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Abstract

Certain plant genotypes can achieve optimal growth under appropriate environmental condi-
tions. Under high planting density conditions, plants undergo competition for uptake and uti-
lization of light and nutrients. However, the relationship between whole-genome expression
patterns and the planting density in perennial woody plants remains unknown. In this study,
whole-genome RNA sequencing of poplar (Populus x euramericana) was carried out at
three different sampling heights to determine gene expression patterns under high (HD) and
low (LD) planting densities. As a result, 4,004 differentially expressed genes (DEGs) were
detected between HD and LD, of which 2,300, 701, and 1,003 were detected at the three
positions, upper, middle and bottom, respectively. Function annotation results further
revealed that a large number of the DEGs were involved in distinct biological functions.
There were significant changes in the expression of metabolism-related and stimulus-
related genes in response to planting density. There were 37 DEGs that were found at all
three positions and were subsequently screened. Several DEGs related to plant light
responses and photosynthesis were observed at different positions. Meanwhile, numbers of
genes related to auxin/indole-3-acetic acid, and carbon and nitrogen metabolism were also
revealed, displaying overall trends of upregulation under HD. These findings provide a basis
for identifying candidate genes related to planting density and could increase our molecular
understanding of the effect of planting density on gene expression.

Introduction

Tree growth is closely related to environmental conditions. For example, planting density
affects population structure and yield. An optimal planting density allows effective utilization
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of light energy and soil nutrients, ensuring normal development of individual plants and coor-
dinated development of the entire population. In line with this, planting density has been
shown to improve grain yield [1,2], via its effect on plant size, morphology, biomass, produc-
tivity, and the extent of lodging [3,4]. The density of planting has also been found to be impor-
tant in acquiring a high yield in modern corn production [5,6]. Although planting density has
been shown to be important for the growth of crops, vegetables, and medicinal plants [7], little
is known about the molecular-level effect of planting density on plant growth.

Planting density stress elicits a competitive response for light between neighboring plants
[8]. Light, the driving force of photosynthesis, also affects photosynthetic function by regulat-
ing leaf development and morphological structure [9]. Light is a key environmental factor and
an important consideration for agroforestry production [10,11]. Under high planting density,
plants increase light capture by expanding their canopy to elevate yield [12]. Studies have also
shown that with increasing density, light transmittance to each layer decreases significantly,
ultimately affecting yield [13]. Nevertheless, the regulatory mechanism involved in the gene
network response to light in woody trees under different planting densities remains largely
unknown.

Poplar is the preferred species used in bioenergy plantations in temperate climates [14],
mainly due to its high growth rate, timber yield, coppicing ability and adaptability to differing
environmental conditions [15-17]. Studies on the response of trees to initial spacing (planting
density) have previously focused on growth traits such as height, diameter at breast height
(DBH), canopy structure, stem volume, and above-ground biomass production [18,19]. How-
ever, to fully maximize productivity, it is important to understand the molecular mechanisms
and environmental factors that affect timber yield. RNA-sequencing (RNA-Seq) of Arabidopsis
thaliana grown under high and low planting densities revealed that the expression of glutare-
doxin genes was influenced by the planting density the most [7]. Moreover, several genes asso-
ciated with yield heterosis were found to exhibit differences in transcript accumulation in
maize grown under high and low planting densities [20]. We therefore utilized RNA-Seq to
detect whole-genome expression patterns in poplar under different planting densities with the
aim of identifying density-regulated genes.

Materials and methods
Plant materials and sampling collection

Nine-year-old plants of Populus x euramericana ‘BF3’ were used as experimental materials.
Selection of the ‘BF3’ line was based on its optimal performance as well as its certification as a
new improved forest variety. The DBH growth of nine-year-old poplar trees was measured at
the end of growing season with a tree breast diameter ruler. A randomized block design was
used to establish the trial with three replicates. Two planting densities were set up in the trial,
high (HD) and low (LD). The HD block contained 18 trees (6 x 3 rows) in each 2 x 5 m plot.
The LD block contained 15 trees (5 x 3 rows) in each 4 x 8 m plot. Sampling height was
divided into three equally-spaced vertical positions (bottom-B, middle-M, and upper-U). Leaf
tissues were sampled (three positions per tree, one tree per block) from four directions (two
leaves in each direction, east, south, west and north, respectively) in the innermost tree of the
block during the most rapid growth stage. The samples were frozen in dry ice and then stored
at -80°C in a freezer.

RNA extraction, cDNA library construction and RNA sequencing

Total RNA was extracted using TRIzol Reagent (Invitrogen, USA) according to the manufac-
turer’s protocol. RNA integrity and concentration were determined using an Agilent 2100
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RNA Nano 6000 Assay Kit (Agilent Technologies, CA, USA). Sequencing libraries were gener-
ated using a NEBNext Ultra RNA Library Prep Kit for Illumina (#£7530L, NEB, USA) accord-
ing to the manufacturer’s instructions. The cDNA libraries were pooled and sequenced using
an Illumina NovaSeq 6000 platform (Illumina, USA) at Annoroad Gene Technology Co., Ltd
(Beijing, China).

Bioinformatic analysis

Fastq files were acquired using an NGS QC Toolkit [21]. Filtered high-quality clean reads were
aligned to the reference genome of Populus deltoides Marsh (JGI 2.1) using HISAT?2 software
[22]. Analysis of gene expression levels was carried out by HTSeq (0.6.0) using the fragments
per kilobase of transcript per million mapped fragments (FPKM) method [23]. Differentially
expressed genes (DEGs) were screened based on a threshold of an absolute fold change of
>1.5 and a P value of <0.05 [24]. Clean reads were compared against the National Center for
Biotechnology Information (NCBI) non-redundant (NR) protein sequence database and
nucleotide (NT) sequence database using Blast X. The reads were aligned using the public uni-
versal protein (UniProt) and protein family (Pfam) databases. Gene Ontology (GO) enrich-
ment analysis of DEGs was performed using the GOseq R package [25]. Corrected P-values
less than 0.05 were considered as significantly enriched GO terms. KOBAS software was
implemented to test the statistical enrichment of DEGs in the Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways [26].

Quantitative real-time PCR analysis

Quantitative real-time (QRT)-PCR analysis was performed to verify the accuracy of the tran-
scriptome profiles. Analysis of gene expression levels of 10 randomly selected genes was car-
ried out. qRT-PCR was performed using a LightCycler 480 Instrument II system (Roche,
Switzerland) and analyzed with SYBR Premix Ex Taq II (Takara) using the following parame-
ters: 95°C for 30s, 40 cycles of 95°C for 5s and 60°C for 30s, followed by 95°C for 5s, 60°C for 1
min, and 95°C with continuous acquisition mode at 5 per°C, with a final extension at 50°C for
30s. Three replicates were performed for each sample. Relative expression levels were calcu-
lated using the 2744C method [27]. B-actin was used as an internal reference (specific primers
5’ -CATCCAGGCTGTCCTTTCCC-3"; 5" ~AACGAAGGATGGCGTGTGG-3"). The PCR
primers for genes tested from the RNA-Seq data are listed in S1 Table.

Results
Measurement of plant DBH growth

The DBH growth of nine-year-old poplar trees grown under two planting densities was highly
significantly different (p <0.01); the DBH of trees grown under LD was significantly higher
than those grown under HD (Fig 1). For poplar, trees grown under HD are already in a canopy
closure state at the age of nine, while under LD, trees have not yet reached canopy closure.
Canopy closure can dramatically changes the growth conditions and finally affects the trees’
growth and development.

Overview of RNA sequencing

To identify the gene expression patterns in poplar under HD and LD, 18 leaf samples were
obtained from two planting densities at three positions and subjected to RNA-seq analysis.
The average number of clean reads generated from triplicate libraries was 45,157,000 (~13.5
Gb) and 44,532,724 (~13.4 Gb) under HD and LD, respectively. The overall average clean read
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Fig 1. Analysis of Diameter at Breast Height (DBH) growth of poplar under different planting densities. Nine-
year-old poplar trees were grown under high (HD) and low (LD) planting density and their DBH was measured.**
indicates significant difference at a level of 0.01 by one-way ANOVA using a Duncan ¢ test.

https://doi.org/10.1371/journal.pone.0217066.9001

rate was 96%, with an approximate quality score of 93% clean Q30 bases (S2 Table). A total of
87% of the clean reads could be mapped to the reference genome of P. deltoids, with the average
ratio of uniquely mapped reads exceeding 81%, and the multi-mapped rate at less than 6% (53
Table). The distribution region of the mapped reads showed that most reads were mapped in
the exon region (~85%), followed by intergenic (~10%) and intron regions (~5%) (S4 Table).

Analysis of the expressed genes

For quantification of gene expression levels in the RNA-Seq data, the FPKM method was used
to account for the effect of sequencing depth and gene length on the fragment counts. The
gene numbers at three different expression values (FPKM levels) were counted (S5 Table). The
results revealed that approximately 90% of genes had a FPKM level >0, while ~23% had a low
expression value of 0 <FPKM <1. Furthermore, ~64% had a moderate expression value of 1
<FPKM <100, while only ~3% had a high expression value of FPKM >100.

To determine the reliability and rationality of sample selection, the correlation coefficient
of gene expression levels between samples was calculated based on the FPKM values. As a
result, significant high correlations were revealed between each pair of samples, all of which
were greater than 0.95, indicating relatively good repeatability (S1 Fig).

To further understand the expression profiles of the identified genes, a heatmap was
obtained (Fig 2). The clustering results showed that genes from the middle position in HD and
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Fig 2. Heatmap showing gene expression at three vertical positions on poplar trees under different planting
densities. Gene expression was analyzed at three positions on poplar trees, upper (U), middle (M) and bottom (B), that
were grown under two planting densities, high (HD) and low (LD). Blue indicates low expression levels and red
indicates high expression levels.

https://doi.org/10.1371/journal.pone.0217066.g002

LD clustered into a single branch, while genes from the upper and bottom positions in each
planting density gathered together.

Quantification of DEGs under different planting densities

Of all the expressed genes, 4,004 DEGs were detected by means of three different comparisons
(Fig 3A). Of these, 1,885 were upregulated and 2,119 were downregulated under HD. There
were more DEGs between HD and LD in the upper position, than in the middle and bottom
positions. To identify the DEGs between HD and LD at the three different positions, we ana-
lyzed the results of the three comparisons to obtain the DEGs specific or common to the tran-
scriptome at each position. There were 37 DEGs common to all three comparisons (Fig 3B).
Furthermore, the Venn diagram showed that 1,848 genes were specific to the comparison
between HD and LD in the upper position, while a total of 459 and 638 unique DEGs were
detected at the middle and bottom positions, respectively.

Function annotation of the DEGs

The DEGs unique to each position were annotated using GO analysis and categorized into
multiple GO terms (Fig 4). These DEGs belonged to three main categories: “biological pro-
cess”, “cellular component”, and “molecular function.” The significantly enriched GO terms
that appeared at the three vertical positions showed a divergent functional classification. We
found that DEGs classed in the “biological process” category from the upper position, were

mainly termed as “metabolic” and “biosynthetic” processes (Fig 4A), while at the middle and
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Fig 3. Gene expression profiles of differentially expressed genes (DEGs) in all comparison groups. Samples were
taken from poplar trees at three vertical positions: upper (U), middle (M) and bottom (B). The trees were grown under
high (HD) and low planting density (LD). (A) The number of DEGs between HD and LD for three different
comparisons (one for each vertical position). The red bars represent the number of upregulated DEGs under HD,
while the green bars represent the number of DEGs downregulated under HD. The vertical ordinate represents the
number of DEGs. (B) Distribution of the DEGs identified when HD is compared to LD that are common and specific
to the upper, middle, and bottom positions.

https://doi.org/10.1371/journal.pone.0217066.9003

bottom positions, the DEGs were mainly involved in the response to different substances-the
“response to” subcategories (Fig 4B and 4C). Additionally, there was visible diversity in the
“cellular component” and “molecular function” categories. When comparing the two planting
densities, 23 DEGs from the middle position were found in the “response to light stimulus”
subcategory (Fig 4B). These results indicate that the DEGs found when comparing HD and
LD at different positions, were involved in distinct biological functions.

To investigate the pathways of the DEGs unique to each position, the enrichment of KEGG
pathways was analyzed. The top 10 enriched pathways when comparing HD and LD are
shown in Fig 5. For DEGs found at the upper position, fatty acid “biosynthesis,” “metabolism,”
and “elongation” were the top three pathways with lower g value, however, “plant hormone
signal transduction” had the most DEGs (28). In the middle group, each pathway was enriched
with a relatively small number of DEGs. “Plant-pathogen interaction”, “pentose phosphate
pathway” and “carbon fixation in photosynthetic organisms” were the three major enriched
pathways with the lower g value for DEGs from the bottom position comparison.

DEGs found at all three vertical sample positions

Based on the Venn diagram results, it was expected that the density stress would affect the
expression levels of genes. There were 37 DEGs found at all three positions when comparing
HD and LD. Among these, a total of 33 DEGs that displayed similar expression patterns were
screened out, of which 20 were upregulated and 13 were downregulated under HD (Fig 6).
These DEGs included the basic helix-loop-helix (b HLH) transcription factors (TFs), LUX
ARRHYTHMO (LUX), zinc finger protein, and RING-H2 finger protein. In addition, there
were four genes that displayed inconsistent expression trends: two auxin-responsive proteins
(small auxin-up RNAs-SAURs), one herpesvirus processing and transport protein, and one
polyubiquitin. Surprisingly, most of these genes were not annotated by KEGG, and so there
was limited information on the metabolic pathways that could be involved.

DEGs related to light response and photosynthesis

When comparing HD and LD at the middle position, 23 DEGs were found in the “response to
light stimulus” GO subcategory. For nine-year-old poplar grown under HD, trees are already
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Fig 4. Gene Ontology (GO) enrichment analysis of differentially expressed genes (DEGs) unique to each vertical
position. DEGs were identified by comparing samples from poplar trees planted under high (HD) and low (LD)
density. The samples were taken from three vertical positions for the comparisons: upper (U), middle (M), and bottom
(B). The top 20 most enriched GO terms of the DEGs unique to each vertical position are shown: upper (A), middle
(B) and bottom (C). Yellow bars represent “biological process,” green represent “cellular component,” and red
represent “molecular function” GO categories. All terms had a false discovery rate (FDR) <0.05, except for “cellular
component” terms in the middle and bottom density comparisons (FDR <0.1).

https://doi.org/10.1371/journal.pone.0217066.g004

in a canopy closure state. The light conditions through the whole canopy space were obviously
weakened, especially at the middle and bottom positions of the trees. The expression levels of
the 23 light stimulus-related DEGs displayed two opposing trends at the middle position.
Under HD, 11 of the genes were downregulated and 12 upregulated (Fig 7A). In contrast,
most of the DEGs found at the upper and bottom positions were upregulated under HD.

From the KEGG enrichment results, nine photosynthesis-related genes were observed,
including three “photosynthesis-antenna proteins” and six “photosynthesis genes” (Fig 7B).
The expression of the three photosynthesis-antenna proteins (LHCs) were mostly upregulated
under HD; it was only at the middle position that no significant differential expression was
observed. Meanwhile, all of the photosystem-related genes were also upregulated under HD,
except for two photosystem IT 10 kDa polypeptides. The nine photosynthesis-related genes
were cast into either the “photosynthesis-antenna proteins” and “photosynthesis” KEGG path-
ways (Fig 7C and 7D).
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Fig 5. The top 10 KEGG enrichments for differentially expressed genes (DEGs) found when comparing planting
densities. DEGs were identified by comparing samples from poplar trees planted under high (HD) and low (LD) density.
The samples were taken from three vertical positions for the comparisons: upper (U), middle (M), and bottom (B). The top
10 most enriched KEGG pathways of the DEGs unique to each vertical position are shown. The bars colored green, blue,
and red indicate the KEGG pathways with different enrichment levels (g <0.05, p <0.05 but g >0.05, p <0.1, respectively).

https://doi.org/10.1371/journal.pone.0217066.9005
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Fig 6. Heat map of the expression levels of the 37 planting density-regulated differentially expressed genes
(DEGs). DEGs were identified by comparing samples from poplar trees planted under high (HD) and low (LD)

density. The samples were taken from three vertical positions for comparisons: upper (U), middle (M), and bottom

(B).

https://doi.org/10.1371/journal.pone.0217066.g006

DEGs related to the auxin/indole-3-acetic acid (AUX/IAA) signaling
response

At the upper position, 18 AUX/IAA-related genes were differentially expressed between HD
and LD. Of these, seven genes were significantly downregulated under HD (Fig 8A). Using the
KEGG annotation results, it was found that 18 AUX/IAA-related genes were mainly involved
in AUX/IAA signal transduction (Fig 8B). No genes were found to be associated with AUX/
IAA biosynthesis. A similar overall trend was observed at the bottom position. In contrast, the
middle position showed different expression trends; the AUX/IAA-related genes were down-
regulated under HD when compared to LD. Additionally, one Gretchen Hagen (GH3.1) gene
was significantly downregulated under HD in all three comparisons. Thus, it could be sug-
gested that different planting densities had a significant effect on the AUX/IAA signal trans-
duction pathway, and the response at each vertical position was also distinctive.

DEGs involved in carbon and nitrogen metabolism

Carbon and nitrogen metabolism are critical to plant growth and development. Some DEGs
that participated in carbon and nitrogen metabolism were identified from transcriptome pro-
files, including 19 “carbon metabolism” genes, 8 “carbon fixation in photosynthetic organ-
isms” genes, and 7 “nitrogen metabolism” genes (Fig 9). Furthermore, detailed information on
the corresponding metabolic pathways in which these genes are involved is shown in Fig 10.
When comparing HD to LD at all three positions, the overall trend in expression of these
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Fig 7. Expression of DEGs involved in response to light and photosynthesis. Differentially expressed genes (DEGs) were identified
by comparing samples from poplar trees planted under high (HD) and low (LD) density. The samples were taken from three vertical
positions for the comparisons: upper (U), middle (M), and bottom (B). (A) A heat map of the expression levels of DEGs that were found
to be involved in response to light stimuli. (B) A heat map of the expression levels of DEGs involved in photosynthesis. (C) The
structure of photosynthesis-antenna proteins. (D) The structure and mechanism of photosynthesis.

https://doi.org/10.1371/journal.pone.0217066.9007

genes was upregulation under HD. Four nitrogen metabolism genes (Podel.15G085900,
Podel.15G117500, Podel.17G054200 and Podel.17G139700) were downregulated under HD at
the upper position. The genes displaying an upregulation trend, showed large changes in dif-
ferent density comparisons, which suggests that the different planting densities influenced car-
bon and nitrogen metabolism.

Validation of the RNA-Seq data by qRT-PCR

To further verify the accuracy of the RNA-Seq data, we conducted qRT-PCR assays using the
same samples as those used for RNA-seq. Ten genes were randomly selected from the planting
density comparison at the middle position, for expression level analysis using qRT-PCR. The
findings displayed good correlation with the results of the RNA-seq (Fig 11), confirming the
reliability of the RNA-Seq data.

Discussion

The ability of trees to maintain a high level of productivity under an adequate planting density
is a determinant factor for increasing timber yield. With increasing establishment of poplar
plantations, further research on how trees adapt to their growth environment at the molecular
level is necessary to secure optimum timber yield and quality. For the nine-year-old poplar,
trees grown under HD are already in a canopy closure state; the DBH was found to be highly
significantly different between the two planting densities. Here, the whole-genome RNA-Seq
was utilized to profile transcript levels in mature poplar trees planted under HD and LD. The
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Fig 10. The role of identified DEGs in carbon and nitrogen metabolism pathways. (A) DEGs involved in the “carbon metabolism” pathway. (B) DEGs involved in
the “carbon fixation in photosynthetic organisms” pathway. (C) DEGs involved in the “nitrogen metabolism” pathway.

https://doi.org/10.1371/journal.pone.0217066.g010

results revealed that a large amount of DEGs (4,004) existed at three positions when compar-
ing HD with LD. In addition, it was found that the vertical position had a significant effect on
gene expression when comparing planting densities. Guo et al. sought out 205 genes that were
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Fig 11. Comparison of expression patterns of 10 randomly selected genes based on the results of RNA-seq and
qRT-PCR. The x-axis represents the 10 randomly selected genes and the y-axis represents the value of log2 (relative
expression). The blue histogram represents results from RNA-Seq and the red line represents results from qRT-PCR.
Error bars indicate the standard deviation of the qRT-PCR data.

https://doi.org/10.1371/journal.pone.0217066.g011
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considered to be differentially expressed in Arabidopsis grown under different planting densi-
ties [7]. Another study found that 221 genes exhibited differential expression in response to
density stress in barley [28]. These results suggest that transcriptome profiles are influenced by
changes in planting density in both annual herbaceous and perennial woody plants.

Expression of DEGs related to transcription factors

An adequate planting density is an important regulator for plant growth and development. In
the present study, 33 of 37 density-regulated DEGs showing similar expression profiles were
identified from all three positions when HD was compared with LD. These included RING-
H2 finger protein and TFs (bHLH, LUX and MYB). Ring finger proteins play a pivotal role in
regulating growth and developmental processes, hormone signaling pathways and defense
responses against biotic and abiotic stresses in plants [29]. The bHLHs play important roles in
regulating plant growth and development, and participate in abiotic-stress responses [30]. The
expression of bHLH92 has been shown to be strongly induced by salt, drought, osmosis, cold
and other stresses. Meanwhile, transgenic Arabidopsis plants overexpressing bHLH92 exhib-
ited a strong salt stress tolerance [31]. Li et al. isolated the OrbHLHO001 gene from rice and
found that Arabidopsis plants overexpressing OrbHLHO001 displayed an improved resistance to
salt and freezing [32]. In our study, two bHLH genes (P HLH92 and 130) were observed to be
downregulated under HD compared with LD. MYB proteins play an important role in plant
signal transduction and response to biotic and abiotic stresses. The R2R3-MYB gene has been
shown to be involved in plant responses to environmental stresses such as drought, salt and
cold [33,34]. Given the important roles of these TFs in other plants, we hypothesized that these
DEGs might be affected by planting density, particularly the MYB-related proteins that were
upregulated under HD in all three comparisons. Meanwhile, these genes that were regulated
by planting density stress, have been found to be involved in the pertinent environmental
response in other studies.

Expression of DEGs related to photosynthesis

Little is known about dynamic gene expression in trees in response to light under different
planting densities. Therefore, understanding these changes on a molecular basis is critical.
From our transcriptomic data, 23 DEGs were found to respond to light stimuli, three “photo-
synthesis-antenna proteins” and six “photosynthesis” genes were identified, of which most
were upregulated under HD. In the present study, the light responsive Ultraviolet (UV)-resis-
tance locus 8 (UVR8) and MYB4 genes were upregulated in HD compared with LD. UVRS, a
light receptor, can detect specific ultraviolet wavelengths [35]. Moreover, MYBs have been
found to regulate stomatal number and size during photosynthesis, and are known to partici-
pate in photosynthesis in response to light stress [36-38]. Light-harvesting complex I/II chlo-
rophyll a/b binding proteins (LHCs), known as light-harvesting antennae, are essential for
photosynthesis in plants, and form the basis of photosynthesis in eukaryotes [39]. LHCs are a
membrane protein in plant photosystem I that binds to chlorophyll and forms light-harvesting
chlorophyll protein complexes, and mainly involved in the capture and transfer of light energy
in photosynthesis [40]. Photosystems I and II are two large protein cofactor complexes situated
in the thylakoid membrane [41]. Photosystem I, serves as a sunlight energy converter, catalyz-
ing one of the initial steps in driving oxygenic photosynthesis [42]. Photosystem II is the site of
oxygenic photosynthesis and performs a series of light-induced electron transfer reactions
[43]. St. Pierre et al. found that transcripts encoding the photosystem II 10 kDa protein in bar-
ley and maize were all upregulated under HD compared with LD [28]. High planting density
conditions have a similar effect on growth to shading in the field [44]. That is, plants grown
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under HD display shade avoidance. Shade avoidance syndrome (SAS)-related genes, such as
phytochrome B (PHYB), non-phototropic hypocotyl (NPH), class II homeodomain-leucine zip-
per (HD-ZIP II) and parotid isoelectric focusing (PIF) protein genes, have been found to be
involved in the shade avoidance response [45-47]. However, in this study, we failed to detect all
the probes for these genes, perhaps because we did not utilize the extreme treatments of either
complete darkness or low red to far red light ratio (R:Fr). Although the ratio of R:Fr should be
higher under LD, there is still far red light for the plants to detect in the surrounding environ-
ment. Considering that most of the genes from our transcriptomic data were upregulated under
HD, photosynthesis may be activated. This suggests that trees may have a self-regulating mecha-
nism to maintain normal growth and development under higher planting densities.

Expression of DEGs related to auxin signaling

Phytohormones have long been considered as essential endogenous molecules participating in
regulation of plant growth and development, and tolerance to diverse stresses [48]. Hormonal
pathways are often relevant to density stress [28]. It has been demonstrated that auxins signal-
ing pathways are mediated by phytochrome and inhibit lateral shoot growth in plants [49,50].
From the KEGG enrichment analyses, genes involved in the “plant hormone signal transduc-
tion” pathway appeared at two positions (upper and bottom) when comparing HD and LD
(Fig 5), which indicates that the planting density significantly influenced hormonal gene
expression. Eighteen AUX/IAA-related genes that were differentially expressed between HD
and LD were screened out from the transcriptomic results. These auxin-related genes were
mainly auxin response factors (ARFs), auxin-binding proteins (ABPs), auxin-induced pro-
teins, auxin-responsive proteins and IAA-amido synthetases. Overall, most of these genes were
upregulated under HD when compared to LD at the upper and bottom positions, while the
expression at the middle position was downregulated for consistency. Inconsistencies can be
observed in the expression trends of these genes between HD and LD at different positions.

ARFs regulate the expression of auxin response genes by binding to auxin response ele-
ments in the promoter regions of the auxin response genes [51]. In the plant density compari-
son at the upper position, two ARFs (Podel.03G175600 and Podel.18G151300) were
upregulated, and one (Podel.05G252600) was downregulated under HD. SAURs have been
mainly found to be expressed in the elongating tissues and to function in auxin-mediated cell
elongation [52]. For our data, seven SAURs showed two different expression trends.; however,
most of the SAURs were upregulated under HD. One GH3.1 gene (Podel.01G317600) was sig-
nificantly downregulated under HD at all three positions. Previous studies have revealed that
the GH3 proteins modulate multiple biological processes, including photomorphogenesis [53],
light signaling, auxin signaling and auxin homeostasis in Arabidopsis [54,55]. The rice Leaf
Inclination 1 (LCI) gene encodes the IAA-amido synthetase OsGH3-1, which catalyzes the
combination of excessive IAAs with multiple amino acids to maintain auxin homeostasis, and
regulates leaf angle by altering the cell elongation [56]. Under high planting density, the leaf
angle of plants is bound to change to a certain extent. Therefore, we speculate that the GH3.1
gene (Podel.01G317600) may be involved in this process. Based on these findings, we conjec-
ture that the different expression trends between HD and LD at the three positions may be to
balance the level of auxin, and improve the growth and development of the plant when grow-
ing under high planting density.

Activation of carbon and nitrogen metabolism

Carbon and nitrogen metabolism, the basic metabolic pathways in plants, not only affect plant
growth and development, but also determine the yield [57]. Under different planting densities,
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the microhabitats in which plants are grown exhibit differences in light, temperature, water,
gases, and nutrients. It has been found that environmental factors (light, temperature and
nutrient status) could influence the carbon and nitrogen metabolism process, and alter the
growth rhythms of plants [58-60]. From our transcriptomic results, a number of DEGs
involved in carbon and nitrogen metabolism were identified; overall these genes showed an
upregulation trend under HD compared with LD at the three positions.

Carbonic anhydrase (CA) can accelerate the diffusion of inorganic carbon to the active site
of carboxylase and increases the fixation rate of CO, [61]. Salicylic acid binding protein 3
(SABP3), a chloroplastic CA, has been shown to display antioxidant activity and hypersensitiv-
ity to defense response in tobacco [62]. In our study, three CA genes were strongly upregulated
under HD, indicating that the CA genes responded to high density stress. Nitrate, as the main
inorganic nitrogen source for plant growth and development, is not only a nutrient for plants,
but can also act as a signaling molecule to regulate plant morphogenesis, physiological responses
and gene expression [63-65]. Guo et al. showed that nitrate availability is the main factor limit-
ing agricultural productivity under high density conditions [7]. Bouguyon et al. found that the
nitrate/nitrite transporter (NRT1.1) gene was not only involved in nitrate response and trans-
port, but also in plant response to stress [65]. Glutamine synthetase (GS) is a key enzyme in
plant nitrogen assimilation, catalyzing the conversion of ammonium to glutamine [66], and
plays an important role in plant growth and yield formation [67]. We found that two genes
related to nitrogen metabolism (NRT-Podel.15G085900 and GS-Podel.17G139700), were signif-
icantly downregulated under HD at the upper position. However, no differences in expression
of the two genes were observed for comparisons at the middle and bottom positions. Chen et al.
analyzed the effects of plant population on the dynamic changes of carbon and nitrogen con-
tent, found that high plant density had a significant effect on carbon metabolism [68]. Based on
our results, we concluded that changes in the expression of genes related to carbon and nitrogen
metabolism, may enable the plants to adapt to high planting density.

According to our results, carbon and nitrogen metabolism genes were mostly upregulated
under HD. We propose that normal growth of poplar trees could proceed under planting den-
sity stress via the activation of carbon and nitrogen metabolisms.

Conclusions

The whole-genome RNA-seq of leaves from perennial woody poplar provided insight into
gene expression patterns under high and low planting densities. Overall, 4,004 DEGs emerged
in the comparison of HD with LD, with 37 density-related DEGs found at all three positions.
Moreover, several light-related genes, which were mostly upregulated under HD, were also
observed. These genes may therefore play an important role in the response to light under dif-
ferent positions and planting densities. A series of AUX/IAA-related genes that showed diverse
expression trends were also analyzed. Meanwhile, genes involved in carbon and nitrogen
metabolism were identified. Of these genes, those displaying increased expression under HD,
may be indicative of the plants’ ability to adapt to density stress. These findings could increase
our molecular understanding of the effect of planting density on gene expression and provide
a reference for future research on planting density-regulated genes. In the future, we hope to
achieve optimal expression of the most important functioning genes by regulating planting
density. This should enable us to obtain the maximum yield under high density.

Supporting information

S1 Fig. Heatmap showing the correlation coefficients between different samples. The corre-
lation coefficients were calculated using log2 (FPKM). The color represents the correlation
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coefficient values (the redder the color, the higher the correlation, the less red the color, the
lower the correlation). LD: low planting density. HD: high planting density. U: upper, M: mid-
dle, and B: bottom vertical sampling positions.

(TIF)

S§1 Table. Primers used for qRT-PCR analysis of genes selected from the RNA sequencing
data.
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