15026486 Revision A). The
final protocol is as follows:

(A) Fragmentation—For each sample 1.1 mg of DNA
was fragmented on the Covaris E210 to a target
size of 900–1000 bp (Duty cycle: 2%, Intensity: 6,
Cycles/burst: 200, Time: 20 s, Temperature: 4�C).
100 ng of the sample was run on a 1% Tris acetate
EDTA (TAE) gel to verify fragmentation.

(B) End repair—This step is performed according to the
manufacturer’s protocol.

(C) End repair purification—100 ml of AMPure XP
beads were added directly to end repair products
for purification. A 1:1 bead volume:sample volume
is used and 300 ml of 80% ethanol was used for two
total washes. Aside from these exceptions, the manu-
facturer’s protocol was followed.

(D) Adenylation and ligation—These steps are per-
formed according to the manufacturer’s protocol.

(E) Ligation purification—42.5ml nuclease-free water is
used to resuspend the dried bead pellet. Following
mixing, a 2min incubation at room temperature and
a 2min incubation on a magnet, 40 ml of supernatant
is aspirated for ligation. Steps 14–26 are removed
from the ‘Clean up ALP’ step in the manufacturer’s
protocol.

(F) Size selection—A 400ml 1.5% TAE gel is used for size
selection instead of a 150ml 2% gel. Multiple gel
punches can be taken. Punches are placed in separate
Bio-Rad Freeze ‘N Squeeze columns for purification.
Columns are placed at�20�C for 5min and centrifuged
at maximum speed for 3min—this process is performed
5�. The final eluate is purified usingAMPure beads. The
same purification protocol is used as is described in the
‘Clean up IMP’ section (under ‘Perform End Repair’)
with the following minor edits: a 1:1 ratio of bead vol-
ume:sample volume is used during purification, the final
sample is resuspended in 22.5ml nuclease-free water and
20ml of the supernatant is used for enrichment polymer-
ase chain reaction (PCR).

(G) Enrichment PCR—A modified PCR is used:
(1) 98�C for 30 s
(2) 98�C for 10 s
(3) 60�C for 30 s
(4) 72�C for 1min
(5) Cycle to step 2 eight more times
(6) 72�C for 10min
(7) 4�C hold
(8) PCR purification—The manufacturer’s protocol

is followed for this step aside from the follow-
ing: 40 ml beads are added to the PCR product
for a 1:1 sample to bead ratio, the final dried

e8 Nucleic Acids Research, 2014, Vol. 42, No. 2 PAGE 2 OF 12

3
,
above
Since
 - 
-
econds
&deg;
--
--
L
.
L
2 
--
t
--
L
ute
,
ute
L
-
--
a
mL 
L
n
-
&deg;
utes
utes
X
``
''
``
''
L
,
L
--
a
&deg;
econds
&deg;
econds
&deg;
econds
&deg;
ute
&deg;
utes
&deg;
--
u
L


pellet is resuspended in 26.5ml resuspension
buffer and 25 ml of the final supernatant is
removed as the final library.

Final libraries were quantified by Qubit and library sizes
determined using the Agilent Bioanalyzer. The LI test
library was clustered and sequenced on a single flowcell
lane on the Illumina HiSeq to evaluate clustering effi-
ciency. Based on the total and pass filter (PF) cluster
densities, the loaded library concentration was adjusted
to 18–20 pM for future samples.

Patient sample assessment

The study was conducted in accordance with the
Declaration of Helsinki and was approved by the
Western Institutional Review Board (Protocol
#20101288) (NCT01443390). Patients must be age �18
and willing to undergo a biopsy or surgical procedure to
obtain tissue, unless a frozen tumor collected <8 weeks
prior was available. Interested participants were made
aware that obtaining a new biopsy may not be a part of
the patient’s routine care for their malignancy. Other eli-
gibility criteria included baseline laboratory data
indicating acceptable bone marrow reserve, liver and
renal function, Karnofsky performance status �80%
and life expectancy >3 months. All eligible patients had
fresh frozen tumor sample collected and sent for analyses.
Normal DNA was obtained from peripheral blood mono-
nuclear cells. Direct visualization of patient 1 and 2’s was
performed by a board certified pathologist to determine
tumor cellularity.

Genomic DNA isolation

Tissue was disrupted and homogenized in RNeasy lysis
buffer (Buffer RLT) plus (Qiagen AllPrep DNA/RNA
Mini Kit) using the Bullet BlenderTM and transferred to
a tube containing Buffer RLT plus and stainless steel
beads. Blood leukocytes were isolated from whole blood
by centrifugation at room temperature and resuspended in
Buffer RLT plus. All samples were homogenized and
centrifuged, and DNA were isolated following the
AllPrep protocol. Each sample was evaluated by gel elec-
trophoresis, analyzed using the Nanodrop to evaluate ab-
sorbance ratios and quantified using Invitrogen’s Qubit
Fluorometer.

SI and LI whole genome library preparation

1.1 mg genomic DNA of each sample was used to create SI
whole genome libraries using Illumina’s TruSeq DNA
Sample Kit per manufacturer’s protocol. One modifica-
tion is that size-selected products were purified using
Bio-Rad Freeze ‘N Squeeze gel purification columns and
AMPure XP beads. Products were PCR enriched and
purified following the manufacturer’s protocol. LI
libraries were prepared and indexed using Illumina’s
TruSeq DNA Sample Kit with modifications listed previ-
ously. Final libraries were quantified and library sizes
determined using the Bioanalyzer and Qubit.

Exome library preparation for copy number validation

Exome libraries were prepared using 3 mg of genomic
DNA for the same tumor and normal samples that were
whole genome sequenced. Genomic DNA was fragmented
to an approximate target size of 150–200 bp on the
Covaris E210. For each sample, 100 ng of each fragmented
product was run on 2% TAE gel to verify fragmentation.
Library preparation was performed using New England
Biolab’s (NEB) NEBNext DNA Sample Prep Master
Mix Kit, Illumina Multiplexing Oligonucleotide Kit,
Agilent SureSelect Human All Exon 50Mb Kit and
Agilent Herculase II Fusion DNA Polymerase. End
repair was performed using NEBNext End Repair
Buffer (10�), End Repair Enzyme Mix and the frag-
mented DNA samples. End repair products were
purified using AMPure XP beads: 180 ml of resuspended
beads were used for cleaning each sample, two 70%
ethanol washes were performed and samples were dried
for 20min at room temperature before resuspension in
44 ml of warm elution buffer. For each sample, 42 ml of
cleaned end repaired samples are input into adenylation
which was performed using NEBNext dA-tailing Buffer
(10�) and NEBNext Klenow fragment (30!50 exo).
Adenylated products were cleaned using AMPure XP
beads as previously described but 90 ml of beads are used
for cleaning and the final samples are eluded with 15 ml of
nuclease-free water. Each adenylated sample was used for
indexed adapter ligation. This step is performed using the
NEBNext Ligation Buffer (5�), NEBNext T4 ligase and
Index PE adapter oligonucleotide mix from Illumina’s
Multiplexing Oligonucleotide Kit. Reactions were
purified using AMPure XP beads and enrichment PCR
was performed using InPE1.0 forward PCR primer
(Illumina Multiplexing Oligonucleotide Kit), SureSelect
Indexing Pre-cap PCR primer, Herculase II 5� reaction
buffer, Herculase dNTP mix and Herculase II polymerase.
The following PCR program was used:

(1) 98�C for 2min
(2) 98�C for 20 s
(3) 65�C for 30 s
(4) 72�C for 30 s
(5) Cycle to step 2 five more times
(6) 72�C for 5min
(7) 4�C hold

PCR products were purified using AMPure XP beads.
Each sample was run on the Agilent Bioanalyzer using
the Agilent DNA 1000 assay and quantified using the
Qubit. 500 ng of each sample was used for capture.
From hybridization onward, Agilent’s SureSelect Target
Enrichment System for Illumina Paired-End Multiplexed
Sequencing protocol (version 1.2) was followed.

PE sequencing

Libraries were used to generate clusters on HiSeq Paired
End v3 flowcells on the Illumina cBot using Illumina’s
TruSeq PE Cluster Kit v3. One exception is that for
patient 1, three lanes of SI normal and three lanes of SI
tumor whole genomes were sequenced on a v1.5 flowcell.
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Clustered flowcells were sequenced on the Illumina HiSeq
2000 using Illumina’s TruSeq SBS Kit. Each LI WG
library was run in a single lane, and tumor/normal
exome pools were sequenced in individual lanes.

Sequencing data analysis

Raw sequence data were converted to fastq files using
Illumina’s BCLConverter. Fastq files were validated to
evaluate the distribution of quality scores and to ensure
that quality scores do not drastically drop over each read.
Validated fastq files for whole genome and exome data
were aligned to the human reference genome (build 37)
using the Burrows–Wheeler Alignment tool (6) and
sorted with SAMtools (7) to create binary sequence
(bam) files. Lane level bam files were indel realigned and
recalibrated using Genome Analysis Toolkit (8). Lane
level bam files were then merged as necessary and PCR
duplicates were flagged for removal using Picard (http://
picard.sourceforge.net), which was also used to evaluate
GC metrics.
To compare across SI and LI data, SAMtools was used

to randomly select 250 million mapped reads from each
data set, and these reads were saved as ‘normalized’ bam’s.
To detect translocations in SI and LI normalized data, we
first defined the range of insert sizes in the normal data,
evaluated the tumor data using a window size that is 3�
the insert size range of the normal data and identified
reads in each window that maps to a different location.
A minimum of eight reads mapping to a discordant
location was required for a translocation to be called.
For this analysis, we generated a script to identify anom-
alous read pairs (https://github.com/davcraig75/tgen_
somaticSV). To decrease false negatives, discordant
locations to which at least four tumor reads map are
also called. Each event was also manually inspected for
confirmation. Copy number analysis was completed by
determining the log2 difference of the normalized
physical coverage (or clonal coverage) for both germline
and tumor samples separately across a sliding 2 kb
window of the mean. Our anomalous read pair script
also determines the ratio of anomalous read pairs over
all read pairs that mark the boundary of a copy number
change. The derivative log ratio spread (DLRS) for each
sample was calculated by determining the standard devi-
ation of the point-to-point difference across the genome
divided by the square root of 2. The average distance
between points is 80 kb and the smoothing window is
19 kb.

Translocation validation

Selected breakpoints were visualized using the Integrative
Genomics Viewer (Broad Institute), and primers were
designed to flank breakpoints using PrimerQuest
(Integrated DNA Technologies). Primers were used
to PCR amplify regions encompassing breakpoints on
the same DNA samples that were sequenced. PCR
products were Sanger sequenced to confirm presence of
breakpoints.

RESULTS

The utility of LI-WGS

Using a priori analyses, we determined that physical
coverage is directly affected by insert size such that
physical coverage increases with longer insert sizes when
sequencing a fixed read length (calculations described in
Methods). Physical coverage is considered in this analysis
because it reflects the size of the insert being sequenced
and is associated with our ability to identify copy number
variants (CNVs) and translocations. In Figure 1, we show
a theoretical comparison of SI- and LI-WGS mapped
reads. When sequencing to the same read depth, higher
physical coverage is achieved for LI libraries (900-bp
inserts) compared with SI libraries (300-bp inserts) and
thereby increases our power for detecting CNVs or trans-
locations. Theoretical anomalous read pairs are shown in
red; with higher physical coverage, our ability to detect a
breakpoint is increased. In addition, we capture informa-
tion on a larger genomic region when sequencing LI
libraries, and thus increase the likelihood that a break-
point will fall within that region and be detected. In
Supplementary Figure S1, we outline the relationship
between physical coverage and the amount of sequencing
that is needed to achieve a target physical coverage for
SI- and LI-WGS. Overall, our simplified model shows
that given a target physical coverage, more sequencing is
needed for SI libraries compared with LI libraries. A few
caveats of this analysis are that we did not address poten-
tial contributions from factors such as GC bias and poly-
merase fidelity, and we also make the assumption that
read depth is evenly distributed across the entire genome
although a Poisson distribution is typically observed in
sequencing data. To address these caveats and to truly
evaluate this relationship between physical coverage and
insert size, we additionally performed experimental
analyses to compare SI and LI libraries.

LI-WGS power analyses

Power calculations were performed to evaluate the
amount of sequence coverage that is needed to detect a
structural variant in differently sized inserts. Figure 2A
and B show a comparison of achieved power when
sequencing 300-bp inserts or 900-bp inserts where a is
the frequency of the somatic event. Three mutation
frequencies were evaluated to consider three scenarios in
which the tumor cell content of the analyzed sample is
100, 50 or 25% tumor. We assumed that the event is het-
erogeneous such that the expected frequency of an event a
is one-half of the percent tumor cellularity. We required
that a minimum of 10 anomalous read pairs be needed to
detect an event where an anomalous read pair is defined
as one in which the mapping distance between the two
ends are substantially greater than the mean inter-read
distance, or if the pairs map to different chromosomes.
We also performed additional power calculations and
assumed a shorter read length for 900-bp insert libraries
to evaluate the utility of sequencing less when longer
inserts are used (2� 83 cycle read length; Figure 2C). A
2� 83 read length was selected based on the format of
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Illumina’s sequencing reagents as three 50 cycle kits can be
used to perform approximately a 2� 83 sequencing run.

Using SI libraries and assuming 50% tumor cellularity,
107� sequence coverage (161� physical coverage) is
needed to achieve 0.99 power for detecting 10 anomalous
read pairs. However, when sequencing a 900-bp insert
under the same conditions and sequencing shorter read
lengths, only 30� sequence coverage (163� physical
coverage) is needed. These analyses demonstrate that
even with shorter read lengths and less sequencing, LI-
WGS using 900-bp inserts, as opposed to 300-bp inserts,
increases the power of detecting an event.

LI-WGS library preparation protocol development

Based on results from preliminary analyses, we created a
LI-WGS library preparation protocol that we modified
from Illumina’s TruSeq DNA Sample Prep library
protocol for SI-WGS. To generate longer inserts for
whole genome libraries, we modified three primary areas
in Illumina’s WGS library preparation protocol: (i) frag-
mentation, (ii) AMPure XP bead purification steps and
(iii) enrichment PCR parameters. Details on all changes
to the protocol are described in the Methods and are
briefly described here. We used 1.1mg of genomic DNA
for a single library preparation and following fragmenta-
tion analyzed 100 ng of fragmented product by gel electro-
phoresis to verify fragmentation.

During fragmentation, Illumina’s protocol for
generating whole genome libraries using the TruSeq
DNA Sample Prep kit fragments genomic DNA to a
target size of 300–400 bp. To generate LI libraries,
Covaris parameters for sonic fragmentation were
modified to generate fragments that are approximately
900–1000 bp. An example of LI fragmentation products,
electrophoretically separated on a 1% TAE gel, is shown
in Figure 3A.The AMPure XP bead purification step fol-
lowing end repair was also modified with respect to the

bead volume:DNA volume ratio to remove shorter mol-
ecules that are approximately 200 bp and smaller. A 1:1
bead volume:DNA volume ratio was used, and this puri-
fication was also added to the protocol following size se-
lection. Figure 3B shows an example size selection gel for
which ligation products were separated on a 1.5% TAE
gel, and Figure 3C shows the post size-selection gel, after
collecting 800, 1000 and 1300 bp fragments. An Agilent
Bioanalyzer DNA 12000 trace illustrating the final
library (size selected at 1000 bp) for a LI-WGS library
preparation is shown (Figure 3D). Surveying 37 LI-
WGS libraries, the median yield for this LI library prep-
aration is 138.2 ng (6820 pM).

Comparison of SI- and LI-WGS

With LI-WGS, the increased size of the inserts was
expected to cause differences with respect to GC
dropout, normalized coverage across GC rich regions,
clustering efficiency, cluster size and Q30 scores. We
compared an example LI-WGS library prepared accord-
ing to our modified protocol and an example SI-WGS
library prepared according to Illumina’s TruSeq DNA
Sample Prep protocol. Sequencing each library in a
single flowcell lane, we were able to achieve similar
cluster densities but obtained a lower PF density with LI
libraries, and thus, a lower number of PF reads. Results
from the comparison are shown in Table 1. GC and AT
dropout values were higher in the LI library compared
with the SI library, whereas the median GC normalized
coverage for the LI library was 0.76 compared with 0.86
for the SI library. The GC and AT dropout values, which
can range from 0 to 100, are a measure of how much
coverage is lost in GC, or AT, rich regions, respectively.
GC normalized coverage is a measure of the amount of
coverage that is obtained in each GC bin, as determined
by Picard, divided by the mean coverage of all bins.

SI-WGS

LI-WGS

read depth = 2     physical coverage = 4X

read depth = 2     physical coverage = 8X

genomic position breakpoint1,000
2,000

15,000

Figure 1. Comparison of SI- and LI-WGS. A visualization of mapped reads for SI- and LI-WGS is shown assuming a read depth of 2 for each
library type. The reference human genome is shown in the middle of the figure, and the location of a theoretical breakpoint is shown in gray with the
location of the breakpoint marked by the gray line. SI (300 bp) mapped reads are displayed above the reference, and LI (900 bp) mapped reads are
displayed below the reference. PE reads are represented by heavy solid lines with arrowheads and regions between reads are denoted by a dotted line.
Anomalous read pairs are shown in red. Higher physical coverage is achieved for LI-WGS libraries when sequencing to the same read depth for
SI- and LI-WGS libraries. Furthermore, by interrogating a larger genomic region using LIs, the likelihood that a breakpoint will fall within that
region is increased.
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Median GC normalized coverage values closer to one are
indicative of consistent coverage over GC rich regions.

Although fewer clusters and less data are acquired when
sequencing a LI-WGS library compared with a SI-WGS
library in a single flowcell lane, 93� mapped physical
coverage is achieved with the LI-WGS library, whereas
only 38� is achieved with a SI library in a single
flowcell lane (Figure 4A and B). It was observed that a
higher molarity of library is needed for sequencing LI-
WGS libraries compared with SI libraries. Based on
several tests, we found that 18–19 pM, as quantified by
Qubit, is an appropriate amount of LI library to load onto
a single lane of a v3 HiSeq flowcell to achieve approxi-
mately at least 80% Q30. It was also expected that the size
of individual clusters may be larger for LI-WGS libraries.
However, comparison of thumbnail images of clusters
from the LI- and SI-WGS libraries does not show a
visible difference in cluster size (Figure 4A and B).
Overall, although we saw minor differences in GC
dropout, GC normalized coverage, cluster efficiency and
Q30 scores, we did not identify any major changes with
respect to cluster sizes.
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Figure 2. Comparison of power achieved when sequencing LI or SI
libraries. Power calculations were performed to evaluate the power
achieved when sequencing SI (300 bp) libraries with a 2� 100 read
length (A). These analyses were performed to determine the power of
identifying a heterozygous somatic event as characterized by at least 10
anomalous read pairs under three scenarios where a tumor sample may
have three different tumor cellularities (100, 50, 25% tumor). This
analysis was similarly performed for LI (900 bp) libraries with a

Figure 2. Continued
2� 100 read length (B). We performed additional LI analyses using the
same parameters but decreased the read length from 2� 100 to 2� 83 (C).
For all three analyses, a dotted line demarcates the sequence coverage
needed for detecting a heterozygous event in a sample with 50% tumor
cellularity and 0.99 power. Coverage shown is sequence coverage, and a is
the expected frequency of an event given the different tumor cellularities.

1000bp

1650bp

650bp

A B C

1000bp

1650bp

650bp

D

50

0

[FU]

50 300 500 1000 5000 [bp]

Figure 3. LI library preparation quality control. Two examples of frag-
mented human genomic samples to a target of 900bp are shown (A).
Fragmented samples are run alongside Invitrogen’s 1Kb Plus DNA
ladder. An example of ligation products for the LI-WGS preparation
protocol is shown in (B). Products are run alongside the same 1Kb
Plus ladder shown in (C). The same gel from (B) following size selection
is shown in (C) in which multiple collections of ligation product were
obtained. An example Bioanalyzer trace of a final LI-WGS library is
shown in (D; FU=fluorescence units). The library peak is demarcated
by an arrow; flanking peaks are Bioanalyzer marker peaks.

e8 Nucleic Acids Research, 2014, Vol. 42, No. 2 PAGE 6 OF 12

1
is
While
is
to
X
X
4
to
 to 
4
while
,


Comparison of SI- and LI-WGS using patient samples

To evaluate the utility and feasibility of LI-WGS in actual
patient samples, we next performed both SI- and LI-WGS
on DNA from fresh frozen tumor and whole blood
samples from three separate cancer patients. Patient 1
had metastatic basal cell carcinoma of the skin, patient 2
had metastatic papillary renal cell carcinoma and patient 3
had metastatic bronchial neuroendocrine cancer. For
LI-WGS, we generated tumor and normal libraries for
each patient with insert sizes ranging from �800–900 bp
long for final library lengths of �1000 bp. We additionally
generated SI-WGS libraries with approximate insert
sizes ranging from 300–350 bp for final library lengths of
�400–450 bp. PE sequencing for �2� 100 read lengths
was performed for all libraries. LI libraries were each
sequenced in single lanes, whereas SI libraries were
sequenced across 4–5 lanes (Table 2). Detailed informa-
tion on the protocol used is described in the Methods
section. Sequencing metrics are listed in Table 2.
Read alignment was performed with Burrows–Wheeler

Alignment against the human reference genome (build 37).
Using SBS technology (9) and 2� 83 bp read lengths for
LI-WGS libraries and 2� 100 bp read lengths for SI-WGS
libraries, we generated over 10.6 trillion total reads across
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Figure 4. Comparison of cluster sizes between SI and LI libraries. An example image from sequencing a SI library is shown in (A), along with a
cluster density plot from Illumina’s Sequence Analysis Viewer. An example image and cluster density plot from sequencing a LI library is shown in
(B). In each cluster density plot, the blue boxes represent total densities and the green boxes represent PF cluster densities. Red lines demarcate the
median for the total density and the PF density.

Table 1. Sequencing metric comparison of SI and LI libraries

Metric SI whole
genome library

LI whole
genome library

Median insert size (bp) 322 869
Mean insert size (bp) 313.90 869.34
Insert size standard deviation 48.50 64.19
Number of lanes sequenced 1 1
Total cluster density (K/mm2) 801±70 798±61
PF cluster density (K/mm2) 91.5±2.0 81.9±4.8
Read length 2� 104 2� 83
Total reads (M) 221.56 220.59
PF reads (M) 202.48 180.28
Read 1 error rate 0.28±0.03 0.43±0.05
Read 2 error rate 0.48±0.12 0.50±0.12
Read 1 phasing/prephasing 0.136/0.201 0.184/0.252
Read 2 phasing/prephasing 0.145/0.193 0.183/0.268
Total yield (Gb) 33.11 31.12
Total Q30 yield (Gb) 29.30 25.30
%Q30 88.50 81.30
Total reads 404 968 194 360 562 104
Total mapped reads 379 311 244 335 823 767
% reads mapped 93.66 93.14
GC dropout 2.91 5.69
AT dropout 1.22 2.45
Median GC normalized coverage 0.86 0.76
Mapped sequence coverage 12.57 8.78
Mapped physical coverage 37.95 93.06
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all three patients and across both WGS types. For the SI
whole genomes, we generated average mapped sequence
coverages ranging from 36� to 52� (mean=45�), and
average mapped physical coverages ranging from 108� to
146� (mean=131�). For the LI genomes, we generated
average mapped sequence coverages ranging from 8� to
12� (mean=10�), and average mapped physical cover-
ages ranging from 72� to 108� (mean=84�). Coverage
differences between the two library types are because of
the different number of lanes in which libraries were
sequenced and the read lengths used for each library type.

We evaluated several library and sequencing metrics,
including the percentage of PCR duplicate reads and
GC dropout. No significant differences were observed
with respect to percentage of duplicates in the LI and SI
libraries. The SI libraries had an average percent duplicate
rate of 4.53, whereas the LI libraries had an average of
4.32. No significant differences were also observed when
evaluating the extent of GC dropout and median GC
normalized coverage in each of the two types of libraries
(Student’s t-test P-values of 0.46 and 0.82, respectively).
We did observe a difference between LI and SI libraries
with respect to AT dropout (Student’s t-test P value of
0.02), but the means for the LI and SI groups remain low
(LI mean=2.35, SI mean=1.40) to indicate an overall
low level of dropout in AT rich regions.

To compare copy number and translocation detection
analyses, we used SAMtools to randomly select 250
million mapped reads from each data set as 4–5 times
more sequencing was performed for SI libraries and
because 250 million reads can be generated from a single
HiSeq flowcell lane, which represents our design of
sequencing an LI library in one lane. This normalization
allows us to thus assume that the same amount of
sequencing was performed for both SI and LI libraries
such that the sequence coverages across each data set
are similar. Both copy number and translocation detection
analyses were then performed on each normalized data
set. Metrics and results from analyses on normalized
bam’s are listed in Table 3. Percent tumor cellularity for
patient 3’s tumor is not known but the tumor cellularities
for patients 1 and 2 were both 50%. Assuming a minimum
of 10 anomalous reads required for detection, power cal-
culations were performed for patients 1 and 2 to determine
the power for identifying CNVs and translocations. For
patients 1 and 2, the power for detecting events in LI data
is �60–80% greater than the power for detecting events in
SI data. If we assume 50% tumor cellularity for patient 3,
the power of detecting an event is 0.48 in SI data and 0.87
in LI data.

Copy number analysis

We performed genome-wide CNV detection on each set of
patient data. Plots from each analysis are shown in
Supplementary Figure S2 and summary results are
shown in Table 3. Overall 56 CNVs were identified
(Supplementary Table S1). Events that affect COSMIC
(Catalogue of Somatic Mutations in Cancer) (10) genes
are listed in Table 4. No CNVs were identified for
patient 2 in LI data and for patient 3 using SI data.T
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CNVs were defined as having log2 ratios with an absolute
tumor/normal ratio of at least 0.75.
To evaluate the level of noise and variability in the CNV

data, we determined the DLRS for each data set. This
measurement is used as a standard in evaluating consist-
ency in log ratio array comparative genomic hybridization
data for CNV detection and is thus applied here to
evaluate data quality. Higher values are indicative of
increased noise and less accuracy in CNV detection.
Results are shown in Supplementary Table S2. Overall,
the DLRS values are lower for the LI libraries
compared with SI libraries for each patient.
Additionally, the patient 1’s SI data demonstrated the
highest whole genome DLRS of 0.117, which correlates
with the higher level of noise that is observed in the
CNV plot (Supplementary Figure S2A). This increased
noise further correlates with the high number of CNVs
identified in the patient 1’s SI data and not in the
patient 1’s LI data.
To validate CNVs, we performed CNV detection on

whole exome data generated from the same paired
tumor and normal samples that were whole genome
sequenced for each patient. We used this approach since
the 1000 Genomes Project demonstrated the feasibility of
performing CNV detection using exome data (11). We
generated over 735 million reads with mean target cover-
ages ranging from �59�–171�. Metrics and CNV
analysis results are listed in Supplementary Table S3.
We did not identify any genic CNVs in patients 2 and 3,
but identified four genic CNVs in patient 1. The absence
of genic CNVs in patient 2 in both SI and LI data correl-
ates with the absence of CNVs in the exome data. For
patient 1, of the four exome CNVs, one of these events
overlap with a CNV identified in patient 1’s LI data and
another event overlaps with a CNV identified in patient
1’s SI data. For patient 3, genic CNVs were only identified
in LI data but these events were not identified in exome

data. We also evaluated the DLRS on the exome data sets
(Supplementary Table S2)—exome data for all three
patients had DLRS values >0.1, and with the exception
of patient 1’s SI data, the exome DLRS values were all
higher than SI and LI data. The high DLRS values for all
three patients’ exome data indicate that increased noise
may have affected CNV detection and that lower CNV
detection accuracy is associated with these data. Patient
1’s exome data also had the highest DLSR across both
exome and WG sequencing (0.142), and thus suggests
decreased accuracy in CNV detection in this patient’s
exome data.

Translocation detection

We identified inter- and intra-chromosomal translocations
in each tumor genome that did not have any supporting
germline reads. These events were individually evaluated
in Integrated Genomics Viewer, and final results from
these analyses are listed in Table 3. For each patient, a
larger number of translocations were identified using LI
libraries as compared with SI libraries. No overlapping
somatic translocations were identified across SI and LI
libraries for patients 2 and 3, but three overlapping
events were identified in patient 1. Table 5 lists all
identified translocations in genic regions. Results were
compared against COSMIC. Only one identified trans-
location affected a COSMIC gene (LPP in patient 3’s LI
data). Based on availability of samples, we next performed
validation of selected translocations using PCR and
Sanger sequencing for patient 1 to compare events
identified through SI and LI sequencing. Asterisked
genes in Table 5 indicate the translocations that were
validated. Overall we confirmed the presence of one
event that was identified in both the SI and LI data (af-
fecting ERC2 and LIN7A), and also confirmed the
presence of an LI event that was not identified in the SI
data (affecting GDA and chrX).

Table 4. CNVs affecting COSMIC genes identified using SI and LI data

Patient Library Chr. Location CNV Length (bp) Log2 fold Affected
COSMIC genes

1 SI 3 51996100:52507500 Loss 511 400 �0.819 BAP1
1 SI 9 136216500:137456500 Loss 1 240 000 �0.819 BRD3
1 SI 16 88359000:89200400 Loss 841 400 �1.127 CBFA2T3
1 SI 8 38276300:38441900 Loss 165 600 �0.819 FGFR1
1 SI 19 358300:8783100 Loss 8 424 800 �1.234 FSTL3
1 SI 19 358300:8783100 Loss 8 424 800 �1.234 GNA11
1 SI 19 358300:8783100 Loss 8 424 800 �1.234 MLLT1
1 SI 12 56035700:57163000 Loss 1 127 300 �0.789 NACA
1 SI 8 70884500:71036600 Loss 152 100 �0.819 NCOA2
1 SI 22 30055000:30229500 Loss 174 500 �0.819 NF2
1 SI 9 137928600:140766000 Loss 2 837 400 �0.789 NOTCH1
1 SI 9 133827500:133983900 Loss 156 400 �0.819 NUP214
1 SI 19 358300:8783100 Loss 8 424 800 �1.234 SH3GL1
1 SI 19 358300:8783100 Loss 8 424 800 �1.234 STK11
1 SI 19 358300:8783100 Loss 8 424 800 �1.234 TCF3
1 SI 1 798600:3766500 Loss 2 967 900 �0.789 TNFRSF14
3 LI 3 186450400:187448100 Loss 997 700 �0.912 BCL6
3 LI 3 186450400:187448100 Loss 997 700 �0.912 EIF4A2

Chr=chromosome
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DISCUSSION

With the rapid development of sequencing technologies,
next-generation sequencing has become a valuable
approach to characterize cancer genomes. As algorithms
and technologies continue to evolve, we are tasked with
identifying the most robust strategies to ascertain cancer
genomes. Although exome sequencing and RNAseq
support the identification of point mutations and expres-
sion changes, there remains a need to identify a cost-
effective approach to identifying translocations and
CNVs and that does not require 30� coverage. In the
MI-ONCOSEQ study, Rowchowdhury et al. (3) previ-
ously demonstrated the use of shallow SI-WGS to 5–
15� coverage, along with exome and RNAseq, to
evaluate tumor genomes with the goal of identifying ac-
tionable events in advanced stage cancer patients. They
were able to use shallow SI-WGS to identify copy
number alterations and structural rearrangements,
exome sequencing to identify point mutations and
RNAseq to identify expression changes. Although using
shallow SI-WGS to identify larger somatic alterations is
feasible, the inherent nature of SI-WGS, particularly with
shallow coverage, directly decreases our ability to confi-
dently identify larger somatic events because of the lower
level of physical coverage that is achieved. We show in this
study that shallow sequencing of longer inserts increases
our power for translocation and CNV detection over
shallow SI-WGS.

We first performed in silico analyses to evaluate the
utility of LI-WGS. Results from our analyses demonstrate
that sequencing LIs compared with SIs increases physical
coverage such that less sequencing is needed for LIs to
achieve a target physical coverage. We also show that
LI-WGS increases our power to detect a heterozygous
event even when using shorter read lengths. These
analyses thus illustrate the strength of sequencing LIs

over SIs when the goal is to identify larger somatic
events that are not captured through exome sequencing.
An additional advantage is that the use of LI libraries
improves our ability to align sequence data against the
human reference genome because we acquire information
on a larger genomic region. The protocol we developed
also requires 1.1 mg of input DNA, whereas mate
pair protocols require microgram amounts of DNA.
Furthermore, the protocol we describe here is more user-
friendly compared with mate pair protocols because mate
pair protocols require all the steps in our approach as well
as additional procedures including circularization and lin-
earization of the DNA, multiple enzymatic digestions and
purification steps. The protocol we describe here requires
�1.5 days, whereas standard mate pair protocols require 3
days. Lastly, our protocol uses sonication for fragmenta-
tion, and thus does not require trimming of transposase
footprints post-sequencing. Overall, we can simultan-
eously reap the benefits of its application and decrease
costs as Illumina’s standard mate pair preparation for a
single library is 7� the cost of generating a LI library
using Illumina’s TruSeq DNA Sample Prep Kit.
A few caveats of LI-WGS are that it requires the avail-

ability of biopsies with sufficient tumor cellularity and also
requires that sufficient high quality DNA be isolated from
these biopsies. Lower cluster densities are also achieved
with LI-WGS but because less sequencing is needed for
LI-WGS, this difference does not inhibit its application.
Although LI-WGS improves our ability to detect CNVs
and translocations, improved algorithms for detection of
structural variants are still needed. Numerous bio-
informatics tools, including DELLY (12), clipping
reveals structure (CREST) (13), BreakDancer (14) and
others (15,16), have been developed for structural
variant detection. Downstream testing of currently avail-
able algorithms on LI-WGS libraries is warranted to
further optimize structural variant detection. We also
note that the cost of shallow LI-WGS is the same cost
as shallow SI-WGS but the increased power in detecting
events using LI-WGS is a significant benefit to take
advantage of.
We additionally demonstrate the application of LI-

WGS, compared with SI-WGS, to three separate cancer
patients for identification of somatic CNVs and transloca-
tions and performed validation on both types of events.
The high DLRS of the exome validation data across all
three patients indicates a high level of noise in the exome
data, and thus reflects the differences in identified CNVs
that were seen across the exome and SI and LI data sets.
Although this finding emphasizes the need for improved
algorithms for identifying CNVs in non-WGS assays, two
events were validated in patient 1, and the absence of
events in patient 2 WGS data correlates with the
absence of events in patient 2’s exome validation data.
Overall, the LI data also had a lower DLRS compared
with the SI data for each patient, and thus emphasizes
the decrease in noise and increase in CNV detection
accuracy in LI data. Power calculations for patients 1
and 2, for whom we know the tumor cellularities, also
show that our power for detecting events is 60–80%
greater when using LI data over SI data. While knowledge

Table 5. Genic translocations identified using SI and LI data

Patient Library Breakpoint location Affected genes

1 SI �:7:133311200j�:6:118209600 EXOC4
1 SI �:3:55788800j�:12:81208800 ERC2, LIN7Aa

1 LI +:18:29128000j+:3:150368000 DSG2
1 LI +:6:125820000j+:7:121984000 CADPS2
1 LI +:9:74810000j+:X:11950000 GDAa

1 LI �:3:150370000j�:18:29126000 DSG2
1 LI +:12:81208000j+:3:55788000 ERC2, LIN7Aa

1 LI +:X:11952000j+:9:74808000 GDAa

1 LI �:6:118210000j�:7:133310000 EXOC4
1 LI +:14:89290000j+:17:78272000 TTC8, RNF213
1 LI +:8:140172000j+:9:116200000 C9orf43
1 LI �:4:91966000j�:11:83130000 FAM190A
2 SI �:7:153790400j�:7:149700000 DPP6
2 LI +:4:130930800j+:12:65817400 MSRB3
2 LI �:5:43080400j�:5:43269600 NIM1
2 LI +:7:34837000j+:11:57763200 NPSR1
3 SI +:12:9576000j+:12:9460000 DDX12P, LOC642846
3 LI +:3:11258400j+:3:188188800 HRH1, LPP
3 LI +:3:173983200j+:3:187771200 NLGN1
3 LI �:11:60480000j�:7:25058400 MS4A8B

aValidated by PCR and Sanger sequencing.
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of tumor cellularity improves interpretation of LI-WGS
results, we show the feasibility and utility of LI-WGS.
In conclusion, LI-WGS represents a single assay that
can be used to simultaneously identify CNVs and trans-
locations, results in less noise for CNV detection, increases
our power to detect changes due to the higher physical
coverage that is achieved and is more cost-effective and
user-friendly as modifications need only be made to an
established library generation protocol.
As the research community continues to enable current

technologies to understand cancers and other diseases, we
are tasked with the challenges of fine tuning both wet
lab and bioinformatics analyses to improve genomic
analyses and characterizations. As such, identifying and
applying the most cost-effective and robust approaches to
evaluating cancer genomes are needed. In this study, we
illustrate the feasibility of LI-WGS as well as its utility in
detection of somatic copy number changes and transloca-
tions. This approach is also not limited to cancer and may
be applied to other diseases. By optimizing an established
WGS library preparation protocol, we show that we can
improve our ability to detect structural variants without
performing an overhaul of current approaches. Continued
improvements in genomic analyses will strengthen the foun-
dation for personalized medicine and set the stage for de-
veloping and pinpointing efficacious treatments for patients.
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