
Citation: Tao, Y.; Bao, J.; Liu, Q.; Liu,

L.; Zhu, J. Application of

Deep-Learning Algorithm Driven

Intelligent Raman Spectroscopy

Methodology to Quality Control in

the Manufacturing Process of

Guanxinning Tablets. Molecules 2022,

27, 6969. https://doi.org/10.3390/

molecules27206969

Academic Editors: Angelo

Antonio D’Archivio and

Alessandra Biancolillo

Received: 27 September 2022

Accepted: 12 October 2022

Published: 17 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molecules

Article

Application of Deep-Learning Algorithm Driven Intelligent
Raman Spectroscopy Methodology to Quality Control in the
Manufacturing Process of Guanxinning Tablets
Yi Tao 1,*, Jiaqi Bao 1, Qing Liu 1, Li Liu 2 and Jieqiang Zhu 1,*

1 College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
2 Chiatai Qingchunbao Pharmaceutical Co., Ltd., Hangzhou 310023, China
* Correspondence: taoyi1985@zjut.edu.cn (Y.T.); zhujieqiang@zjut.edu.cn (J.Z.)

Abstract: Coupled with the convolutional neural network (CNN), an intelligent Raman spectroscopy
methodology for rapid quantitative analysis of four pharmacodynamic substances and soluble solid
in the manufacture process of Guanxinning tablets was established. Raman spectra of 330 real samples
were collected by a portable Raman spectrometer. The contents of danshensu, ferulic acid, rosmarinic
acid, and salvianolic acid B were determined with high-performance liquid chromatography-diode
array detection (HPLC-DAD), while the content of soluble solid was determined by using an oven-
drying method. In the establishing of the CNN calibration model, the spectral characteristic bands
were screened out by a competitive adaptive reweighted sampling (CARS) algorithm. The per-
formance of the CNN model is evaluated by root mean square error of calibration (RMSEC), root
mean square error of cross-validation (RMSECV), root mean square error of prediction (RMSEP),
coefficient of determination of calibration (R2

c ), coefficient of determination of cross-validation (R2
cv),

and coefficient of determination of validation (R2
p). The R2

p values for soluble solid, salvianolic acid B,
danshensu, ferulic acid, and rosmarinic acid are 0.9415, 0.9246, 0.8458, 0.8667, and 0.8491, respectively.
The established model was used for the analysis of three batches of unknown samples from the
manufacturing process of Guanxinning tablets. As the results show, Raman spectroscopy is faster
and more convenient than that of conventional methods, which is helpful for the implementation of
process analysis technology (PAT) in the manufacturing process of Guanxinning tablets.

Keywords: Guanxinning tablets; Raman spectroscopy; convolutional neural network; process analytical
chemistry; extraction process monitoring; intelligent process analysis

1. Introduction

Quality control in the manufacturing process is an important issue to guarantee
the quality of end-products of botanical drugs [1,2]. In 2004, the U.S. Food and Drug
Administration (FDA) issued the process analytical technology (PAT) industry guide,
pointing out that a variety of methods exist as an overall quality-control system for PAT,
which are used to monitor key quality attributes of raw materials and intermediates in real
time, and to provide a reliable guarantee for the quality of end-products [3]. Given this
guideline, in-process analytical methods and techniques are required to provide real-time
quality information on botanical drugs.

The Guanxinning tablet is a botanical drug which is clinically used for the treatment
of coronary heart disease and angina pectoris. The raw materials of the Guanxinning
tablet are Salvia miltiorrhiza and Ligusticum chuanxiong hort. The extract of Salvia miltiorrhiza
has the pharmacological effects of anti-platelet aggregation, anti-thrombosis, promoting
fibrin degradation, anti-myocardial ischemia, and antioxidant [4,5], whereas the extract of
Ligusticum chuanxiong hort can dilate blood vessels, increase coronary flow, and improve
microcirculation [6]. The conventional quality-control method used in the manufacture
of Guanxinning tablets is high-performance liquid chromatography, which is used for
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determining the bioactive compounds, such as danshensu, ferulic acid, rosmarinic acid,
and salvianolic acid B. The disadvantage of the HPLC method is that it is time-consuming
and consumes large amounts of organic solvents. Meanwhile, the HPLC method is un-
suitable for real-time monitoring. To address this issue, Raman spectroscopy serves as a
suitable alternative.

Compared with conventional PAT techniques, Raman spectroscopy has the merits of
being non-destructive, fast, and portable. Also, Raman spectroscopy has been widely used
in molecular fingerprinting [7,8], pathogenic bacteria discrimination [9], tumor diagno-
sis [10], and so on. The Raman spectrum of water is very weak, so, Raman spectroscopy is
suitable for detection uses in liquid samples [11,12]; however, the application of Raman
spectroscopy to quality control in the production process of botanical drugs is still rare.

Since Raman spectroscopy alone is still unable to achieve real-time detection, it needs
to be combined with machine-learning algorithms [13]. The convolutional neural network
algorithm (CNN), which is a deep-learning algorithm, has received increasing attention.
As compared to the traditional machine-learning algorithms, such as partial least squares
regression (PLSR) and support vector machine regression (SVR), the deep-learning algo-
rithm can simplify the spectral deconvolution process and improve the model accuracy,
making it very suitable for processing big data in the manufacturing process.

In this paper, an intelligent deep-learning algorithm driven Raman spectroscopy
analysis methodology was established for the rapid and non-destructive determination of
the contents of four bioactive compounds and soluble solid in water extract samples of
Guanxinning tablets, which were collected from the manufacturing process. The model
performance of CNN was compared with that of PLSR and SVR.

2. Results and Discussion
2.1. Determination of Bioactive Ingredients by HPLC-DAD

A reliable HPLC-DAD method was established to determine the four bioactive ingredi-
ents. The chemical structures of the four analytes are shown in Figure 1. Danshensu, ferulic
acid, rosmarinic acid, and salvianolic acid B have good UV-absorption characteristics at
288 nm. The representative chromatograms of real sample and mixed standard solutions
are displayed in Figure 2. Peaks 1–4 represent danshensu, ferulic acid, rosmarinic acid, and
salvianolic acid B.

335 real samples were analyzed by the HPLC-DAD method. All four bioactive com-
pounds were baseline separated and could be accurately determined. Calibration curves,
correlation coefficients, linearity ranges, and LOD and LOQ data are shown in Table S1.
All four major compounds displayed good correlation coefficient values (r2) in the range
of 0.9995–0.9997. The LODs and LOQs of the four major compounds were in the range
from 0.2042 to 0.5313 µg/mL and from 0.6807 to 1.7709 µg/mL, respectively. The method
was fully validated. The precision, repeatability, stability, and recovery of the method are
shown in Table S2. The RSDs of intra-day and inter-day precisions of the method were
determined to be in the range of 0.07–0.47% and 1.10–1.49%. The repeatability and stability
of the method were determined as from 0.15% to 1.07% and from 0.11% to 1.03%. The
overall recoveries ranged from 99.80% to 103.62%.

2.2. Determination of Soluble Solid by an Oven-Drying Method

The content of soluble solid is an important indicator of the water extracts. It is also
necessary to establish a reliable reference method for determining soluble solid content.
335 samples were assayed by using the oven-drying method. The soluble solid of the
water-extract samples ranged from 418.7 µg/mL to 4882.7 µg/mL.
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2.3. Pretreatment of Raman Spectra

The raw Raman spectra of Guanxinning water extract are shown in Figure 3A. Savitzky–
Golay (S–G) smoothing and Minmax linear regression were used (see Figure 3B,C). It can be
seen in the raw spectrum that the major Raman peaks are 1000, 1250, and 1500 cm−1. The
major Raman peaks were assigned by comparing with the literature [14,15]. The Raman
peak at 1000 cm−1 can be ascribed to Ar ring stretching. The Raman peak at 1250 cm−1 can
be ascribed to asymmetric stretching of the C-O-C bond. The Raman peak at 1500 cm−1

can be ascribed to C=C bond stretching.
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2.4. Removal of Abnormal Spectra

The number of abnormal Raman spectra in 335 water-extract samples of Guanxinning
was removed by using the Mahalanobis distance method. The Mahalanobis distance
distribution of the samples is shown in Figure 4. Five abnormal samples (No. 4-1-5, No.
4-3-1, No. 6-3-9, No. 7-2-3, and No. 7-2-8) were identified and removed; therefore, the
number of water-extract samples of Guanxinning for building a quantitative calibration
model was 330.
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2.5. Determination of Variable Selection Methods

Using the Kennard–Stone (K–S) algorithm, 330 real samples were divided into calibra-
tion set and validation set by 4:1. For each model, the calibration set consists of 264 samples,
and the remaining 66 samples belong to the validation set. Table S3 lists the statistical
values of the content of the four bioactive compounds in the calibration set and validation
set. The calibration set covers a large range, which helps to build a stable and robust
calibration model.

Four variable selection methods were used to select the characteristic bands of Raman
spectra. CNN, PLSR, and SVR models were established, respectively. RMSEC, RMSEP, R2

c ,
and R2

p were used to evaluate the performance of these models. Taking the PLSR model,
for example, the calculation results are shown in Table S4. Among the four feature band
selection algorithms, CARS shows the best prediction performance for danshensu, ferulic
acid, rosmarinic acid, salvianolic acid B, and soluble solid with an R2

p at 0.6382, 0.8483,
0.9457, 0.8696, and 0.9282; thus, the CARS algorithm is adopted as the Raman spectral
feature band selection method.

In the CARS algorithm, the Monte Carlo sampling rate was set to 0.8, and the sampling
number was 50. Figure 5 represents a process diagram of CARS to extract variables. Taking
rosmarinic acid as an example, when the number of times increases from 0 to 50, both the
number of extractions changes (see Figure 5A) and the RMSECV values (see Figure 5B)
change, but the change trends are obviously different. When the number of samples
increases from 0 to 10, the number of selected variables decreases rapidly, which is the fast
screening stage, and this process removes a lot of invalid information. When the number of
samples is greater than 10, the number of variables shows a slow downward trend, which
is the fine screening stage. When the number of samples is 16, the RMSECV value is the
smallest, and the number of variables at this time is the optimal variable set.
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2.6. Comparison of Different Calibration Models

The performance parameters of the different calibration models established with
the optimal band selecting method are listed in Table 1. According to the performance
parameters, CNN, PLSR, and SVR were compared. It was worth mentioning that PSLR
and SVR algorithms required preprocessing of the data. The calibration model of SPA-SVR
showed the worst predictive ability, with an R2

p of −1.4600 and −0.0021. The calibration
models of CARS-PLSR and CNN had modest predictive ability, with an R2

p of 0.6382, 0.8483,
0.9457, 0.8696, and 0.9282, and 0.8212, 0.7163, 0.8450, 0.8544, and 0.8554. The calibration
model of CARS-CNN had the best predictive ability with an R2

p of 0.8458, 0.8667, 0.8491,
0.9246, and 0.9415. The RMSEP of the calibration model of CARS-CNN was the lowest.
Correlation diagrams of predicted values and measured values of the five attributes of
samples are shown in Figure 6.

2.7. Application to Three Batches of Unknown Samples

The established method is used for routine analysis in the production process, with
which three batches of unknown samples of Guanxinning water extract were acquired
by a portable Raman spectrometer. The Raman spectra of the unknown samples were
corrected and inputted into the established CARS-CNN model. The contents of the four
bioactive compounds and soluble solid were obtained at the same time. The three different
batches of samples were analyzed with this model. Figure 7 shows the applications of
Raman spectroscopy and CARS-CNN model to the unknown samples. The content of the
main compounds is monitored and controlled during the production process through this
method, allowing us to check whether the end-product meets the required standard and it
further ensures the quality of the end-product. From Figure 7, we agreed that feasibility
and superiority of CARS-CNN for the prediction of unknown samples is not apparent. The
performance of deep learning highly depends on the size of the samples. The larger the
sample size, the better the performance of the model will be. In our work, the sample size
was 330, which is still too small for the CARS-CNN model. We believe the incorporation of
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more data of the samples into the model will unambiguously improve the performance
and show the superiority of deep learning.

Table 1. Comparisons between performance parameters of four quantitative calibration models
established with different regression algorithms.

Algorithms Objectives
Calibration Cross-Validation Prediction

R2
c RMSEC R2

cv RMSECV R2
p RMSEP

SPA-SVR

Danshensu −1.3462 0.0205 −1.6672 0.0176 −1.4600 0.0265
Ferulic acid −4.6801 0.0145 −5.2301 0.0423 −0.0021 0.0158

Rosmarinic acid 0.5132 0.0424 0.4102 0.0644 0.3652 0.0448
Salvianolic acid B 0.8718 0.2929 0.7189 0.2034 0.8100 0.3580

Soluble solid 0.8185 0.6091 0.7033 0.7651 0.7189 0.7647

CARS-PLSR

Danshensu 0.9979 0.0011 0.9223 0.0031 0.6382 0.0163
Ferulic acid 0.9843 0.0045 0.9456 0.0025 0.8483 0.0057

Rosmarinic acid 0.9904 0.1539 0.9754 0.1634 0.9457 0.0092
Salvianolic acid B 0.9958 0.0584 0.9192 0.1345 0.8696 0.3749

Soluble solid 0.9904 0.1539 0.9312 0.2745 0.9282 0.4512

CNN

Danshensu 0.8694 0.0086 0.8423 0.0035 0.8212 0.0096
Ferulic acid 0.8893 0.1197 0.7356 0.0768 0.7163 0.0213

Rosmarinic acid 0.9285 0.0098 0.8749 0.0167 0.8450 0.0143
Salvianolic acid B 0.8906 0.2988 0.8876 0.3758 0.8544 0.3371

Soluble solid 0.8857 0.5389 0.8831 0.5775 0.8554 0.5812

CARS-CNN

Danshensu 0.9893 0.0024 0.9423 0.0051 0.8458 0.0094
Ferulic acid 0.9875 0.0016 0.9335 0.0035 0.8667 0.0084

Rosmarinic acid 0.9551 0.0078 0.9464 0.0079 0.8491 0.0145
Salvianolic acid B 0.9943 0.1953 0.9213 0.1886 0.9246 0.2528

Soluble solid 0.9526 0.1197 0.9384 0.3188 0.9415 0.3861
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3. Materials and Methods
3.1. Sample Collection

Water-extract samples of Guanxinning tablets were collected from a Chinese medicine
pharmaceutical factory (Zhengda Qingchunbao Pharmaceutical Co., Zhejiang, China) in
Deqing. In the extraction process during the production of the Guanxinning tablets, reflux
extraction was carried out three times. The extraction time of the first reflux process was 2 h.
The extraction time of the second reflux process was 1.5 h. The extraction time of the third
reflux process was 1.5 h. 10 mL samples were collected every 5 min for the first 1 h, and
10 mL samples were collected every 10 min for the next 1 h. When the crude drug enters
the second and third reflux processes, 10 mL samples were collected every 5 min for the
first 1 h, and 10 mL samples were collected every 10 min for the next 0.5 h. A total of seven
batches of samples (335 samples) were collected from the Guanxinning water-extraction
module. The port of extractor was spun off at certain time points and the water extract was
poured into a small beaker. Then, the water extract was transferred to a centrifuge tube.
The flow chart of this study is shown in Figure 8.
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3.2. HPLC-DAD Analysis

In order to determine the concentration of four bioactive compounds in Guanxinning
water extract, a high-performance liquid chromatography method was established. The wa-
ter extract was centrifuged at 13,000 rpm for 10 min. Then, the supernatant was sent for anal-
ysis under the following chromatographic conditions. An Agilent 1260 high-performance
liquid chromatography system (Agilent Technologies, Santa Clara, CA, USA) was used,
including a quaternary pump, a sample vial injector, a column oven, and a diode array
detector (DAD). The column was Hanbon Sci & Tech Hedera ODS-2 (4.6 × 250 mm, 5 µm),
and the mobile phases consisted of (A) 0.1% HCOOH-H2O (v/v) and (B) acetonitrile. The
gradient elution procedure was as follows: initial 95% (A); 0–12 min, 5–38% (B); 12–20 min,
38–48% (B); 20–35 min, 48–100% (B). The re-equilibration duration between single runs
was 6 min. The column temperature was 36 ◦C and the flow rate was 0.8 mL/min. The
detection wavelength of danshensu, ferulic acid, rosmarinic acid, and salvianolic acid B
was 288 nm. LODs and LOQs were determined by using diluted standard solution when
the signal-to-noise ratios (S/N) of the standard substances were about 3 and 10, respectively.
Variations were expressed by relative standard deviations (RSD).
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3.3. Oven-Drying Method

In order to determine the content of soluble solid in the Guanxinning water extract, an
oven-drying method was adopted. Guanxinning water extract was centrifuged at 2500 rpm
for 10 min. Then, about 3 mL of the supernatant was placed in a flat weighing bottle,
evaporated to dryness in a water bath, and then placed in a 105 ◦C oven for 6 h. Finally, the
bottle was taken out, placed in a desiccator to cool for 1 h, and weighed. The soluble solid
content was calculated according to Formula (1), where Sc is the soluble solid content of
the extract, W is the quality of the extract, W2 is the total mass of the sample and weighing
bottle after drying, and W1 is the mass of the weighing bottle.

Sc =
W2 − W1

W
× 100% (1)

3.4. Raman Spectra Acquisition

The Raman spectrum was collected by a Rapid OLRaman-2 portable Raman spec-
trometer equipped with a Raman fiber probe, a CCD detector, and a laser emitter (power
400 mW, wavelength 785 nm). It is a dispersive (with a grating) type of instrument. The
acquisition parameters are as follows: wavenumber range 176–3500 cm−1, resolution
2.83 cm−1, acquisition time 500 ms, and samples were collected three times each. The
Raman spectrometer was controlled by a compatible flat panel, and the “Pharmaceutical”
software (Version 1.0) was used for data acquisition.

3.5. Removal of Abnormal Samples

In addition to the sample information, the data collected by the Raman spectrometer
also include abnormal spectra that may have been generated due to errors of instrument,
method, environment, or manual operation during the collection process. In order to obtain
a reliable, accurate, and stable quantitative model, it is necessary to identify and remove
abnormal spectra before modeling. In order to eliminate the interference of abnormal
spectra, Mahalanobis distance method was used.

3.6. Feature Band Filtering

The Raman signal shift of the Raman spectrometer is 176–3500 cm−1. In order to
best utilize the effective spectrum, the optimal characteristic bands should be screened out
during the calibration process. To screen out the optimal spectral bands, competitive adap-
tive reweighted sampling (CARS), Uninformative Variable Elimination (UVE), Successive
Projections Algorithm (SPA), and Synergy Interval Partial Least Square (siPLS) toolbox
were used [16]. The performances of different screening algorithms were compared, and
the best feature band screening algorithm was selected.

3.7. Determination of Variable Selection Methods

The algorithms used for building the calibration models were PLSR, SVR, and CNN.
The principle and application of these algorithms were well documented in the refer-
ences [17–19]. The architecture of CNN model is shown in Figure 9.

The construction detail of the CNN model is as follows. First, a convolution layer
was created. The parameters of the convolution layer were as follows: 32 filters, the filter
window size was 3 × 3, the scanning window moved with a step size of 1 each time, and the
rectified linear units (ReLU) activation function was applied. Second, a batch-normalization
layer was created. Third, a maximum pooling layer was created. The number of filters in
the pooling layer was the same as that of the convolution layer 1. The filter window size
was 2 × 2, and the scanning window moved with a step size of 1 each time. There was no
maxpooling layer for ferulic acid. Fourth, four convolutional layers with parameters setting
to 16, 3, and 1 were created successively. The ReLU activation function was applied. After
that, a convolution layer with parameters setting to 32, 3, and 1 was created and the ReLU
activation function was applied. Then, a convolution layer with parameters setting to 64, 3,
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and 1 was created and the ReLU activation function was applied. Finally, a flattened layer
was created. Then, two fully-connected layers were created for danshensu, salvianolic acid
B, and soluble solid, whereas three fully-connected layers were created for ferulic acid and
rosmarinic acid. The number of output neurons is 1, and the linear activation function was
applied. The mean squared error loss function was chosen and Adam (lr = le × −4) was
used as the optimizer. The specified batch size was 50. The number of iterations was 200. If
the loss was not improved after 40 iterations, Keras would stop training.
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The root mean square error of calibration (RMSEC), root mean square error of cross-
validation (RMSECV), root mean square error of prediction (RMSEP), correlation coefficient
of calibration (R2

c ), correlation coefficient of cross-validation (R2
cv), and correlation coeffi-

cient of validation (R2
p) were used to evaluate the performances of the above models. The

detailed calculation formulas of the above parameters can be found in the literature [20].

4. Conclusions

An intelligent Raman spectroscopy methodology for the simultaneous determination
of danshensu, ferulic acid, rosmarinic acid, salvianolic acid B, and soluble solid in water
extract of Guanxinning was established. The calibration model has been validated with
satisfactory R2

p values. The method has been successfully applied to the monitoring
of the contents of pharmacodynamic substances and soluble solid in water extracts of
Guanxinning tablets, which improves the efficiency of quality control, and may replace the
cumbersome reference method. The model needs to be updated to ensure robustness for
long-term use in industrial manufacturing. To the best of our knowledge, this study is the
first to report the application of Raman spectroscopy in the analysis of pharmacodynamic
substances and soluble solid in the manufacturing process of Guanxinning tablets. The
proposed method is also expected to be useful for the implementation of process analytical
techniques in the manufacturing of other botanical drugs.
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