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It is very important for systems biologists to predict the state of the multi-omics time series
for disease occurrence and health detection. However, it is difficult to make the prediction
due to the high-dimensional, nonlinear and noisy characteristics of the multi-omics time
series data. For this reason, this study innovatively proposes an Embedding, Koopman
and Autoencoder technologies-basedmulti-omics time series predictive model (EKATP) to
predict the future state of a high-dimensional nonlinear multi-omics time series. We
evaluate this EKATP by using a genomics time series with chaotic behavior, a
proteomics time series with oscillating behavior and a metabolomics time series with
flow behavior. The computational experiments demonstrate that our proposed EKATP can
substantially improve the accuracy, robustness and generalizability to predict the future
state of a time series for multi-omics data.
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INTRODUCTION

Currently, the prediction of multi-omics time series states is one of the trending areas in systems
biology research (Zhang et al., 2019a). In particular, the development of high-throughput technology
(Soon et al., 2013) has produced a large-scale time series multi-omics state (Liang and Kelemen
2017a), including genomics (Lockhart and Winzeler 2000), proteomics (Tyers and Mann, 2003),
metabolomics (Weckwerth 2003) and more. Previous studies usually employed differential equation
(Eisenhammer et al., 1991; Zhang et al., 2016; Zhang and Zhang 2017; Liu G.-D. et al., 2020) based
models to abstract and formalise multi-omics time series data (Bianconi et al., 2020). Then, it became
possible to explore the time-varying connections and predict their future state (Ji et al., 2017) by
solving these differential equations. In particular, predicting multi-omics time series states can not
only discover dynamic information for biological entities, such as genes, proteins and metabolites,
but also explore complicated biological interactions and the pathogenesis of diseases (Liang and
Kelemen, 2017b).

However, a multi-omics time series usually has high dimensions (Perez-Riverol et al., 2017),
complicated interaction relationships (Fischer 2008) and inevitable noise (Fischer 2008; Tsimring
2014). Thus, when we employ differential equations to model the multi-omics time series state, it is
hard for us to solve these equations due to their high dimensionality and nonlinear characteristics
(Bianconi et al., 2020). For these reasons, the way to predict the future state of a multi-omics time
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series by solving these complicated nonlinear differential
equations has already become challenging work.

Recently, future state prediction for a multi-omics time series has
beenwidely studied by computational biologists. For genomic studies,
we usually use a gene expression time series to develop gene
regulatory networks (Davidson and Levin 2005; Zhang et al.,
2018; Xiao et al., 2020; Zhang et al., 2020; Xiao et al., 2021;
Zhang et al., 2021a). However, since the gene regulatory network
is a complex high-dimensional nonlinear system (Zhang et al.,
2012a), it often produces chaotic phenomena (Levnajić and Tadić
2010), which not only play an important role in maintaining stable
gene expression patterns (Sevim and Rikvold 2008) but also are
closely related to the occurrence of diseases (Suzuki et al., 2016).
Usually, we employ the Lorentz system (Lorenz 1963) to describe the
chaotic phenomenon. However, it is inaccurate to predict the future
state of genomics time series with nonlinear complicated interactions
because the Lorentz system is not good at processing nonlinear
complicated interactions (Lai et al., 2018). Currently, delay
embedding theory (Sauer et al., 1991; Holmes et al., 2012) is
commonly used to transform the spatial information (complicated
interactions) into temporal information (the future state of the time
series (Chen et al., 2020)) for dimensional reduction (Gao et al., 2017;
Li et al., 2017; Xia et al., 2017; Zhang et al., 2019b; Zhang et al., 2019c;
Wu et al., 2020; You et al., 2020; Zhang et al., 2021b), whereas
Koopman theory (Koopman, 1931) can switch the nonlinear system
into a linear system to reduce computing cost. Therefore, our first
research question asks if we can develop such a time series predictive
model that integrates the Lorentz system with delay embedding and
Koopman theory to accurately predict the future state of genomics
time series with chaotic behavior.

For proteomics studies, we usually use proteomic time series
data to infer protein–protein interactions (PPIs) (Wu et al., 2009).
Currently, we employ mass spectrometry technology (Mann
et al., 2001) to obtain proteomics time series data. However,
since it is unstable to have time-course experimental data by mass
spectrometry technology, proteomics time series data are prone
to oscillating behavior (Iuchi et al., 2018). Previously, we
employed a nonlinear pendulum system (Hirsch 1974) to
describe the oscillation behavior, though it was subjected to
overfitting under a strong noise environment. Since the
conjugate form of delay embedding (Sauer et al., 1991;
Holmes et al., 2012) can ensure the reversibility of the time
series predictive model (Chen et al., 2020) and reduce the impact
of noise on prediction to a certain extent, our second research
question asks if we can develop such a time series predictive
model that can integrate a nonlinear pendulum system with delay
embedding to accurately predict the state of proteomics time
series with oscillating behavior.

For metabolomics studies, we usually use metabolic time series
data that represent the flow behavior of biological fluids (serum,
cerebrospinal fluid, etc.) to discover key metabolites in biological
fluids (Zhang et al., 2012b). A previous study (Noack et al., 2003)
always employed a nonlinear biological fluid system to describe
metabolic time series data. However, because most nonlinear
fluid flow systems have high dimensions (Lusch et al., 2018), we
not only have difficulty selecting features from high-dimensional
metabolic time series data but also impede progress because of

time-consuming computing (Wang et al., 2021). Currently, since
neural networks (Wang et al., 2014) can decrease the computing
cost (Song et al., 2017) by dimensional reduction for time series
data (Hinton and Salakhutdinov, 2006), our third research
question asks if we can develop such a time series predictive
model that integrates a nonlinear fluid flow system with a neural
network to predict the future state of the metabolomics time
series accurately and quickly with flow behaviour.

To answer the above three research questions, this study
innovatively develops an Embedding, Koopman and
Autoencoder technologies-based multi-omics time series
predictive model (EKATP) to predict the future state of the
time series for the corresponding genomics, proteomics and
metabolomics datasets. Compared with previous approaches
(Lusch et al., 2018; Azencot et al., 2020), the contributions of
the study are summarised as follows. First, we select key features
from a high-dimensional nonlinear state by integrating a neural
network with the delay embedding theory. Second, we switch the
nonlinear system with a linear system to reduce the computing
cost by the Koopman theory. Finally, we develop a neural
network and delay embedding theory-based model for
reversible mapping between a high-dimensional nonlinear
system and a low-dimensional linear system, thereby
improving the accuracy and robustness of prediction.

The rest of the manuscript is organised as follows. Related
Works mainly describes the related work for Autoencoder, delay
embedding theory and Koopman theory. Materials and Methods
introduces the architecture of the EKATP and the related
procedure. Experiments describes the computational
experiments. Finally, we conclude the study and discuss the
future work.

RELATED WORKS

Supplementary Presentation S1 details the related theory and
existing research of the Autoencoder, delay embedding theory
and Koopman theory.

MATERIALS AND METHODS

Figure 1 describes the workflow of the EKATP.

Problem and Definitions
Given a set of high-dimensional nonlinear multi-omics time
series states F � (F1, F2, . . . , FT), where T represents the total
step, the time series state at t can be described as
Ft � (f t1, f t2, . . . f tn)′, where n represents the dimension of the
time series state, “ ’”, as the transpose of a vector. Our goal is to
predict the future state of the multi-omics time series. Next, we
detail how to develop an EKATP as follows.

Autoencoding Observations
Since an EKATP is based on the Autoencoder framework, we
employ Eq. 1 to define the objective function for
Autoencoder (Lid).
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FIGURE 1 | EKATP workflow.
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Lid �
����F̂t − Ft

����MSE
(1)

Here, F̂
t
is the reconstructed high-dimensional time series

state according to encoder (χe) and decoder (χd) of
Autoencoder (Supplementary Presentation S1). || · ||MSE

denotes the mean squared error (MSE), which presents the
expected value of the square of the difference between the
predicted value and the true value. This loss function term
enables us to construct an Autoencoder model that satisfies
χd+χe ≈ id, the identity.

Delay Embedding
According to the description in the delay embedding theory
(Supplementary Presentation S1), we employ χe of the
Autoencoder to approximate the delay embedding Φ, mapping
the high-dimensional nonlinear input time series state Ft back to
the low-dimensional time series state Yt by Eq. 2,

Yt � (yt, yt+1, ..., yt+L−1)′ � χe(Ft). (2)

where L represents the dimension of the low-dimensional
time series state. Similarly, the inverse mapping χd of
mapping χe is used to approximate the conjugate form of
delay embedding Φ, mapping the low-dimensional time
series state back to the high-dimensional time series state
by Eq. 3.

F̂
t � (f̂t

1, f̂
t

2, . . . f̂
t

n)′ � χd(Yt). (3)

Linearized Representation of the Koopman
Operator
Based on the Koopman theory discussed by Supplementary
Presentation S1, we construct the finite dimensional linear
matrix C (and matrix D) to compute the forward (and
backward) low-dimensional time series state. Equation 4
shows how to realize the forward prediction for low-
dimensional time series state Yt to obtain Yt+1.

Yt+1 � CYt . (4)

Equation 4 can be expanded by Eq. 5.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
yt+1

yt+2

yt+3

. . .
yt+L−1

yt+L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 1 . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . 0 1
a1 a2 . . . aL−1 aL

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yt

yt+1

yt+2

. . .
yt+L−2

yt+L−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (5)

Here, ai is the estimated parameter that needs training, and
a1 ≠ 0. Equation 6 shows how to realize the backward prediction
for a low-dimensional time series state Yt to obtain Yt−1.

Yt−1 � DYt . (6)

Equation 6 can be expanded by Eq. 7.

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
yt−1

yt

yt+1

. . .
yt+L−3

yt+L−2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
b1 b2 . . . bL−1 bL
1 0 . . . 0 0
0 1 . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . 0 0
0 0 . . . 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yt

yt+1

yt+2

. . .
yt+L−2

yt+L−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (7)

Here, bi is the estimated parameter that needs training, and
bL ≠ 0. Our goal is to optimise the parameters of the linear matrix
C (and D) of Eqs 5, 7 by model training.

Forward and Backward Prediction
We make the k-steps forward prediction by Eq. 8 and backward
prediction by Eq. 9 for the state of the low-dimensional time
series Yt . After that, χd is used to map the low-dimensional
predictive time series state back to the high-dimensional
predictive time series state by Eq. 10,

Yt+k � CkYt . (8)

Yt−k � DkYt . (9)

F̂
t±k � χd(Yt±k). (10)

where Yt+k and Yt−k represent the low-dimensional state after k
steps of forward and backward prediction, respectively. F̂

t±k

represents the predictive high-dimensional nonlinear state.
Equations 11, 12 define the loss function of forward

prediction (Lfwd) and backward prediction (Lbwd) to minimize
the difference between the high-dimensional predictive value and
true states at each step, respectively.

Lfwd � 1
k
∑k

s�1
∣∣∣∣∣∣∣∣F̂t+s − Ft+s∣∣∣∣∣∣∣∣MSE

. (11)

Lbwd � 1
k
∑k

s�1
∣∣∣∣∣∣∣∣F̂t−s − Ft−s∣∣∣∣∣∣∣∣MSE

. (12)

Equation 13 defines the loss function (Lidy) to minimize the
difference between the predictive low-dimensional state obtained by
theC andDmatrices and defines such a low-dimensional state that is
mapped from the true high-dimensional state by mapping χe.

Lidy � 1
k
∑k
s�1
[����Csχe(Ft)−χe(Ft+s)����MSE

+ ����Dsχe(Ft)− χe(Ft−s)����MSE
].

(13)

Additionally, we employ loss function (Lcon) by Eq. 14 to
train the parameters ai and bi in the matrices C and D,
respectively.

Lcon � 1
k
∑k
s�1
[����χd(DsCsYt) − Ft

����MSE
+ ����χd(CsDsYt) − Ft

����MSE
]
(14)

Parameter Estimation for the EKATP
Equation 15 optimizes the key parameters for the EKATP by
minimizing L.
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L � λidLid + λfwdLfwd + λbwdLbwd + λidyLidy + λconLcon. (15)

Here, λid, λfwd, λbwd, λidy and λcon are user-defined
hyperparameters.

EXPERIMENTS

This section evaluates the predictability of the proposed EKATP
for high-dimensional nonlinear multi-omics datasets by
comparing it with recurrent neural networks (RNNs) (Jiang
and Lai, 2019), long short-term memory (LSTM) (Hochreiter
and Schmidhuber, 1997), dynamic Autoencoder (DAE) (Lusch
et al., 2018) and Koopman Autoencoder (KAE) (Azencot et al.,
2020). The detailed experimental setup is listed in
Supplementary Presentation S2. In addition, we detail the
workflow chart and list the related pseudocode in
Supplementary Figure S1; Supplementary Presentation S3.

Genomics
We usually employ the chaotic Lorentz system (Lorenz, 1963) to
describe a gene expression time series with a low-dimensional
manifold (Sauer et al., 1991) by Eq. 16,⎧⎪⎨⎪⎩ xt+1 � xt + h(η(yt − zt))

yt+1 � yt + h(xt(ρ − zt) − yt)
zt+1 � zt + h(xtyt − βzt) , (16)

where η and ρ represent the Prandtl and Rayleigh numbers,
respectively. β is related to geometry, and t represents time. h
represents the level of the complicated nonlinear system. When h
is greater, the nonlinear relationship between genes becomes
more complicated.

Since gene expression time series contains considerable noise,
we employ white Gaussian noise (Li et al., 2017) to simulate the
noise by Eq. 17, ⎧⎪⎨⎪⎩ ~x � x + εx

~y � y + εy
~z � z + εz

. (17)

where ~x, ~y and ~z represent data with noise. εx, εy and εz
represent the white Gaussian noise for x, y and z by normal
distributions N(0, σ2) with a zero mean and a standard
deviation σ. The standard deviation σ is referred to as the
noise intensity.

Here, we describe how to obtain a high-dimensional gene
expression time series with a low-dimensional manifold as
follows. First, we generate the three-dimensional time series V �
(V1,V2, . . . ,VT) ∈ R3 (T is the total step), which is listed in
Supplementary Tables S1.1, S1.2, S1.3. Next, we develop a
random orthogonal transformation (Anderson et al., 1987)
matrix P ∈ R96×3. Finally, we map the state of a 3-dimensional
time series onto the state of a 96-dimensional time series by Eq.
18 to simulate a high-dimensional gene expression time series
F � (F1, F2, . . . , FT) ∈ R96 with a 3-dimensional manifold, which
is listed in Supplementary Tables S1.4, S1.5, S1.6.

F � PV . (18)

To prove the accuracy and robustness of the EKATP, we
generate a small-scale system containing T � 1,050 steps and
choose the last 50 steps to visualize the predictive power of the
EKATP.

Figure 2 shows the predictive error in the range of 50 steps
under different initial conditions and environments. Detailed
information is listed in Supplementary Tables S1.7, S1.8;
Supplementary Presentation S4.

Figures 2A,C demonstrates that the EKATP not only has less
of a predictive error than the existing methods under a clean
environment (σ�0.00) but also has a stable predictive error when
the complexity h increases from 0.003 to 0.006. In particular, with
the increase in predictive steps, the predictive error of the EKATP
increases slower than that of the existing methods.

Figures 2B,D shows that the EKATP not only has less of a
predictive error than previous methods under a noisy
environment (σ�0.01) but also has a predictive error that
slightly fluctuates when h increases from 0.003 to 0.006.
Moreover, after 25 steps, the predictive error of the EKATP
increases much slower than that of the existing methods.

Figure 2 indicates that the EKATP has greater predictive
accuracy and robustness than excitation methods in clean and
noisy environments.

To further prove the generalizability of the EKATP, we
generate a large-scale system containing T � 15,000 steps
under the condition of h � 0.003 and σ � 0.00. After that, we
randomly choose three different time periods to train and test the
model as follows, the procedure of which is detailed in
Supplementary Table S1.9.

First, since the 3-dimensional time series state and 96-
dimensional time series state are diffeomorphic (Sauer et al.,
1991), which is indicated by the data preprocessing procedure, it
implies that the mapping between these two time series is
reversible. Here, we map the 96-dimensional gene expression
predictive results onto a 3-dimensional space by orthogonal
inverse transformation (Anderson et al., 1987) to visualize the
predictive result of the EKATP.

Figures 3A,B,C demonstrates that the predictive results of the
EKATP are close to the true value for different periods of a time
series. Figure 3 shows that the EKATP can accurately predict the
gene expression time series at different periods, implying that it
has a strong generalizability, even in a very complicated nonlinear
environment.

Proteomics
We always use a nonlinear pendulum model (Hirsch, 1974) with
oscillatory behaviour to describe a proteomics time series with a
low-dimensional manifold (Sauer et al., 1991) by Eq. 19,⎧⎪⎪⎨⎪⎪⎩

d2θ

dt2
+ g

l
sin θ � 0

θ(t0) � h

. (19)

where l, g and t denote the length, gravity and time, respectively.
h denotes the initial value of θ, which represents the level of the
complicated nonlinear system. When h is greater, the nonlinear
relationship between proteins becomes more complicated.
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Since a considerable amount of noise exists in a protein time
series, we employ white Gaussian noise (Li et al., 2017) to describe
it by Eq. 20,

⎧⎨⎩ ~θ � θ + εθ
_̃θ � _θ + ε _θ

, (20)

where ~θ and _̃θ represent data with noise. εθ and ε _θ
represent the noise Gaussian terms for θ and _θ by normal

distributions N(0, σ2) with a zero mean and a standard
deviation σ.

Here, we describe how to obtain a high-dimensional proteomics
time series with a low-dimensional manifold. First, we generate the 2-
dimensional time series V � (V1,V2, . . . ,VT) ∈ R2, which is listed
in Supplementary Tables S2.1, S2.2. Next, we develop a random
orthogonal transformation (Anderson et al., 1987) matrix P ∈ R64×2.
Finally, we map the state of a 2-dimensional time series onto the
state of a 64-dimensional time series by Eq. 18 to simulate a

FIGURE 2 | Comparison among the RNN, LSTM, DAE, KAE and EKATP. The abscissa represents the step, and the ordinate represents the predictive error. (A)
The initial conditions are h � 0.003 and σ � 0.00. (B) The initial conditions are h � 0.003 and σ � 0.01. (C) The initial conditions are h � 0.006 and σ � 0.00. (D) The initial
conditions are h � 0.006 and σ � 0.01.

FIGURE 3 | The 50-step predictive trajectories of the EKATP are under initial conditions h � 0.003 and σ � 0.00. Grey colors represent full true data. (A) This is the
predictive situation of the first period. Yellow and green colors represent true and predictive data, respectively. (B) This is the predictive situation of the second period.
Purple and cyan colors represent true and predictive data, respectively. (C) This is the predictive situation of the third period. Blue and red colors represent true and
predictive data, respectively.
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high-dimensional proteomics time series F � (F1, F2, . . . , FT) ∈ R64

with a 2-dimensional manifold, which is listed in Supplementary
Tables S2.3, S2.4.

To prove the accuracy and robustness of the EKATP, we
generate a system containing T � 1,600 steps and choose the last
1,000 steps to visualize the predictability for the EKATP.

Figure 4 shows that the EKATP can effectively predict a
proteomic time series under clean and noisy environments within
1,000 steps, the details of which are listed in Supplementary Tables
S2.5, S2.6; Supplementary Presentation S4.

Figures 4A,B shows that the EKATP not only has less of a
predictive error under a clean environment (σ�0.00) than the
existing methods but also maintains a smaller predictive error
when h increases from 0.8 to 2.4. Moreover, the predictive error of
the EKATP increases much slower than that of the existing
methods when the predictive step increases.

Figures 4C,D demonstrates that the EKATP has less of a
predictive error under a noise environment (σ�0.03) than the

existing methods. When h increases from 0.8 to 2.4, the predictive
error of the EKATP remains stable. In particular, with the
increase in predictive steps, the predictive error of the EKATP
increases much slower than that of the existing methods.

Figures 4E,F indicates that the EKATP not only has less of a
predictive error under a noise environment (σ�0.08) than the existing
methods but also has a predictive error of the EKATP that remains
stable when h increases from 0.8 to 2.4. In particular, when the
predictive steps are long enough (after 500 steps), the predictive error
of previous methods increases much faster than that of the EKATP.

Figures 4A,C,E shows that the predictive error of the EKATP
remains stable when the noise intensity σ increases from 0 to 0.08
under complexity h � 0.8. Figures 4B,D,F shows that the
predictive error of the EKATP remains stable when the noise
intensity σ increases from 0 to 0.08 under complexity h � 2.4.

Figure 4 demonstrates that the predictive accuracy and
robustness of the EKATP outperforms the existing methods
under clean and noisy environments.

FIGURE 4 | Comparison with the RNN, LSTM, DAE, KAE and EKATP. The abscissa represents the step, and the ordinate represents the predictive error. (A) The
initial conditions are h � 0.8 and σ � 0.00. (B) The initial conditions are h � 2.4 and σ � 0.00. (C) The initial conditions are h � 0.8 and σ � 0.03. (D) The initial conditions are
h � 2.4 and σ � 0.03. (E) The initial conditions are h � 0.8 and σ � 0.08. (F) The initial conditions are h � 2.4 and σ � 0.08.
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Since Figure 4 shows that KAE has a better predictive effect
than the other existing methods, we use it to compare the
predictive performance with the EKATP by visualizing the
predictive trajectory.

Indicated by our data preprocessing procedure, since the 2-
dimensional time series state and 64-dimensional time series state
are diffeomorphic (Sauer et al., 1991), the mapping between these
two time series is reversible. Here, we map the 64-dimensional
protein time series predictive results onto a 2-dimensional space
by orthogonal inverse transformation (Anderson et al., 1987) to
visualize the predictive time series trajectory. Figure 5 shows the
predictive trajectories of the KAE and EKATP within 1,000 steps
under the initial conditions of h � 2.4 and σ � 0.03, which show
that the predictive protein time series trajectory of the EKATP
(Figure 5B) is much closer to the true trajectory than that of the
KAE (Figure 5A). Figure 5 further indicates that the predictive
accuracy and robustness of the EKATP is better than that of
the KAE.

To further prove that the EKATP has strong generalizability,
we randomly selected 20 pieces of different protein time series
data for model training and analysis. The details are listed in
Table 1; Supplementary Table S2.7.

After we employ 20 different proteomics time series datasets to
test the KAE and EKATP, Table 1 shows the predictive error of
the KAE and EKATP at 1,000 steps under different initial noise
and complexity (h) conditions, which demonstrates that the
EKATP has less of a statistically significant minimum,
maximum, average and variance of the predictive error than
the KAE under each noise and complexity (h) condition (p-value
<0.05) (Gao et al., 2017; Li et al., 2017; Gao et al., 2021). Table 1
implies that the EKATP has statistically significant predictive
power for different time series datasets.

Metabolomics
We usually employ a nonlinear biological fluid system
(Noack et al., 2003) to describe the high-dimensional
metabolic time series with a low-dimensional manifold
(Sauer et al., 1991) for the flow behavior of biological
fluids simulation by Eq. 21,

⎧⎪⎨⎪⎩
_x � cx − ωy + Axz

_y � ωx + cy + Ayz

_z � −λ(z − x2 − y2), (21)

where c, ω and A determine the size of the fluid. λ determines the
speed of the dynamics of z. The different initial values of x, y and
z determine the different nonlinear complexities of the
metabolomics time series. We use the initial conditions ζ1
(x�0, y � -0.01, z � 0) and ζ2 (x�0.01, y � -0.1, z � 0.5) to
generate a high-dimensional metabolomics time series with low
complexity h1 and high complexity h2, respectively.

Since the metabolomics time series contains considerable
noise, we employ white Gaussian noise (Li et al., 2017) to
describe it by Eq. 22, ⎧⎪⎨⎪⎩ ~x � x + εx

~y � y + εy
~z � z + εz

. (22)

FIGURE 5 | The prediction trajectories within 1,000 steps under the initial conditions of h � 2.4 and σ � 0.03. The abscissa represents _θ, the ordinate represents θ,
blue colours represent true data and red dots represent predictive data. (A) KAE. (B) EKATP.

TABLE 1 | Predictive error at 1,000 steps for both the KAE and EKATP.

Model h θ Predictive error p-Value

Min Max Avg Var

KAE 0.8 0.00 0.427 0.012 0.052 8.29e−03 2.60e−02
EKATP 0.8 0.00 0.001 0.006 0.003 2.18e−06

KAE 0.8 0.03 0.038 0.253 0.112 2.80e−03 2.11e−04
EKATP 0.8 0.03 0.038 0.089 0.058 1.42e−04

KAE 2.4 0.00 0.020 0.225 0.067 2.03e−03 5.79e−06
EKATP 2.4 0.00 0.003 0.010 0.005 4.20e−06

KAE 2.4 0.03 0.030 0.967 0.131 4.04e−02 2.42e−02
EKATP 2.4 0.03 0.011 0.040 0.021 5.79e−05
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where ~x, ~y and ~z represent data with noise. εx, εy and εz represent
the white Gaussian noise for x, y and z by normal distributions
N (0, σ2) with a zero mean and a standard deviation σ.

Fig. 6 Comparison of the RNN, LSTM, DAE, KAE and
EKATP. The abscissa represents the time step, and the
ordinate represents the predictive error. (A) The initial
conditions are h1 and σ � 0.000. (B) The initial conditions are
h1 and σ � 0.001. (C) The initial conditions are h2 and σ � 0.000.
(D) The initial conditions are h2 and σ � 0.001.

Here, we show how to generate a high-dimensional
metabolomics time series with a low-dimensional manifold.
First, we build up the 3-dimensional time series
V � (V1,V2, . . . ,VT) ∈ R3, which is listed in Supplementary
Tables S3.1; S3.2. Next, we develop a random orthogonal
transformation (Anderson et al., 1987) matrix P ∈ R96×3.
Finally, we map the state of the 3-dimensional time series
onto the state of the 96-dimensional time series by Eq. 18 to
simulate a high-dimensional metabolic time series F �
(F1, F2, . . . , FT) ∈ R96 with the 3-dimensional manifold, which
is listed in Supplementary Tables S3.3, S3.4.

To demonstrate the accuracy and robustness of the EKATP,
we generate a system containing T � 900 steps and choose the last
100 steps to visualize the predictive result of the EKATP. Figure 6
shows the predictive results of the metabolic time series under
different initial conditions and environments for the last 100
steps. Detailed information is listed in Supplementary Tables
S3.5, S3.6; Supplementary Presentation S4.

Figures 6A,C demonstrates that the EKATP has less of a
predictive error under a clean environment (σ�0.000) than
the existing methods. When the complexity of h increases, the
predictive error of the EKATP remains stable. With the increase
in the predictive step, the predictive error of the existing methods
increases rapidly, while the predictive error of the EKATP
remains small.

Figures 6B,D suggests that the EKATP not only has less of a
predictive error under a low noise intensity environment
(σ�0.001) than the existing methods but also has a predictive
error of the EKATP that remains stable when h increases. In
particular, when the predictive steps are long enough, the
predictive error of the EKATP increases much slower than
that of the existing methods.

Figure 6 implies that the EKATP has better predictive
accuracy and robustness than the existing methods under
clean and weakly noisy environments.

Since a metabolomics time series usually has strong noise intensity
(Mak et al., 2015), we use the EKATP to predict a high-dimensional
metabolomics time series under strong noise intensities to prove its
robustness. Because the 3-dimensional time series state and the 96-
dimensional time series state are diffeomorphic (Sauer et al., 1991), the
mapping between these two time series is reversible. Thus, after we
map the 96-dimensionalmetabolic time series predictive results onto a
3-dimensional space by orthogonal inverse transformation (Anderson
et al., 1987), Figure 7 shows the predictive time series trajectories by
the EKATP under different intensities of noise. We select the last 100

FIGURE 6 |Comparison of the RNN, LSTM, DAE, KAE and EKATP. The abscissa represents the time step, and the ordinate represents the predictive error. (A) The
initial conditions are h1 and σ � 0.000. (B) The initial conditions are h1 and σ � 0.001. (C) The initial conditions are h2 and σ � 0.000. (D) The initial conditions are h2 and σ �
0.001.
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steps to validate the predictive power of the EKATP as in the previous
setup (Supplementary Table S3.6). The results demonstrate that
although the true data become gradually messy when we increase the
noise intensity σ, the predictive time series trajectory of the EKATP is
still very close to the true data to a certain extent (Figures

7A,B,C,D,E,F), which implies that the EKATP still has a
satisfactory predictive performance when we increase the noise
intensity.

Moreover, we use Eqs 23, 24 to calculate the Pearson
correlation coefficient (PCC) (Abar et al., 2017) and the root

FIGURE 7 | The predictive trajectories of the EKATPwithin 100 steps under different intensities of noise. Cyan dots represent true data with an interval of t ∈[0:900].
Red dots represent predictive data with an interval of t ∈[800:900]. (A) σ � 0.001. (B) σ � 0.005. (C) σ � 0.010. (D) σ � 0.050. (E) σ � 0.100. (F) σ � 0.500.
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mean squared error (RMSE) (Abar et al., 2017) between
predictive and true data under different noise intensities.

Here, Vt and V̂
t
represent the true and predictive data at time

t. μ and μ̂ represent the average value for true and predictive data,
respectively. p represents the predictive step size.

PCC � ∑t�p
t�1(V̂ t − μ̂)(Vt − μ)������������∑t�p

t�1 (V̂ t − μ̂)2√ ������������∑t�p
t�1 (Vt − μ)2√ . (23)

RMSE �
���������������
1
p
∑t�p

t�1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣V̂ t − Vt
∣∣∣∣∣∣∣∣∣∣∣∣∣∣2

√
. (24)

Figure 8A shows that the PCC value of the EKATP gradually
decreases when we increase the noise intensity σ, but the overall
value is relatively high. Figure 8B indicates that with the
increase in noise intensity σ, although the RMSE value of the
EKATP gradually increases, it is still relatively small. Thus, we
conclude that the EKATP can effectively avoid noise interference
and is robust enough under a very strong noise intensity
condition.

CONCLUSION AND FUTURE WORK

To answer the three proposed questions, this study developed an
EKATP to predict the future state of a high-dimensional
nonlinear multi-omics time series. First, we select key features
from high-dimensional nonlinear multi-omics time series data.
After that, we map these key features to the low-dimensional
linear space. Next, we obtain the future state of the multi-omics
time series by learning the evolutionary relationship between
the adjacent states of the time series in the low-dimensional
linear space. Finally, we predict the future state of the high-
dimensional nonlinear multi-omics time series by mapping the
low-dimensional linear predictive state back to the high-
dimensional nonlinear space. The experimental results
demonstrate that the EKATP can greatly improve the
accuracy, robustness and generalisability to predict the future

state of a time series for genomics (Figures 2, 3), proteomics
(Figures 4, 5; Table 1) and metabolomics (Figures 6–8) datasets.

However, there are still several shortcomings to the current study.
For example, we are still unclear on the impact of embedding
dimensions from high-dimensional nonlinear space to low-
dimensional linear space on predictive accuracy and the way to use
high-performance computing to increase the efficiency of the EKATP.
Applying the EKATP to network biological datasets (Liu X. et al., 2020)
is also the direction we need to continue the study. Thus, we will
improve the EKATP from these perspectives in the distant future.
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