@’PLOS ‘ ONE

CrossMark

click for updates

E OPEN ACCESS

Citation: Baur B, Bozdag S (2016) A Feature
Selection Algorithm to Compute Gene Centric
Methylation from Probe Level Methylation Data. PLoS
ONE 11(2): €0148977. doi:10.1371/journal.
pone.0148977

Editor: Jianhua Ruan, University of Texas at San
Antonio, UNITED STATES

Received: September 14, 2015
Accepted: January 26, 2016
Published: February 12, 2016

Copyright: © 2016 Baur, Bozdag. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: Agilent whole genome
microarray and lllumina 450K DNA methylation data
for 25 breast cancer cell lines was obtained from the
Gene Omnibus (GEO) database (GSE57343).
Luminal A breast cancer data was obtained from the
Cancer Genome Atlas (TCGA) database on the
BRCA lllumina 450K DNA methylation and Agilent
mRNA expression platforms. S1 File contains the
sample IDs used in analysis.

Funding: This work is supported by the startup
funding to SB from Marquette University. The funders
had no role in study design, data collection and

RESEARCH ARTICLE

A Feature Selection Algorithm to Compute
Gene Centric Methylation from Probe Level
Methylation Data

Brittany Baur, Serdar Bozdag*

Department of Math, Statistics and Computer Science, Marquette University, Milwaukee, Wisconsin, United
States of America

* Serdar.bozdag @ marquette.edu

Abstract

DNA methylation is an important epigenetic event that effects gene expression during
development and various diseases such as cancer. Understanding the mechanism of
action of DNA methylation is important for downstream analysis. In the lllumina Infinium
HumanMethylation 450K array, there are tens of probes associated with each gene. Given
methylation intensities of all these probes, it is necessary to compute which of these probes
are most representative of the gene centric methylation level. In this study, we developed a
feature selection algorithm based on sequential forward selection that utilized different clas-
sification methods to compute gene centric DNA methylation using probe level DNA methyl-
ation data. We compared our algorithm to other feature selection algorithms such as
support vector machines with recursive feature elimination, genetic algorithms and ReliefF.
We evaluated all methods based on the predictive power of selected probes on their mRNA
expression levels and found that a K-Nearest Neighbors classification using the sequential
forward selection algorithm performed better than other algorithms based on all metrics. We
also observed that transcriptional activities of certain genes were more sensitive to DNA
methylation changes than transcriptional activities of other genes. Our algorithm was able
to predict the expression of those genes with high accuracy using only DNA methylation
data. Our results also showed that those DNA methylation-sensitive genes were enriched in
Gene Ontology terms related to the regulation of various biological processes.

Introduction

Methylation of cytosine nucleotides in DNA (hereafter DNA methylation) is involved in cellu-
lar differentiation [1], development [2] and has impact in diseases such as cancer [3]. DNA
methylation is typically associated with a decrease in gene expression due to its role in blocking
transcription factors from binding [4]. It is also speculated that silencing of a gene could pre-
cede DNA methylation [4]. DNA methylation is known to have positive correlation with gene
expression, as well, particularly in gene bodies [4]. Several studies integrate DNA methylation
with gene expression to unravel the role of DNA methylation in gene regulation [5-8].
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DNA methylation has a context-dependent effect on gene expression. For instance, Benet
et al. showed that DNA methylation around the transcription start site (TSS) is tightly linked
to transcriptional silencing [5]. Varley et al. explored the effects of DNA methylation on gene
expression in the context of CpG status and genomic position [6]. They found that the correla-
tion of DNA methylation near the TSS is generally negatively correlated with gene expression
and DNA methylation in the gene body is positively or negatively correlated depending on
CpG status. Rhee et al. also provided an extensive analysis of the effects of DNA methylation
on gene expression in different molecular subtypes of breast cancer [7]. They found that there
is more positive correlation of gene expression moving upstream of the TSS in less aggressive
subtypes of breast cancer compared to more aggressive subtypes.

A few studies integrate DNA methylation and other data types to predict gene expression.
Benet et al. used decision trees to investigate the combinatorial effects of DNA methylation sta-
tus in different genomic positions on gene expression and found CpG islands to be the most
informative feature [5]. Li et al. tested various models to predict gene expression using epige-
nomics data in lung cancer [9]. They found that a model comprised of 67 features chosen with
a ReliefF feature selection and random forest classification performs the best. The set of fea-
tures is comprised of predominately histone H3 methylation modification and CpG methyla-
tion data.

There are several next-generation sequencing-based assays to measure DNA methylation
such as bisulfite sequencing, MeDIP-seq, and reduced representation bisulfite sequencing.
There are also bisulfite microarray-based assays to measure DNA methylation. For humans,
the Illumina Infinium HumanMethylation27 BeadChip Kit array contains 27,578 probes for
14,495 genes [10]. Later, Illumina developed higher-resolution Illumina Infinjum Human-
Methylation450 BeadChip Kit array, which have an average of 18 probes associated with a gene
in various genomic positions and CpG statuses. Due to its high resolution and low cost, the
[Mlumina Infinium HumanMethylation 450K array has become one of the most frequently used
assay to quantify DNA methylation in human. At the time of writing the Gene Expression
Omnibus database had about 30,000 samples that were profiled using the Illumina 450K array.

Knowing the overall DNA methylation level of a gene is important for downstream func-
tional analysis, such as analyzing regions where DNA methylation blocks transcription factors
[7] or determining if a gene has aberrant DNA methylation in cancer [11]. However, it is not
straightforward to determine which probes to choose from a 450K array that best represent the
overall methylation level of the gene and are informative to the gene’s expression level. A sim-
ple, but valuable approach may be to choose a probe based on a metric such as the variation.
One approach is to use the standard deviation (SD) across samples and choose the probes with
the greatest variation [12, 13]. Other studies restrict the analysis to probes from CpG islands in
upstream regions [14], since DNA methylation blocking transcription factors from binding is a
well-studied phenomenon. Several studies restrict the number of probes to those within a cer-
tain proximity surrounding the TSS [15, 16]. However, this approach ignores possibly informa-
tive DNA methylation in the gene body.

In this study, we developed a feature selection algorithm based on sequential forward selec-
tion that can utilize various classification methods to select probes that are relevant to gene
expression from a 450K array. We also tested this algorithm against more sophisticated
approaches such as support vector machines with recursive feature elimination (SVM-RFE), a
genetic algorithm and ReliefF. Additionally, we compared our algorithm against several selec-
tion methods that do not use gene expression to inform the selection. These methods include
choosing the probe with the greatest variation, choosing probes close to the TSS, and choosing
probes in upstream CpG islands. Following the selection of probes, we computed a number of
metrics to evaluate the prediction quality of gene expression by the selected probes. These
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metrics included precision, recall, specificity and Matthew’s correlation coefficient. Our results
showed that our sequential forward selection algorithm performed best on all metrics when
using K-Nearest Neighbors (KNN) where K = 1 (INN). Our algorithm generally selects one or
two probes for each gene, which allows to identify key regions where DNA methylation
changes have impact on gene expression.

We also observed that our algorithm could determine genes whose expression levels are
putatively sensitive to the changes in their DNA methylation. We showed that these DNA
methylation-sensitive genes were enriched for Gene Ontology (GO) terms related to the regula-
tion of various biological processes. Additional functional analysis clustering showed that
DNA methylation-sensitive genes also regulated other genes and proteins by a variety of mech-
anisms, including DNA-binding, kinase activity, protein degradation and protein synthesis.

Materials and Methods
Data

Agilent whole genome microarray data and Illumina 450K DNA methylation data of 25 breast
cancer lines after treated with the hypomethylating agent, 5-azacitidine (aza) for 72 hours were
downloaded from [14] (GSE57343). Logl0 Mock/Aza expression data were normalized to
account for the different cell lines [14] using LoEss normalization in the LIMMA package [17,
18]. To perform binary prediction of gene expression, the expression data were discretized into
up, down and baseline categories using 1.1 fold change threshold for aza-treated cells with
respect to mock trials (mock/aza). Baseline mock/aza values were removed. The up and down-
expressed mock/aza samples were the binary classifiers in the classification algorithms.

To verify the results of our algorithm on breast cancer cell line, we also downloaded Illu-
mina 450K DNA methylation and Agilent mRNA expression data for 99 Luminal A breast can-
cer samples from the Cancer Genome Atlas repository [19, S1 File]. Batch effects were
corrected in the mRNA expression data using the LIMMA package [18]. Expression data were
discretized with a log2 1.2 fold change of the expression level of the sample over the median
expression level for that gene across samples. We used the 1.2 fold change threshold instead of
1.1 in tissue samples to reduce potential noise in the discretized data. Baseline sample expres-
sion/median expression values were removed. The up and down-expressed sample expression/
median expression were the binary classifiers in the classification algorithm.

A sequential feature selection algorithm for classification methods

We developed a sequential feature selection (SFS) algorithm that can use different classification
methods to select the probes that are most relevant to gene expression (Algorithm 1) [20]. SES
sequentially adds features until there is no improvement in the prediction. The objective func-
tion of the SFS algorithm is the minimization of the mean classification error in a 10-fold
cross-validation (CV).

Algorithm 1 describes the process for a single gene and a set of n probes associated with the
gene, X. Given the DNA methylation levels of the probes, M x, and the associated gene expres-
sion levels, yy, each probe is individually tested in a 10-fold cross validation predicting the gene
expression based on the DNA methylation levels of the probe (steps 1-5). In each partition of
the 10-fold cross validation, the specified classification algorithm (described below) is trained
on the training samples. The expression levels of test samples are predicted based on the
trained classification algorithm and the methylation levels of the test samples. The number of
test samples in which the predicted expression level does not match the true expression level is
O. O is computed for every partition and the mean(O) is the classification error, CCE. The
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probe with the best performance, or minimal CCE, in the 10-fold cross validation is selected
(steps 6-8).

Additional probes are sequentially added from the pool of remaining probes if the perfor-
mance in a 10-fold cross validation improves and more samples are predicted correctly (steps
9-18). If no additional probes lead to increased performance, the algorithm is terminated
(steps 19-21).

Algorithm 1. Sequential feature selection with 10-fold CV.

Input: y;: discretized up/down gene expression of sample size k

X = (x;, X, . . ..x,,): n potential probes associated with gene to be added to S

M. x: DNA methylation values for n probes associated with gene in k samples

S: current set of selected probes, initially empty

C: Classification model based on training folds in 10-fold CV

C = Classification (Myyain,s Yirain)s

O(Miest,s, Yiest) = sum(Yres = predict(C, Mo s))

Current classification error (CCE): A vector of classification errors for probes being tested, the

classification error is mean(O) from a 10-fold CV
l1.Fori=1:n

2. Select probe x;
3. Compute 10-foldCV. Ineachpartition, compute Con trainingand Oon
test data

4 Takemean Oas current classificationerror, CCE (i)
5. End

6.Findjs.t.CCE(j)<CCE(i), 1<i<n, 1i#7

7. Move probe x; fromXto S

8.0ldclassificationerror, OCE=CCE (7)

9. While (true)

10. Foreachx;€X

11. Select probes{ x;} US

12. Compute 10-foldCV. Ineachpartition, compute Con trainingandO
on test data.

13. Takemean Oas current classificationerror, CCE (i)

14. End For

15. Find js.t.CCE(j)<CCE(i), 1<i<|X|, 1i# 7]
16. IfCCE(j) <OCEl7.Move probe x; fromX to S

18. OCE =CCE (7)
19. Else:
20. Stop search

21. EndWhile

We used the following classification algorithms in combination with sequential feature
selection (Algorithm 1).

Support vector machine (SVM). A linear kernel function was used to map the training
data to the kernel space [21]. Sequential minimal optimization was used to find the separating
hyperplane.

K-Nearest neighbors (KNN). KNN classification algorithm was applied with K = 1,3 and
5 (INN, 3NN and 5NN, respectively). A Euclidean distance metric was used for all instances of
KNN [22].

Decision trees (DT). The minimum parent size (number of observations) was 10 and the
minimum leaf size was 1 [23].

Naive Bayes (NB). A kernel distribution was specified for predictors in the Naive Bayes
classification algorithm [24].
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We also tested other feature selection algorithms, SVM with recursive feature elimination
(SVM-RFE), a genetic algorithm feature selection with KNN classification (GA-KNN) and
ReliefF.

SVM-RFE. The SVM-REFE algorithm was adapted from [25]. This study used a correlation
bias reduction strategy to deal with highly correlated features. In our adaptation, we also
included a modification to deal with class imbalances, such that the weight of misclassifying
the minority class was higher. The weights of the penalties were obtained by solving the equa-
tion n0 * w0 = nl1 * wl, where n0 and nl were the number of down and up expressed samples,
and w0 and w1 were the respective weights. We used a Gaussian kernel and ranked the features.
For each gene, we selected the top k probes where k equals to the number of probes selected in
the SES algorithm.

GA-KNN. A genetic algorithm for selecting features was adapted from [26]. The goal of

resubLoss
N

the GA algorithm was to minimize the fitness function: —5 where resubLoss is the resub-

stitution loss in a KNN classification (fraction of misclassified data), N is the total number of
features and S is the number of selected features. The denominator of the equation penalizes a
large number of selected probes. We tested the algorithm using K =1, 3 and 5.

ReliefF. A KNN-based ReliefF implementation from the MATLAB statistics toolbox [20]
was also tested. The nearest “hit” of a feature vector for a sample was defined as the closest sam-
ple of the same class by Euclidean distance. The nearest “miss” of a feature vector for a sample
was defined as the closest sample of the other class. For each iteration, a vector of features from
arandom instance is selected. The weight of the feature i is updated according to the function:

W, =W, - (xi - hi)Q + (‘xi - mi)Q

where x; is the value of the feature of the randomly selected instance, h; is the nearest hit and m;
is the nearest miss. Therefore, the weight of a feature decreases if it is more distant from nearby
instances of the hits relative to the misses.

We tested this algorithm with K = 1, 3 and 5. This implementation ranks the predictors in
order of importance. For each gene, we selected the top k probes where k equals to the number
of probes selected in the SES algorithm.

We also developed two control algorithms namely random and top two correlated.

Random. For a given gene, we randomly selected probes associated with the gene. We set
the number of probes randomly selected for a gene equal to the number of probes that were
selected in the SES algorithm that we compared to.

Top two correlated. The two probes most positively or negatively correlated with gene
expression were selected.

We tested our algorithm against following probe selection methods, which do not take into
account gene expression.

All. For a given gene, all the probes associated with the gene are selected.

Upstream CpG Island. For a given gene, we selected probes that are in CpG islands in the
upstream regions (TSS200, TSS1500, 5 UTR and 1* Exon).

TSS. For a given gene, we selected probes within a 2500bp window of the transcription
start site.

Top SD. For a given gene, the probe with the highest standard deviation is selected.

Assessment of algorithms

We calculated various metrics to test each algorithm’s ability to predict gene expression based
on the selected DNA methylation probes. We applied a leave-one-out cross validation
(LOO-CV) with an appropriate model using the selected probes as predictors and the
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discretized gene expression as a response. For the SES algorithm, the classification model used
in the feature selection was used in the LOO-CV. For GA-KNN and ReliefF, KNN was used in
the LOO-CV. For SVM-RFE, SVM was used in the LOO-CV. For the methods that do not inte-
grate gene expression, namely All, Upstream CpG Island, TSS and Top SD, we evaluated the
probe selection with a LOO-CV using KNN, DT, SVM and NB.

Following the LOO-CV, we computed the number of true positive (TP), true negatives
(TN), false positives (FP) and false negatives (FN) and calculated various metrics. We consid-
ered down-expressed cases positive and up-expressed cases negative outcomes. We calculated
the prediction accuracy ((TP + TN)/(TP+TN+FP+FN)), recall (TP/(TP+FN)), precision (TP/
(TP+FP)) and specificity (TN/(TN+FP)) for each method. We also computed Matthew’s corre-
lation coefficient (MCC) [Eq 1]. MCC can be considered a balanced measure of accuracy even
when the class sizes may be different.

TPxTN — FP x FN
/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(1)

Gene Ontology and functional enrichment

To perform functional analysis on genes whose expression were predicted with high accuracy
by DNA methylation, we selected genes that have an MCC > 0.6 in the SFS algorithm. We per-
formed a GO-term enrichment analysis using the web tool GOrilla [27], by comparing the list
of genes with high MCC to a background of the full list of 17,043 genes in the dataset. To show
that the enrichment of GO terms obtained is specific to genes with high MCC, we compared
the list of GO terms and p-values for genes with high MCC to the list of GO terms and p-values
for genes with MCC < 0.2.

In order to investigate if there are any functional differences between genes that have gene
body and upstream methylation, we performed gene functional classification clustering using
DAVID [28]. Given an input gene list, the DAVID’s functional clustering tool generates a
gene-to-gene similarity matrix based on shared functional annotations from different sources
[29]. A clustering algorithm classifies the genes into functionally related clusters. Each func-
tional cluster contains certain related terms shared between the genes in the group. We sepa-
rated all genes with MCC > 0.6 based on whether the selected probes by the SES algorithm
were exclusively from upstream regions (gene had probes only in 5 UTR, 1** Exon, TSS200 or
TSS1500 as defined by Illumina) or exclusively from the gene body applied functional cluster-
ing using DAVID for each group of genes.

Implementation

Our algorithm is unbiased as it does not restrict analysis by CpG status or genomic position.
We implemented the tool in MATLAB [20]. The source code is freely available under the MIT
Open Source license (https://github.com/brittanybaur/genecentricmethylation).

Results and Discussion
KNN-SFS algorithm resulted in higher recall and specificity

We calculated the prediction accuracy, specificity, recall, precision and MCC for the SES algo-
rithm using the four different classification algorithms on 31,171 transcripts on the breast can-
cer cell line data obtained from [14]. We calculated various metrics such as precision, recall,
specificity and MCC due to the class imbalance of up/down expressed samples (S1 Fig). We
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Table 1. Mean performance of SFS algorithms and controls on the breast cancer cell line data.
1NN 3NN 5NN NB DT SVM 1NN Random 1NN Top Two
Accuracy 0.79 0.80 0.74 0.78 0.77 0.74 0.66 0.67
Precision 0.70 0.74 0.65 0.75 0.68 0.64 0.53 0.54
Recall 0.68 0.65 0.53 0.59 0.65 0.63 0.53 0.53
Specificity 0.70 0.67 0.56 0.62 0.66 0.63 0.55 0.55
MCC 0.40 0.40 0.16 0.35 0.33 0.26 0.08 0.08

doi:10.1371/journal.pone.0148977.t001

found that the INN-SFS algorithm resulted in the highest MCC, recall and specificity, and the
third highest precision (Table 1, Fig 1). The INN algorithm also resulted in the second highest
accuracy (S2A Fig). We compared the INN-SES algorithm to the random and top two corre-
lated selection methods and evaluated the predictive performance of the probe selection with a
INN-based LOO-CV. To ensure a fair comparison, we set the number of probes selected for a
gene in the INN-Random method equal to the number of probes selected for that gene in the
INN-SFS algorithm. We found that all these controls resulted in worse performance than our
algorithm. We also compared 1NN-SFS algorithm to GA-KNN and ReliefF algorithms for

K =1, 3 and 5, and to the SVM-RFE algorithm. We set the number of top ranked probes
selected in ReliefF and SVM-RFE equal to the number of probes selected by INN-SES. We
observed that the INN-SFS algorithm performed better than GA-KNN and ReliefF algorithms
for K =1, 3 and5, and the SVM-REFE algorithm by all metrics (Fig 2, S2B Fig). Taken together,
these results indicate that the INN-SFS feature selection method chooses more relevant probes
than other algorithms.

We compared the INN-SFS algorithm to probe selection methods that do not take into
account gene expression. All of these approaches to probe selection resulted in significantly
lower performance when compared to the INN-SFS algorithm that integrate gene expression,
suggesting the importance of integrating gene expression data to inform the probe selection
(Fig 3).

We observed the INN algorithm usually only selected one or two probes per gene (Fig 4).
Out of the 31,171 transcripts tested, 11,833 transcripts had one probe selected and an addi-
tional 9,411 transcripts had two probes selected. Since selecting all of the probes leads to signifi-
cantly poorer performance, the selection of the best one or two probes is important to the
algorithm’s good performance. This shows that our algorithm was able to reduce the number
of probes for a given gene to a limited number of key informative probes.

KNN algorithm resulted in consistent prediction accuracy

To check the consistency of the algorithm on smaller subsets of the data, we ran the algorithm
five additional times on half of the dataset, in which the samples were randomly chosen each
execution. For each of the five executions, we compared 1NN-SES algorithm to random selec-
tion method and top two correlated method. Fig 5 shows a heatmap comparison of the MCC
for the five runs of the INN algorithm compared to the random selection and top two corre-
lated selection. The INN consistently gave higher MCC values over the random selection and
top two correlated selection. Additionally, the MCC values were consistent across runs.

DNA methylation-sensitive genes were enriched for regulation-based
GO terms

We investigated if there are any common functional property on genes whose transcription
levels are sensitive to DNA methylation changes by analyzing genes where the selected probes
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NB: Naive Bayes, DT: Decision tree, SVM: Support Vector Machine
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predict gene expression well. 3,084 genes had MCC > 0.6 in the 1NN-SFS algorithm. The
GOrilla results are summarized in Table 2. Table 2 shows that DNA methylation-sensitive
genes were enriched in GO terms related to the regulation of various biological processes. The
table only encompasses only the top 30 significant GO terms.

To verify that this result is specific to well-predicted genes, we compared the result to
poorly-predicted genes. We performed GO analysis on 2,880 genes that have MCC < 0.2. We
chose MCC thresholds carefully to ensure a fair comparison to GO analysis by having compa-
rable gene set sizes. Table 3 shows that only immune response and stimulus detection terms
are reported as significant. This result suggest that enrichment of regulation-related GO terms
are specific to genes with high MCC values.

We applied DAVID’s functional classification tool on genes with MCC > 0.6 to determine
functional enrichment differences for genes with selected gene body probes and genes with
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selected promoter probes. 1035 genes had exclusively upstream probes selected, resulting in 33
functional clusters. 699 genes had exclusively gene body probes selected, resulting in 27 func-
tional clusters. We found that in both the promoter and gene body group, many of the clusters
suggested that the genes are involved in the regulation of other genes and proteins via a variety
of mechanisms. The most enriched clusters are summarized in Tables 4 and 5. S1 Table and S2
Table contains a full list of the top clusters.

For genes with probes selected from the promoter regions (Table 4), the most enriched clus-
ter contains genes involved in ATP-binding, nucleotide-binding, helicase and protein kinase
activity. Additionally, cluster 3 also contains many kinase, phosphorylation and nucleotide
binding terms. A common theme is that these terms are all mechanisms by which other genes
and proteins can be regulated. Importantly, these functions may be related to the regulation-
based GO terms represented in the GOrilla analysis. Other possible mechanisms of regulation
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doi:10.1371/journal.pone.0148977.9003

of other genes and proteins include an enrichment of DNA-methyltransferases (cluster 7) and
regulation of protein synthesis via ribosomal protein (cluster 19). DNA methylation may also
play a role in the regulation of apoptosis-related genes (cluster 9) and cell motility (cluster 8).
A group of 59 genes were enriched in terms related to transcription regulator activity (cluster
13).

Similar results were obtained for genes where the probes were selected from gene body
regions (Table 5). The first and third cluster involve transcription regulation and protein kinase
activity. Cluster 4 contains additional genes coding for ribosomal proteins. Cluster 8 contains
genes coding for proteasomes and ubiquitin, suggesting that protein degradation may also be
under the control of DNA methylation of certain genes. Additionally, 66 genes were enriched
in terms related to transcription regulation (cluster 9).

Together, these results suggest that if DNA methylation is a good predictor of gene expres-
sion (MCC > 0.6) than that gene may likely be involved in the regulation of other genes and
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proteins through a variety of mechanisms including DNA binding, protein kinase activity, pro-
tein synthesis and protein degradation. We did not find a significant functional difference
between genes where gene body probes are selected and genes where upstream probes are
selected. This suggests that a gene under strong epigenetic control via DNA methylation is
more likely to be a regulatory gene, regardless of the genomic position of the predictive DNA
methylation.
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Fig 5. Heatmap clustering of MCC values. Heatmap clustering of MCC values for five executions of the algorithm on random halves of the breast cancer
cell line data for A. 1NN algorithm and B. random selection of probes C. Top two correlated approach.

doi:10.1371/journal.pone.0148977.9005
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Table 2. Top 30 GO Terms for genes with MCC >0.6 by 1NN-SFS algorithm on the breast cancer cell

line data.

Description

regulation of multicellular organismal process
regulation of developmental process

regulation of multicellular organismal development
positive regulation of biological process
movement of cell or subcellular component
positive regulation of cellular process

negative regulation of biological process
anatomical structure development

negative regulation of cellular process

regulation of cell differentiation

cell migration

negative regulation of metabolic process
anatomical structure morphogenesis

organ development

transmembrane receptor protein tyrosine kinase signaling pathway
cell motility

Locomotion

developmental process

enzyme linked receptor protein signaling pathway
single-organism developmental process
regulation of cell development

regulation of anatomical structure morphogenesis
negative regulation of macromolecule metabolic process
intracellular signal transduction
single-multicellular organism process

multicellular organismal process

regulation of localization

positive regulation of multicellular organismal process
signal transduction

cellular component organization or biogenesis
positive regulation of developmental process

doi:10.1371/journal.pone.0148977.t002

Verification in TCGA luminal A breast cancer data

FDR g-value

4.43E-19
2.51E-17
9.31E-17
1.16E-16
1.23E-16
1.41E-16
2.3E-16
1.38E-15
2.72E-15
2.85E-15
6.81E-15
2.48E-14
3.53E-14
5.3E-14
6.02E-14
7.21E-14
1.7E-13
1.71E-13
1.75E-13
1.76E-13
2.88E-13
4.5E-13
6.04E-13
8.58E-13
2.36E-12
5.86E-12
1.06E-11
1.07E-11
1.27E-11
1.39E-11
3.2E-11

To verify our work in another dataset, we performed the INN-SFS algorithm on 99 luminal A
breast cancer samples from the TCGA database. We computed the performance metrics, and

found the average to be 0.7 for all metrics (Fig 6).

Table 3. GO terms with MCC < 0.2 for genes by 1NN-SFS algorithm on the breast cancer cell line data.

Description FDR g-value
detection of chemical stimulus involved in sensory perception of smell 5.62E-11
detection of chemical stimulus involved in sensory perception 5.74E-11
detection of chemical stimulus 5.62E-8
detection of stimulus involved in sensory perception 1.07E-7
detection of stimulus 1.95E-3
immune response 1.23E-2
doi:10.1371/journal.pone.0148977.t003
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Table 4. Functional clusters of genes with MCC > 0.6 with upstream probes selected by 1NN-SFS algorithm on the breast cancer cell line data.

Cluster
Number

1

10

13

19

Number of
genes

40

45

13

16

59

10

Enrichment

4.39

3.67

3.46

3.42

2.91

2.83

2.66

2.54

2.29

1.72

doi:10.1371/journal.pone.0148977.t004

Most significant terms (p-val)

Atp-binding (4.4E-45), Nucleotide-binding (4.6E-38),
adenyl ribonucleotide binding (1.7E-37)

Repeat:ANK 1 (1.7E-6), Repeat:ANK 2 (1.8E-6), Ankyrin
(2.9E-6)

Kinase (1.8E-56), Protein Kinase—ATP binding site
(2.0E-56), domain: protein kinase (2.1E-53)

Microtubule cytoskeleton (9.6E-15), cytoskeleton (9.1E-

14), cytoskeletal part (4.1E-12)

binding site:S-adenosyl-L-methionine (1.8E-8), s-

adenosyl--methionine (1.5E-7), methyltransferase (4.3E-

7)

Microfilament motor activity (22.0E-12), actin filament-

based movement (6.3E-12), domain:Myosin head-like

(9.4E-12)

Anti-apoptosis (7.8E-12), negative reglation of apoptosis

(1.2E-8), negative regulation of programmed cell death

(1.3E-8)

Nucleotide phosphate-binding region:GTP (4.7E-28),

gtp-binding (2.3E-27), Ras (2.7E-16)

Transcription regulator activity (2.7E-50), transcription
regulation (2.2E-47), regulation of transcription, DNA
dependent (2.2E-47)

Ribosomal protein (6.7E-19), structural constituent of
ribosome (8.2E-18), cytostolic ribosome (1.6E-17)

Other representative terms (p-val) and notes

Helicase (4E-12), kinase (5.8E-6), protein kinase
activity (3.7E-4)

Genes coding for ankyrin proteins

Phosphorylation (1.7E-51), transferase (1.1E-47),
nucleotide binding (2.1E-34)

Centrosome (2.3E-8), genes involved in regulation
of cell motility

Genes coding for methyltransferases

Genes coding for myosin proteins

Genes predominately related to BCL2 (BAGS3,

BAG4, BCL2A1, BL210). Also includes MCL1 and

TNFRSF10D

Genes predominately related to the RAS

oncogene family

Sequence specific DNA-binding (3.1E-29),
repressor (6.0E-22)

Genes coding for ribosomal proteins

We performed the same GO-term analysis for luminal A data that we performed in the cell
line data. We chose 1,823 and 1,407 genes that were predicted with an MCC > 0.6 and
MCC < 0.2, respectively. 534 of the genes with MCC > 0.6 in the TCGA data overlapped with
the genes with MCC > 0.6 in the cell line data (hypergeometric p-value < 2.01 e-41). Table 6
shows only the top 30 GO terms for genes with high MCC and Table 7 shows all of the GO
terms for genes with low MCC. Similar to our previous result for the cell line data, we found

that genes that predicted well were again enriched in GO-terms related to the regulation of var-

ious biological processes while genes that were predicted poorly were not. We note here that

the poorly-predicted genes had GO-terms involved in the detection of a chemical stimulus and

Table 5. Functional clusters of genes with MCC > 0.6 with gene body probes selected by 1NN-SFS algorithm on the breast cancer cell line data.

Cluster
Number

1

Number of
genes

48

12

11

66

Enrichment

2.84

2.36

2.06

1.83

1.39

1.38

doi:10.1371/journal.pone.0148977.1005

Most significant terms (p-val)

Atp-binding (1.1E-51), Nucleotide-binding (6.5E-47), adenyl

ribonucleotide binding (4.2E-45)

Other representative terms (p-val)
and notes

phosphorylation (4.8E-33), kinase
(7.6E-40), transferase(1.9E-29)

Nucleolus (1.2E-14), nuclear lumen (3.9E-11), intracellular organelle

lumen (3.7E-10)

Transcription regulation (1.6E-10), transcription(2.1E-10), regulation

of transcription (6.8E-8)

Ribosomal protein (7.2E-17), ribonucleoprotein (1.8E-15), ribosome

(5.6E-15)

Negative regulation of ubiquitin-protein ligase activity during mitotic
cell cycles (2.2E-12), negative regulation of ubiquitin-ligaase activity

(2.6E-12)

RNA binding (2.8E-4)

Genes coding for proteasomes and
ubiquitin

Regulation of transcription (1.1E-34), transcription (2.4E-24),

transcription regulation (5.0E-32)
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Fig 6. Performance metrics of 1NN-SFS algorithm on TCGA data.
doi:10.1371/journal.pone.0148977.g006

smell. This was due to a single family (olfactory receptor family) where almost all of the mem-
bers of the family had their expression predicted poorly. This was not the case for the regula-
tion-based terms in the well-predicting gene set.

We performed DAVID’s functional classification analysis on genes with probes exclusively
selected from the promoter and genes with probes exclusively selected from the gene body as
previously described. 659 genes with MCC > 0.6 contained selected probes exclusively from
the upstream regions,resulting in 22 total clusters. 396 genes with MCC > 0.6 contained
selected probes exclusively from the gene body, resulting 23 clusters. The results are summa-
rized in Tables 8 and 9. A full list of top enriched clusters are contained in S3 Table and S4
Table. For genes with selected probes from the promoter (Table 8), cluster 2 contained genes
involved with RNA splicing, which is another mechanism by which other genes can be regu-
lated. Similar to functional clustering results on cell line data, cluster 4 contained genes coding
ribosomal proteins and cluster 1 and 5 contained transcriptional regulation genes. For genes
with probes selected from the gene body (Table 9), clusters 1 and 3 had terms involved with
protein regulation and cluster 2 contained genes involved with nucleotide-binding. For both
the cell line and TCGA data for genes with selected gene body probes, chromodomain helicase
and GTP-binding clusters were observed (S2 Table and S4 Table).

Conclusions

We developed an algorithm, which utilizes different classification and regression methods to
select DNA methylation probes from the Illumina Infinium HumanMethylation450 BeadChip
Kit array that are most relevant to expression of their corresponding gene. We tested the
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Table 6. Top 30 GO terms with MCC > 0.6 for genes by 1NN-SFS algorithm on TCGA data.

Description FDR g-value
positive regulation of cellular process 3.75E-8
positive regulation of biological process 2E-7
RNA metabolic process 3.6E-7
regulation of metabolic process 7.55E-7
regulation of transcription from RNA polymerase Il promoter 8.6E-7
cellular macromolecule metabolic process 9.69E-7
regulation of gene expression 1.16E-6
regulation of macromolecule metabolic process 1.19E-6
regulation of macromolecule biosynthetic process 1.35E-6
regulation of cellular macromolecule biosynthetic process 1.36E-6
RNA biosynthetic process 1.45E-6
regulation of primary metabolic process 1.54E-6
regulation of biosynthetic process 1.56E-6
macromolecule metabolic process 2.36E-6
aromatic compound biosynthetic process 2.48E-6
regulation of cellular biosynthetic process 2.52E-6
positive regulation of RNA biosynthetic process 3.02E-6
regulation of RNA biosynthetic process 3.12E-6
nucleobase-containing compound biosynthetic process 3.4E-6
nucleic acid metabolic process 3.44E-6
regulation of cellular metabolic process 3.45E-6
regulation of transcription, DNA-templated 3.63E-6
cellular process 3.73E-6
heterocycle biosynthetic process 3.93E-6
cellular nitrogen compound biosynthetic process 4.29E-6
positive regulation of macromolecule biosynthetic process 4.35E-6
regulation of nucleic acid-templated transcription 5.11E-6
nucleobase-containing compound metabolic process 6.76E-6
regulation of nucleobase-containing compound metabolic process 1.04E-5
positive regulation of RNA metabolic process 1.07E-5

doi:10.1371/journal.pone.0148977.t006

algorithms based on their ability to predict up/down expressed samples. We found that the
INN-SES algorithm performed the best compared to other methods tested (Figs 1 and 2) and
random selection (Fig 1). We demonstrated that this algorithm led to consistent results (Fig 5).
The 1INN-SFS has the advantages of selecting a certain number of probes as opposed to ranking
the probes.

We also observed that genes whose expression was predicted by DNA methylation with
high accuracy were enriched in GO terms related to the regulation of various biological pro-
cesses in both datasets. The overlap between highly predicted genes in both datasets were also
significantly higher. Genes whose expression was accurately predicted by DNA methylation
may be more sensitive to changes in DNA methylation. Therefore, genes that are sensitive to
changes in DNA methylation may be more likely to be involved in the regulation of various
biological processes.

Additionally, functional clustering revealed that many genes that were sensitive to DNA
methylation were regulators of other genes and proteins through a variety of mechanisms
including DNA-binding, protein kinase activity, protein degradation and protein synthesis.
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Table 7. GO terms with MCC < 0.2 for genes by 1NN-SFS algorithm on TCGA data.

Description FDR g-value
detection of chemical stimulus involved in sensory perception 1.27E-42
detection of chemical stimulus 6.29E-41
detection of chemical stimulus involved in sensory perception of smell 8.16E-41
detection of stimulus involved in sensory perception 3.18E-38
detection of stimulus 7.93E-31
G-protein coupled receptor signaling pathway 1.44E-21
sensory perception of smell 1.16E-19
sensory perception of chemical stimulus 4.86E-14
cell surface receptor signaling pathway 7.68E-7
sensory perception 7.02E-6
response to stimulus 5.47E-5
drug metabolic process 4.77E-3
signal transduction 1.12E-2

doi:10.1371/journal.pone.0148977.t007

These results suggest that these functions may answer how genes under the control of DNA
methylation regulate the various biological processes. There were no significant differences in
function between genes with gene body probes selected and genes with upstream probes
selected. This suggests that genes under the control of DNA methylation are more likely to be a
regulatory gene regardless of the genomic position of the most predictive DNA methylation.

In order to verify results on cell line dataset, we also applied INN-SFES on a breast cancer
dataset obtained from TCGA. The overall prediction accuracy in breast cancer data was lower
than the accuracy in cell line data (Figs 1 and 6). This could be due to the heterogeneity of the
tissue samples. The expression of the tissue samples might be affected by other factors such as
copy number alteration and mixed cell population in the tissues. On the other hand, cell line
data contain more homogenous cells in each sample.

These methods will help researchers evaluate which probes are most involved in gene
expression and which genes are sensitive to changes in DNA methylation. Future work should
be aimed at studying other DNA methylation platforms to find the best methods for choosing
regions of where DNA methylation has a significant impact on gene expression. The ideas in
this paper could be extended to bisulfite sequencing and other commonly used platforms.

Table 8. Functional clusters of genes with MCC > 0.6 with upstream probes selected by 1NN-SFS algorithm in TCGA data.

Cluster Number of Enrichment
number genes

1 5 4.73

2 24 4.08

3 13 2.48

4 11 2.25

5 134 2.2

6 13 2.03

doi:10.1371/journal.pone.0148977.t008

Top terms (pval) Other representative terms and

notes
Nucleolus (8.8E-6), nuclear lumen (1.6E-4), intracellular organelle lumen  Transcription, DNA-dependent
(3.7E-4) (4.3E-2)
RNA splicing (1.0E-29), RNA processing (8.0E-29), mRNA processing Spliceosome (6.8E-23), rna-
(1.1E-28) binding (2.3E-10)
Cytoskeleton (1.5E-18), cytoplasm (7.2E-10), microtubule cytoskeleton
(4.7E-9)
Ribosomal protein (6.3E-21), ribonucleoprotein (3.5E-19), ribosome Group of genes coding for

(1.5E-18) mitochondrial ribosomal proteins
Transcription regulation (1.9E-45), zinc (4.1E-45), transcription (1.3E-43)  Transcription regulation

Ubl conjugation pathway (1E-19), modification-dependent protein Ubiquitin proteins, proteolysis
catabolic process (3E-17), modification-dependent macromolecule (4.7E-14)
catabolic process (3E-17)
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Table 9. Functional clusters of genes with MCC > 0.6 with gene body probes selected by 1NN-SFS algorithm in TCGA data.

Cluster Number of Enrichment
Number genes

1 4 3.3

2 5 2.5

3 17 2.14

4 5 1.86

doi:10.1371/journal.pone.0148977.1009

Most significant terms (p-val) Other representative terms (p-val) and notes

GTPase activation (5.5E-7), domain:PH (1.9E-6), Rho GTPases
Pleckstrin homology (4.5E-6)

Atp-binding (2.2E-5), nucleotide-binding(5.9E-5),

adenyl ribonucleotide binding (1.8E-4)

Protein kinase—core (8.7E-23), kinase (2.7E-21), Phosphorylation (1.9E-20), nucleotide-binding
protein kinase—atp binding site (1.2E-20) (1.9E-15), transferase (7.3E-16)

Zinc (1.7E-4), metal-binding (5.7E-4), zinc ion binding

(1E-3)

Methylation-seq data could work if the data is converted to segment data. Additionally, the
combinatorial effects of DNA methylation in different regions on gene expression can be stud-
ied with approaches similar to methods here.
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S1 Fig. Heatmap of discretized mock/aza expression data in breast cancer cell lines. Red:
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(TIF)
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(TTF)

S3 Fig. Heatmap of discretized expression data in TCGA Luminal A breast cancer datasets.
Red: Up-expressed, Green: Down-expressed, Black: Baseline.
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S1 File. TCGA IDs for 99 Luminal A samples used in the analysis.
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