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As a neurodevelopmental disorder, autism spectrum disorder (ASD) severely affects the
living conditions of patients and their families. Early diagnosis of ASD can enable the
disease to be effectively intervened in the early stage of development. In this paper, we
present an ASD classification network defined as CNNG by combining of convolutional
neural network (CNN) and gate recurrent unit (GRU). First, CNNG extracts the 3D spatial
features of functional magnetic resonance imaging (fMRI) data by using the convolutional
layer of the 3D CNN. Second, CNNG extracts the temporal features by using the GRU
and finally classifies them by using the Sigmoid function. The performance of CNNG was
validated on the international public data—autism brain imaging data exchange (ABIDE)
dataset. According to the experiments, CNNG can be highly effective in extracting the
spatio-temporal features of fMRI and achieving a classification accuracy of 72.46%.

Keywords: ASD classification, CNNG, CNN, spatio-temporal features, ABIDE

INTRODUCTION

The neurodegenerative diseases such as autism spectrum disorder (ASD) have received increasing
attention in recent years. ASD, also referred to as autism, is a common neurodevelopmental
cognitive disorder in children, mostly related to genetic factors. Due to the unclear etiology of
autism, lack of specific drug treatment and life-long incurable, the patient’s family needs to bear
heavy psychological and economic pressure for a long time. ASD is characterized by complexity and
heterogeneity. ASD mainly relies on the doctor’s diagnosis on the foundation of the Diagnostic and
Statistical Manual of Mental Disorders. It is not only time-consuming but also highly subjective,
which can easily lead to misdiagnosis. Therefore, the development of a fully automatic ASD
diagnostic technology will alleviate the burden on doctors and be helpful to detect symptoms and
obtain early intervention and treatment in childhood.

With the development of medical imaging, many functional neuroimaging techniques have
been proposed to use in brain research, such as Electroencephalogram (EEG), magnetic resonance
imaging (MRI), functional magnetic resonance imaging (fMRI), and so on (Laxer, 1997; Wu
et al., 2001; Holdsworth and Bammer, 2008). fMRI has the advantages of non-invasiveness and
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high temporal and spatial resolution. fMRI can enable people to
more intuitively understand the physiological and pathological
functional activities of the brain. Therefore, fMRI is widely used
in clinical and basic research in many fields such as neuroscience,
cognitive science and psychology (Heuvel and Pol, 2010; Liu S.
et al., 2019; Liu S. et al., 2020; Vakamudi et al., 2020). The
fMRI which takes blood oxygenation level dependent (BOLD)
signal imaging as the fundamental principle can be divided into
task state and resting state in brain research. Task-fMRI means
that fMRI data is collected by subjects under the specified task,
such as staring at a certain color of a certain mark or moving
a finger for a period of time. As a method of acquiring brain
signals with the high spatial and temporal resolution, resting-
state fMRI (rs-fMRI) requires subjects in a state of complete
relaxation without accepting any specified or strenuous tasks. The
acquisition method is simple and fast and is suitable for ASD
patients, so it is widely used in ASD classification. As with most
classification studies of neurological disorders, the data used in
this paper were resting-state fMRI. Due to the lack of subtype data
of ASD in the current public datasets, ASD classification studies
are mainly aimed at dichotomizing ASD and typical controls
(TC). We also aim to distinguish ASD and TC.

In recent years, with the advancements in computer
technology and machine learning, artificial intelligence has
been broadly applied in different industrial fields. Scholars are
committed to using machine learning to process and analyze
medical data. The processing based on medical data has received
more and more attention from researchers. Brain neuroimaging
has also gradually provided a new way for the classification
research of brain neurological diseases. The study of fMRI-
based ASD classification can be divided into two directions
in terms of model composition: traditional machine learning
and deep learning.

Scholars from various countries have proposed different
ASD classification and identification methods with traditional
machine learning. The main steps include feature extraction
and classification. In 2015, Plitt et al. (2015) used three
groups of regions of interest to generate three independent
fMRI time-course correlation matrices for subjects. Then, the
generated feature matrix is used for classification by combining
linear kernel-based support vector machine (SVM), and the
classification accuracy was 73.89% in 178 subjects. In 2020, Wang
et al. (2020) put forward a multi-site adaption framework via low-
rank representation decomposition to address the differences
between multiple sites. The key idea is to establish a common low-
rank representation for data from multiple sites. One site can be
treated as the target domain and the rest as the source domain.
So, each site can be mapped into a common space by using the
low-rank representation. It can reduce the distribution difference
of data at different sites by using the data of the target domain
to linearly represent the data of the source domain. Finally, the
proposed algorithm used a linear kernel-based SVM classifier for
ASD classification, and its classification accuracy is 71.88% in 468
subjects. In 2020, Zhao et al. (2020) extracted the time-invariant
features in the low-order or high-order dynamic functional
connectivity network of fMRI data by using central moment.
By integrating the traditional functional connectivity network,

the low-order dynamic functional connectivity network and
features were extracted from the high-order dynamic functional
connectivity network, and a linear kernel-based SVM classifier
was used to obtain up to 83.00% accuracy in 45 ASD patients and
47 TCs. In the same year, Karampasi et al. (2020) used the time
series extracted by the CC200 atlas, demographic information,
texture and divergence features of the BOLD signal as manually
extracted features. Then, five feature selection algorithms such
as recursive feature elimination with correlation bias reduction,
local learning, infinite feature selection, minimum redundancy
maximum correlation and Laplace score were used for feature
selection. Finally, SVM based on linear kernel and Gaussian
kernel, K-nearest neighbor classifier, linear discriminant analysis
and random forest were used for ASD classification. Among
them, the linear kernel-based SVM classifier achieved the
highest classification accuracy of 72.5% among 871 subjects. Sun
et al. (2021) first investigated the statistical differences among
six resting-state networks. Then, they analyzed subjects with
independent component analysis and applied an image-based
meta-analysis to explore the consistency of spatial patterns across
different sites. Finally, using these patterns as features, the results
were predicted by an SVM classifier based on the Gaussian
radial basis sum function. The six resting-state networks achieved
classification accuracies of 66.10, 53.20, 59.70, 50.00, 75.80, and
88.70% in 295 subjects, respectively.

The process of feature selection in traditional machine
learning algorithms is often accompanied by a certain degree of
subjectivity. With the rapid progress of computer technology,
classification algorithms based on deep learning have gained
popularity. Deep learning-based methods can learn optimal
classification strategies directly from raw data by using
hierarchies of varying complexity. Compared with traditional
machine learning methods, it has stronger classification and
recognition capabilities. In 2018, Heinsfeld et al. (2018) used the
CC200 functional atlas to segment the brain into 200 regions of
interest (ROI) and calculated the Pearson correlation coefficient
between each ROI to generate a functional connectivity matrix.
Then, by removing the upper triangular and diagonal parts of the
functional connectivity matrix, the remaining parts were spread
into a one-dimensional vector to be used as classification features.
Finally, two stacked denoising self-encode network with Softmax
activation function was used for ASD classification, which
obtained an accuracy of 70% in 1,035 subjects. In 2018, Xiao et al.
(2018) divided the dataset of each subject into 30 independent
components. Then, 20 key components were selected based on
the maximum energy criterion for all bands. The array of 84 key
features for all subjects was reshaped into a 3,400∗84-dimensional
key feature matrix. After performing normalization, the feature
matrix was fed into a stacked autoencoder and the subjects
were classified by using a Softmax classifier, which obtained an
average classification accuracy of 87.21% in 84 subjects. In 2019,
Rathore et al. (2019) obtained a classification accuracy of 69.2%
in 1,035 subjects by using a simple 3-layer neural network with
functional correlation and its topological features of EEG signals.
In 2020, Thomas et al. (2020) trained a full 3D CNN containing
only the average pooling layer and two convolutional layers,
and the classification accuracy achieved 66% on 1,162 subjects.
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Niu et al. (2020) introduced a multichannel deep attention neural
network for ASD classification, whose classification accuracy
achieved 73.2% in 809 subjects. Li et al. (2020b) put forward
an ASD classification algorithm on the basis of interpretable
graph neural networks. In this algorithm, each graph convolution
block contains a nodal convolution layer and a nodal pooling
layer. This algorithm segmented brain images into 84 ROIs by
using Desikan-Killiany mapping and constructed a functional
connectivity matrix by using Pearson correlation coefficients. The
functional connectivity matrix was fed into the proposed graph
neural network for ASD classification, which obtained 79.7%
classification accuracy in 118 subjects.

In 2019, Khosla et al. (2019) extracted ROI time series features
by different atlases and further proposed an integrated learning
strategy based on 3D CNN. The new network used the full-
resolution 3D spatial structure of rs-fMRI data to fit a non-linear
prediction model and obtained a classification result of 72.8%.
Li et al. (2020a) presented an ASD classification algorithm by
combining attention, long and short-term memory recurrent
neural networks and self-encoder networks. This algorithm
utilized functional connectivity as a feature and achieved 71.3%
inter-site classification accuracy.

Functional magnetic resonance imaging images are an
arrangement of a series of three-dimensional images obtained in
a time series with a large number of data voxels. Most current
methods used atlases to segment the brain into multiple regions
of interest and construct a functional connectivity matrix as
features. Then feature extraction methods were used to select
some of the optimal features to input into a classifier for
ASD classification. These algorithms did not fully exploit the
spatio-temporal information of the source images. And they
destroyed the temporal and spatial correlation of the original
data. Therefore, we design an ASD classification algorithm based
on 3D CNN and GRU. The representative high-level features
of 3D images at each time point are gradually extracted by 3D
convolutional neural networks. Then, the above spatial features
at each time point are fed into GRU in series to analyze their
temporal correlation information. Finally, a fully connected layer
with a Sigmoid activation function is used to predict the category.

The main contributions of this paper are: (1) We combine the
strengths of 3D CNN and GRU to construct a CNNG network.
The CNNG network performs well in extracting the spatio-
temporal features of fMRI data and hence obtains better ASD
classification performance. (2) CNNG adopts intercepting time
dimension, scaling brain image size as well as regularization and
Dropout to prevent the overfitting phenomenon during model
training. (3) We select the data of 871 subjects in the commonly
used ABIDE database as the experimental data so that the trained
model has better generalization ability for the diagnosis of ASD.

THE PROPOSED ALGORITHM

Some studies have been conducted for ASD classification by
using CNN (Li et al., 2018; El-Gazzar et al., 2019). Because
of the complexity and high dimensionality of fMRI images,
only a few studies are using intact brain images directly as

FIGURE 1 | The structure of the CNNG model.

input data. Researchers have devoted themselves to reducing the
input dimensionality by downscaling four-dimensional images
into two-dimensional images or segmenting brain regions to
construct functional connectivity matrices. And then the CNN
networks or brain functional networks are constructed for
classification. However, the above methods severely neglect the
spatio-temporal information in fMRI data. Because the original
fMRI data has high spatial and temporal dimensions, it will
cause a serious overfitting phenomenon when the original fMRI
data is the direct input of the network. Therefore, in this paper,
the fMRI data are spatially reduced and intercepted with fixed
temporal dimensions. For better results, we construct a deep
learning classification model based on spatio-temporal features
by combining it with a 3D convolutional neural network and
gated recurrent unit, called the CNNG model. The CNNG model
uses multiple 3D CNN networks with shared weights to extract
the spatial features of brain images at each time point, and then
uses the GRU to resolve the temporal information. The structure
of the CNNG model is presented in Figure 1.

Figure 1 illustrates that the 3D spatial structure of fMRI at
each time point is sent to 3D CNN for spatial feature extraction.
The extracted spatial features are separately flattened and sent
to GRU for temporal feature extraction. The last layer is the
fully connected layers (FC) with the Sigmoid activation function,
which predicted classification results. Each node of the layer
in FC is attached to all nodes of the previous layer, and the
features extracted in the previous layer are combined to output
the prediction probability. Each part is described in detail below.
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Three-Dimensional Convolutional Neural
Network
A convolutional neural network is a deep feed-forward neural
network with local connectivity features and weight sharing. 3D
convolution extends 2D convolution to 3D and extracts features
of 3D data by 3D kernel convolution. Assuming that element
kx0y0z0

ij is the value at the position (x0, y0, z0) of the j-th feature
map of the i-th layer, then the three-dimensional convolution can
be expressed as:

kx0y0z0
ij =∂

(
bij+

∑
c

Pi−1∑
p=0

Qi−1∑
q=0

Ri−1∑
r=0

wpqr
ijc k(x0+p)(y0+q)(z0+r)

(i−1)c

)
(1)

where ∂ is the activation function. Pi, Qi, and Ri are the
dimensional magnitudes of the three directions, respectively. wpqr

ijc
is the value of the convolution kernel connecting the c-th feature
map of the i− 1-th layer with the j-th feature map of the i-th layer
at the position (p, q, r). bij is bias.

Medical images contain two-dimensional, three-dimensional
and four-dimensional images, etc. 3D convolution can extract
spatial features of 3D images, which is increasingly used in
medical image analysis. The fMRI contains data from 3D brain
space images, so the 3D CNN is suitable for the 3D spatial feature
extraction of fMRI. In CNN, large convolutional kernels can be
replaced with repeated small convolutional kernels. The different
sizes of the convolutional kernels bring the different sizes of the
perceptual field. So, it is often used to replace one layer of large
convolutional kernels with multiple layers of small convolutional
kernels to reduce the number of parameters and computation
while maintaining the same perceptual field. For example, it is
very common to replace one layer of 5× 5 convolutional kernels
with two layers of 3× 3 kernels, and to replace one layer of 7× 7
kernels with three layers of 3× 3 kernels.

The structure of the 3D CNN model used in this paper is
presented in Figure 2. The input size of 3D CNN is 28× 28× 28,
and it contains three convolutional layers. Each convolutional
layer has 8 convolution kernels with the size of 3× 3× 3, and
they are all connected with ReLU layers. The fourth layer is the
maximum pooling layer with a step size of 2 and a kernel size of
2× 2× 2. The main purpose of the maximum pooling layer is to
reduce the image size, prevent overfitting and reduce the running
time. To extract more advanced features, three sets of repeated
convolutional and pooling layers are added after the pooling
layer. And the size of each convolutional kernel is 3× 3× 3. The
number of filters in each convolutional kernel is 16, 32, and 64.

The size of the pooling kernel after each convolutional layer is
2× 2× 2.

Gated Circulation Unit
After extracting the fMRI spatial features by using 3D CNN, we
use GRU to process the spatial features arranged along the time
dimension after flattening. GRU is an improved version of long
short-term memory (LSTM) presented by Cho et al. (2014), in
which many ideas are borrowed from LSTM. LSTM has three
inputs and three outputs, while the GRU has two inputs and two
outputs (Xin et al., 2021; Liu S. et al., 2022). GRU can accelerate
the training and enhance the network performance because of
fewer parameters. The structure of GRU neurons is shown in
Figure 3.

Let be the input of the GRU, and ct is the output of the GRU. As
can be seen from Figure 3, the expression of GRU is also slightly
different from that of LSTM, with the following equation:

zt = σ
(
Wz ·

[
ht−1, xt

])
(2)

rt = σ
(
Wr ·

[
ht−1, xt

])
(3)

h̃t = tanh
(
W ·

[
rt ∗ ht−1, xt

])
(4)

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t (5)

where zt denotes update gate. rt denotes reset gate. h̃t denotes
hidden unit. ht is the current moment output. Wz, Wr, and W
denote weights. tanh is the activation function.

In terms of operation, the GRU and LSTM work in a similar
way. But the GRU unit uses a hidden state to combine the
forgetting and input gates into a single update gate. It controls
both how much information needs to be forgotten from the
hidden layer of the previous moment and how much memory
information from the hidden layer of the current moment is
added. There is also a new “gate” in the GRU called the reset gate,
which controls whether the computation of h̃t depends on state
ht−1 at the previous moment. When, rt = 0, h̃t is only related
to the current input xt and has nothing to do with the history
state. When, rt = 1, h̃t is related to xt and ht−1. The advantage
of GRU over LSTM is that there is less internal “gating” and
fewer parameters than LSTM. GRU can achieve equivalent levels
of performance, and it is easier to train, which can greatly increase
training efficiency. Therefore, we use GRU for feature extraction
in the time dimension to obtain better ASD classification results.
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FIGURE 2 | The structure of single-frame convolutional neural network (CNN).
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FIGURE 3 | The structure of gate recurrent unit (GRU).

Model Training
The proposed model extracts the spatial features before the
temporal analysis. The specific parameter settings of the single-
frame CNN model are given in Table 1. We first use two repeated
three-dimensional convolutions with the size of 3× 3× 3 to
extract the low-level features. Then, we use repeated pooling and
convolution to extract the high-level features. And the repeated
two-layer convolution is replaced by a single convolutional layer
with a kernel size of 3× 3× 3, which is reduce the number
of parameters. The extracted spatial features are flattened and
input into a GRU with 32 neurons. Finally, the predicted
values are output by a fully connected layer with a Sigmoid
activation function.

The adaptive moment estimation (Adam) optimization
algorithm is used for model optimization in the network training.
The loss function is the cross-entropy loss function. The input
batch size is set to 1, and the learning rate is 0.00001. Dropout
means that in the training process of the network, neural network
units are randomly discarded from the network according to a
certain probability. To avoid overfitting of the proposed model,
the values of dropout and recurrent_dropout of the parameters
in GRU are set to 0.3. The two-parameter regularization is carried
out in the Dense layer with the parameter 0.00001.

DATA PREPROCESSING

The rs-fMRI data used in this paper are from the international
publicly available Autism Brain Imaging Data Sharing Project

TABLE 1 | Structure of single-frame 3D convolutional neural
network (CNN) model.

Layer Type Output size Filter Core size

1 Conv3D 28× 28× 28 8 3× 3× 3

2 Conv3D 28× 28× 28 8 3× 3× 3

3 Conv3D 28× 28× 28 8 3× 3× 3

4 MaxPooling3D 14× 14× 14 8 2× 2× 2

5 Conv3D 14× 14× 14 16 3× 3× 3

6 MaxPooling3D 7× 7× 7 16 2× 2× 2

7 Conv3D 7× 7× 7 32 3× 3× 3

8 MaxPooling3D 4× 4× 4 32 2× 2× 2

9 Conv3D 4× 4× 4 64 3× 3× 3

10 MaxPooling3D 2× 2× 2 64 2× 2× 2

dataset. The dataset brings together 1,112 subjects (539 ASD
patients and 573 TCs) from 17 sites around worldwide,
including: California Institute of Technology (Caltech), Carnegie
Mellon University (CMU), Kennedy Krieger Institute (KKI),
Ludwig Maximilians University Munich (MaxMun), New York
University Langone Medical Center (NYU), Olin Institute
of Living at Hartford Hospital (Olin), Oregon Health and
Oregon Health and Science University (OHSU), San Diego
State University (SDSU), Social Brain Lab (SBL), Stanford
University (Stanford), Trinity Centre for Health Sciences
(Trinity), University of California, Los Angeles (UCLA),
University of Leuven (Leuven), University of Michigan (UM),
University of Pittsburgh School of Medicine (Pitt), University
of Utah School of Medicine (USM), and Yale Child Study
Center (Yale). The corresponding sites and the sizes of
samples are shown in Table 2, and all the data can be
downloaded from the official website from ABIDE I (2022).
The database includes rs-fMRI, structural MRI, and extensive
phenotypic information for each subject. In this paper, the
subjects with missing partial information were excluded.
A final dataset of 871 subjects, including 403 ASD patients
and 468 TCs, was obtained by removing the samples with
incomplete brain coverage, high motion peaks, ghosting and
other scanner artifacts.

During fMRI acquisition, a lot of noise is generated, so
preprocessing is required before use. The preprocessing method
used in this paper is the configurable pipeline for the analysis
of connectomes (CPAC), and the specific processing steps are as
follows:

(1) Time slice correction. There is a time difference in the
acquisition of fMRI images. To ensure the accuracy of the images,
3dTshift of functional neuroimaging analysis was used to correct
the time slices.

(2) Head movement correction. When collecting data, it is
impossible to guarantee that the subject does not move at all.

TABLE 2 | Names of the 17 sites and their sample sizes.

Serial number Sites ASD TC Total subjects

1 Caltech 19 19 38

2 CMU 14 13 27

3 KKI 22 33 55

4 Leuven 29 35 64

5 MaxMun 24 33 57

6 NYU 79 105 184

7 OHSU 13 15 28

8 Olin 20 16 36

9 Pitt 30 27 57

10 SBL 15 15 30

11 SDSU 14 22 36

12 Stanford 20 20 40

13 Trinity 24 25 49

14 UCLA 62 47 109

15 UM 68 77 145

16 USM 58 43 101

17 Yale 28 28 56
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Some slight movements can lead to huge data differences, so head
movement correction is needed.

(3) Alignment. The skewed functional or structural image is
adjusted to the vicinity of the spatial standard position, so that
the subsequent processing algorithm can quickly find the optimal
value and ensure a higher quality alignment.

(4) Numerical normalization. The 4D fMRI images were
globally normalized with the global mean value equal to 1,000.

(5) Interference signal regression. The Friston 24-parameter
model regression was used to eliminate the head movement effect
of the functional image after alignment. To reduce the effect of
respiration and heartbeat, the regression was done. Regression is
also used to remove low-frequency drift generated by the long
machine operation (Wang, 2020).

(6) Filtering. To reduce the influence of noise such as
breathing and heartbeat and remove the low-frequency drift and
the high-frequency noise, the low-frequency signal in the range
of 0.01–0.1 Hz is selected. This frequency band can reflect the
individual’s spontaneous neural activity and has certain biological
significance (Lu et al., 2007).

(7) Spatial normalization. In general, the size of the human
brain varies. In order to unify the standard, the image space is
normalized to the template space of the Montreal Neurological
Institute with a resolution of 3× 3× 3 mm3.

In the ABIDE dataset, the dimensions of the 3D spatial
brain images were consistent for each site. While the temporal
dimensions varied, the OHSU site had the least temporal
dimension of 78, and the CMU site had the highest temporal
dimension of 316. Since the model requires a fixed input
size, the fMRI data is preprocessed before being fed into the
network. Specifically, the fMRI of the first ten time points was
removed in the time dimension, and 32 consecutive frames of
3D brain images were taken from the eleventh frame. Spatially,
the spatial dimension of each image (61, 73, 61) is downsampled
to (28, 28, 28). After the processing of temporal and spatial
dimensions, the size of the obtained fMRI data is (28, 28, 28,
32). This ensures the same model input and preserves the spatio-
temporal characteristics of fMRI. The selection of the time input
size is discussed in detail in the experimental results analysis
section.

EXPERIMENTAL RESULTS AND
ANALYSIS

The experiments in this paper are based on the Tensenflow 1.0
platform. The environment is the Ubuntu18.4 operating system.
The hardware is a server with 32G memory, Intel(R) Xeon(R)
CPU E5-2667 processor and NVIDIA Tesla K40c.

As we all know, in the field of deep learning, it is very
important to divide the training set and test set reasonably. For
the traditional machine learning stage (the size of data set is
less than 10,000), the general allocation ratio is that the ratio of
training set to test set is 7:3 or 8:2. Try to keep the distribution
of training set and test set consistent. For verifying the validity of
CNNG and retaining as much training data as possible, the data
is categorized into a training set and a test set in a ratio of 8:2.

In binary classification studies, Accuracy, Sensitivity and
Specificity are commonly used indicators, which can be expressed
as:

Accuracy =
TP + TN

TP + FP + TN + FN
(6)

Sensitivity =
TP

TP + FN
(7)

Specificity =
TN

TN + FP
(8)

In this experiment, the label for ASD patients is “1,” and
the label for TC is “0.” The above equation True Positive (TP)
indicates the number of samples with label “1” predicted to the
number of samples with label “1.” False Positive (FP) indicates
the number of samples that predict a label of “0” to a label
of n“1” True Negative (TN) indicates the number of samples
with the label “0” predicted to the number of samples with the
label “0.” False Negative (FN) indicates the number of samples
with the label “1” predicted as the label “0.” TP+FP+TN+FN
is the total number of samples. TP+FN is the total number
of samples with the true label “1”. TP+FP is the total number
of samples with the prediction label “1,” including both correct
and incorrect predictions. FP+TN represents the total number
of samples with the true label “0.” TN+FN represents the total
number of samples with the prediction label “0,” including both
correct and incorrect predictions.

It can be seen from the above description that the sensitivity
reflects the ability of ASD patients to be correctly distinguished.
The higher the sensitivity means the higher the probability
that a patient with ASD will be correctly diagnosed. The
specificity reflects the effect of TC subjects being correctly
classified. The accuracy reflects the overall classification ability.
The higher the accuracy, the greater the value for practical
medical diagnosis applications.

Ablation Experiments
Effects of Different Convolution Kernel Sizes
For the purpose of obtaining the optimal model, we select the
number of convolution layers and the size of the convolution
kernel by comparison experiments. First, the number of
convolution layers and the kernel size before the first pooling
layer are determined. The experiments were conducted by using
convolution kernels with a size of 5× 5× 5 and 7× 7× 7 as well
as replacing them with repeated small convolution kernels. The
result is listed in Table 3. From Table 3, it is clear that the repeated
small convolutional kernels have better classification results than
the corresponding large convolutional kernels. For example,
the superposition of three convolution kernels with a size of
3× 3× 3 achieves a maximum accuracy of 72.46%. It is about
2% higher than the accuracy of the model with the corresponding
convolutional kernel size of 7× 7× 7. Similarly, when two
convolution kernels with a size of 3× 3× 3 are superimposed,
the accuracy rate is 70.04%. While the classification accuracy of
the model with a convolution kernel size of 5× 5× 5 is only
67.63%. The above results show that the superposition of small
convolutional kernels has the advantages of a small number of
parameters and the low computational complexity. It is clear
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that the classification effect of only one convolution layer with
a convolution kernel size of 3× 3× 3 is not ideal. It may be
due to the fact that the receptive field is too small to effectively
extract the features.

Comparison of Long Short-Term Memory Module and
Gate Recurrent Unit Module
Since LSTM and GRU are the variations of RNN, both are widely
used in temporal information extraction. The classification
results based on temporal feature extraction selection by LSTM
and GRU, respectively, are shown in Table 4. When GRU is
replaced by LSTM in the proposed method, the classification
accuracy is 68.60%, the sensitivity is 56.60%, and the specificity
is 81.19%. The accuracy is significantly lower compared to GRU,
so we use GRU for temporal feature extraction.

Effects of Different Time Dimensions
The selection of the number of fMRI time points has an
important influence on the model training. In the time
dimension, 8, 16, 32, and 48 frames of fMRI images are
used for experiments in this paper. Table 5 presents the
classification effects.

According to Table 5, the classification accuracy improves
when the temporal dimension increases. However, it starts to
decrease when the temporal dimension is 48. Specifically, when

TABLE 3 | Classification performance of different convolutional kernel sizes.

Kernel sizes (number
of layers)

Accuracy Sensitivity Specificity

7 x 7x 7 (1) 70.53% 64.15% 77.23%

5 x 5 x 5 (1) 67.63% 62.37% 72.64%

3 x 3 x 3 (3) 72.46% 65.35% 79.25%

3 x 3 x 3 (2) 70.04% 65.09% 75.25%

3 x 3 x 3 (1) 62.32% 59.80% 66.04%

The bold values in this table represent the optimal values of accuracy, specificity
and sensitivity.

TABLE 4 | Performance of different temporal feature extraction modules.

Time feature
extraction module

Accuracy Sensitivity Specificity

LSTM 68.60% 56.60% 81.19%

GRU 72.46% 65.35% 79.25%

The bold values in this table represent the optimal values of accuracy, specificity
and sensitivity.

TABLE 5 | Classification performance of different time interceptions.

Time dimension Accuracy Sensitivity Specificity

8 63.74% 59.33% 67.32%

16 69.08% 63.46% 72.12%

32 72.46% 65.35% 79.25%

48 69.57% 62.37% 76.42%

The bold values in this table represent the optimal values of accuracy, specificity
and sensitivity.

the time dimension is taken as eight, the classification accuracy
is low. This may be mainly due to the short time resulting in
the short feature vector extracted by the tandem CNN, which
cannot extract the temporal features effectively. And when the
time dimension is 48, the number of parameters and computation
of model training increases, which may easily lead to the
phenomenon of overfitting. So, in the proposed algorithm, we
finally choose the data of 32-time points, which can archive the
best classification effect.

Effects of Different Numbers of Gate Recurrent Units
The selection of GRU has experimented in the previous section,
and the number of GRU units also determines the performance
of CNNG. So, we set the number of GRU units to 16, 32
and 48 for experimental analysis. From Table 6, the accuracy,
sensitivity and specificity are lower when the number of GRU
units is too small or too lager. This is because when the number
of GRU units is less than 32, the proposed model is limited
by the number of units and is not sufficient to fully express
the information contained in the temporal dimension of the
fMRI data. And when the number of units increases to 48, the
classification performance shows different degrees of degradation
due to overfitting because the parameters of the units are too
redundant. Therefore, the model performance is optimal when
the number of GRU units is taken as 32.

Comparison With Traditional Machine
Learning Algorithms
For verifying the validity of CNNG, we compare it with the ASD
classification algorithm by using traditional machine learning.
The comparison algorithms are: (1) ASD classification algorithm
by using graph Fourier transform (GFT) and support vector
machine proposed by Brahim and Farrugia (2020), which is
abbreviated as RBF-SVC; (2) An ASD classification algorithm
based on functional connectivity networks and recursive-
clustering elimination support vector machine proposed by
Chaitra et al. (2020), which is abbreviated as RCE-SVM; (3)
A hybrid ASD classification algorithm by combining different
brain segmentation definitions, functional connectivity matrix
construction methods and feature extraction methods proposed
by Graa and Silva (2021), which is abbreviated as HFR; (4) The
ASD classification algorithm proposed by Abraham et al. (2016)
based on CC400 brain atlas and support vector machine, which
is abbreviated as C-SVC; (5) The ASD classification algorithm on
the basis of functional connectivity and ridge regression classifier
proposed by Yang et al. (2019), which is abbreviated as FCR.

TABLE 6 | Classification performance with different numbers of gate recurrent
unit (GRU) units.

Number of GRU units Accuracy Sensitivity Specificity

16 71.50% 64.15% 77.28%

32 72.46% 65.35% 79.25%

48 71.01% 62.38% 74.26%

The bold values in this table represent the optimal values of accuracy, specificity
and sensitivity.
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The test results of the compared algorithm used in this paper
are all from the test results of the code offered by the author
in the corresponding reference. The test set used in this paper
comes from 17 different sites, so the final metrics obtained
are the average accuracy, average sensitivity and specificity.
Table 7 presents the performance of CNNG and the comparison
algorithm on the test set.

As presented in Table 7, the accuracy, sensitivity and
specificity of the CNNG model in 871 subjects reached
72.46, 71.35, and 79.25%, respectively. The accuracy is
obviously higher than other traditional machine learning
algorithms. When classifying ASD, many traditional machine
learning algorithms need to divide the brain into multiple
regions of interest, which is treated as a node for subsequent
feature selection or calculation. This process obviously loses
fMRI spatial information of the data. After the original
image is preprocessed, the CNNG model directly extracts
and classifies features through the model, which fully
exploits the spatiotemporal information of fMRI data,
thereby extracting more discriminative features and further
enhancing the classification capability of the algorithm.
In addition, the manual features extracted by the fixed
computational feature algorithm are sensitive to noise, scanning
equipment and parameters, and make a big influence on
the overall classification capability of traditional machine
learning algorithms.

TABLE 7 | Classification performance of traditional machine learning
algorithms and CNNG.

Classification Accuracy Sensitivity Specificity

RBF-SVC 66.70% 62.35% 72.35%

RCE-SVM 67.30% 64.5% 70.10%

HFR 71.10% 67.00% 75.00%

C-SVC 67.00% 53.20% 78.30%

FCR 71.98% 70.89% 71.53%

CNNG 72.46% 71.35% 79.25%

The bold values in this table represent the optimal values of accuracy, specificity
and sensitivity.

TABLE 8 | Classification performance of deep learning algorithms and CNNG.

Classification Accuracy Sensitivity Specificity

CNN-MLP 70.22% 62.35% 72.35%

SVC 71.10% 67.00% 75.00%

DiagNet 70.30% 68.03% 72.20%

HI-GCN 67.20% 65.90% 68.40%

GAT 68.02% 74.06% 62.26%

CNNG 72.46% 74.35% 79.25%

The bold values in this table represent the optimal values of accuracy, specificity
and sensitivity.

Comparison With Deep Learning
Algorithms
We also carry out a comparison between CNNG and the deep
learning-based ASD classification algorithm. The comparison
algorithms are: (1) The ASD classification algorithm based
on convolutional neural network and multilayer perceptron
presented by Sherkatghanad et al. (2020), which is abbreviated
as CNN-MLP; (2) The ASD classification algorithm based
on functional connection network, extreme random tree and
support vector machine proposed by Liu Y. et al. (2020), which
is abbreviated as SVC; (3) The ASD classification algorithm
based on joint representation learning deep multimodal model
proposed by Eslami et al. (2019), which is abbreviated as DiagNet;
(4) The ASD classification algorithm based on the hierarchical
graph convolutional neural network framework introduced by
Hao et al. (2020), which is abbreviated as HI-GCN; (5) The
ASD classification algorithm based on graph attention network
proposed by Hu et al. (2021), which is abbreviated as GAT.
The test results of the comparison algorithm used in this paper
are all from the test results of the code offered by the author
in the corresponding reference. The test set used in this paper
comes from 17 different sites, so the final metrics obtained are
the average accuracy, average sensitivity and specificity. Table 8
presents the results of CNNG and the comparison algorithm
on the test set.

Table 8 shows that the proposed algorithm obtains an
accuracy of 72.46% in the experiment of 871 subjects, which is
5.26% higher than that of HI-GCN, 4.44% higher than that of
GAT, and 2.44% higher than that of CNN. It is also a certain
improvement compared to SVC and DiagNet. The proposed
algorithm also obtains a specificity of 79.25% and a sensitivity
of 74.35%. All the results reveal that the overall performance
of CNNG is superior to the other deep learning algorithms,
which suggests that directly extracting spatio-temporal features
from 4D fMRI data for classification has better results for ASD
classification than just by using 2D or 3D fMRI data or functional

FIGURE 4 | Receiver operating characteristic (ROC) curve of CNNG model.
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connectivity. For further evaluating the performance of CNNG,
the receiver operating characteristic (ROC) curve and the area
under the curve (AUC) values are plotted in Figure 4. In Figure 4,
the horizontal coordinate represents the false positive rate (FPR)
and the vertical coordinate represents the true positive rate
(TPR). The ROC curve reflects the trend of the TPR and the
FPR. The closer the area is to 1, the stronger the recognition
ability is. Among the above proposed deep learning algorithms,
the values of AUC for CNN-MLP, DiagNet, HI-GCN, and GAT
are 0.7486, 0.764, 0.745, and 0.7358, respectively. As shown in
Figure 4, the AUC value of the proposed algorithm is 0.79, which
is 5.42% higher compared to GAT. This is an improvement of
4.5% compared to HI-GCN. Compared to CNN-MLP, the ACU
of CNNG is improved by 4.14%. There is also a magnitude
improvement compared to DiagNet. These data indicate that
CNNG performs well for classification.

CONCLUSION

In this paper, we put forward a deep learning model—CNNG,
which can fully exploit the spatio-temporal information in
fMRI data to avoid excessive dimensionality reduction and
missing information caused by using the manual features for
classification. CNNG is mainly composed of 3D CNN and GRU.
In CNNG, spatial feature extraction is extracted by using 3D
CNN, and then GRU is used to analyze temporal information.
The validity of the CNNG model is proved by comparing it
with the algorithms based on traditional machine learning and
the algorithms based on deep learning. The experimental results
indicate that CNNG performs better than other algorithms for
ASD classification. CNNG can extract fMRI data features from
the perspective of spatio-temporal convolution, which has some
clinical value for the early diagnosis of ASD. At present, the
sensitivity of the proposed algorithm does not obtain a large
improvement, and next, we will optimize the algorithm for better
ASD classification.
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