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Differences in the intestinal
microbiome of healthy children
and patients with newly diagnosed
Crohn’s disease
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The aetiology of inflammatory bowel diseases (IBD) seems to be strongly connected to changes in the
enteral microbiome. The dysbiosis pattern seen in Crohn’s disease (CD) differs among published studies
depending on patients’ age, disease phenotype and microbiome research methods. The aims was to
investigate microbiome in treatment-naive paediatric patients to get an insight into its structure at

the early stage of the disease in comparison to healthy. Stool samples were obtained from controls

and newly diagnosed patients prior to any intervention. Microbiota was analysed by 16 SrRNAnext-
generation-sequencing (NGS). Differences in the within-sample phylotype richness and evenness (alpha
diversity) were detected between controls and patients. Statistically significant dissimilarities between
samples were present for all used metrics. We also found a significant increase in the abundance of OTUs
of the Enterococcus genus and reduction in, among others, Bifidobacterium (B. adolescentis), Roseburia
(R.faecis), Faecalibacterium (F. prausnitzij), Gemmiger (G. formicilis), Ruminococcus (R. bromii) and
Veillonellaceae (Dialister). Moreover, differences in alpha and beta diversities in respect to calprotectin
and PCDAI were observed: patients with calprotectin <100 ug/g and with PCDAI below 10 points vs
those with calprotectin >100 pg/g and mild (10-27.7 points), moderate (27.5-40 points) or severe (>40
points) CD disease activity had higher richness and diversity of gut microbiota. The results of our study
highlight reduced diversity and dysbiosis at the earliest stage of the disease. Microbial imbalance and
low abundance of butyrate-producing bacteria, including Bifidobacterium adolescentis, may suggest
benefits of microbial modification therapy.

Crohn’s disease (CD) belongs to the group of chronic inflammatory bowel disorders (IBD) that may affect any
part of the gastrointestinal tract (GI). Intensity and range of lesions may change over time; inflammation usually
presents a non-continuous pattern and affects all layers of the intestinal wall. In the past two decades, all devel-
oped countries have experienced a steady increase in the prevalence of CD in children!, with declining age at
presentation and intensifying activity”. The underlying cause of this phenomenon is unknown; however, one of
the possible reasons is seen in the ongoing civilization changes taking place in the environment. These changes
undoubtedly affect the microbiome, which plays important role in the proper functioning of the intestines. With
certainty, the microbiome helps to maintain appropriate function of the gut and plays an important role in vita-
min production, development of the immune system, epithelial homeostasis and metabolite production, all of
which strongly contribute to enhancement of gut barrier function®-. It is difficult to define a healthy gut microbi-
ome as it varies depending on age, environment, or diet, but it should generally be characterized by diversity and
stability and fulfil its metabolic function®. Numerous studies, both on animal models and humans, have shown
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that alterations in the gastrointestinal microbiome together with genetic susceptibility and environmental factors
are important in initiating the inflammatory process mainly via an abnormal immune response’~’.

Exploration of bacterial diversity using culture-independent techniques enabled a better evaluation of
the composition of gut microbiota. Changes in the microbiome of CD patients imply both bacterial richness
and diversity. The most frequently observed changes are decrease in Bacteroides and Firmicutes and increase
in Actinobacteria and Gammaproteobacteria'®. CD patients’ intestinal microbiome was shown to be poor in
Faecalibacterium prausnitzii, commensal bacteria with anti-inflammatory properties!!, Roseburia intestinalis and
other butyrate-producing bacteria'2.

So far, only a few studies assessing the microbiome in patients with IBD focused on children. The majority
of published papers concerned small cohorts which were heterogeneous in terms of diagnosis and phenotype
of IBD, treatment and duration of the disease. Also, the results of two big paediatric CD studies from North
America'? and Netherland' are not fully compatible.

The aim of this study was to investigate microbiome composition in newly diagnosed, untreated children with
CD compared to their healthy peers. We also wanted to assess whether the change in the microbiome correlates
with the clinical activity of CD and the biochemical indicators of inflammation.

Methods

Patients. Ethical approval. ~All procedures were performed in studies involving human participants were in
accordance with the ethical standards of the institutional committee Jagiellonian University Ethics Committee
(decision number: 122.6120.68.2015) and with the 1964 Helsinki declaration and its later amendments or com-
parable ethical standards. All experimental protocols were approved by Jagiellonian University Ethics Committee
in Krakow, Poland.

Informed consent was signed by patients’ parents or legal guardians if they are under 18 years of age. If the
patient is above 16 years old, then in addition to the consent of the parents or legal guardians, its written consent
to participate in the study was also obtained.

This single-centre prospective study was performed at University Children’s Hospital in Krakéw, Poland.
Newly diagnosed children and adolescents with CD, aged 2 to 18 years, were enrolled in the study group. The
diagnosis was based on clinical manifestation, biochemical, endoscopic and histopathological studies, as well as
radiological tests in accordance with revised Porto criteria'%. Morphology and biochemical tests including ESR
(erythrocyte sedimentation rate), C-reactive protein (CRP) and faecal calprotectin were checked at admission.
The Simple Endoscopic Score for Crohn’s Disease (SES-CD) was assessed during a diagnostic upper gastroscopy
and ileocolonoscopy. The phenotype of CD was assessed according to the Paris criteria'®. Details for Paediatric
Crohn’s Disease Activity Index (PCDAI) were collected at admission.

The exclusion criteria were: patients below 2 or above 18 years of age; treatment with antibiotics and/or probiotics
during the period of 3 months before collecting the stool sample; confirmed infections of the gastrointestinal tract;
isolated perianal disease; and lack of consent to participate in the study. Samples in the study group were collected at
admission to the hospital prior to any medical or therapeutic intervention. Faecal calprotectin and all clinical data
necessary to assess clinical activity were collected before the commencement of any therapeutic intervention.

The control group consisted of healthy non-hospitalized children (HC - healthy controls) who didn’t meet the
exclusion criteria. Their stool samples were collected at home into sterile stool containers, kept refrigerated and
transported in cool bags to the laboratory. All stool samples were stored at —80°C.

Laboratory procedures. DNA extraction from the faecal samples. A detailed DNA isolation protocol was
presented in our team’s previous studies'®. The frozen samples were thawed, precisely weighed (about 0.1 g of
stool sample was used) and homogenized in 0.1 ml of saline. After lysis of bacterial and fungal cells with lysozyme
(Sigma-Aldrich, Poznan, Poland) (1 mg/ml) and lysostaphin (Sigma-Aldrich, Poznan, Poland) (0.1 mg/ml), sam-
ples were incubated at 37 °C for 20 min. Next, 200 pl 75 mM NaOH (Avantor Performance Materials, Gliwice,
Poland) was added and samples were incubated at 95 °C for 10 min. After incubation, probes were microcentri-
fuged (12 000 rpm, 10 min), supernatants were removed, and pellets were resuspended in 500 ul buffer supple-
mented with 3-mercaptoethanol (Sigma-Aldrich, Poznan, Poland). For each sample, lyticase (Sigma-Aldrich,
Poznan, Poland) was added (0.1 mg/ml). Probes were incubated at 37 °C for at least 30 min and microcentrifuged
(12 000 rpm, 10 min). The next steps of DNA extraction were carried out according to Genomic Mini AX Stool
Spin Kit (A&A Biotechnology, Gdansk, Poland) procedure.

DNA concentration and purity was controlled spectrophotometrically using a NanoDrop apparatus (Thermo
Fisher Scientific).

16S library preparation. ~ An amplicon library was created. Amplicons of the selected V3-V4 16 S rRNA gene regions
for each sample studied were prepared using following primers with adapters'”: (F) 5TCGTCGGCAGCGTCA
GATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG 3’ (R)5' GTCTCGTGGGCTCGGAGATGTGT
ATAAGAGACAGGACTACHVGGGTATCTAATCC 3'. PCR product was purified using Agencourt AMPure XP
(BeckmanCoulterGenomics). Next, library indexing was performed applying Nextera XT Index Kit (Illumina
San Diego, California, United States) and one more purification was done. Libraries were fluorescently quantified
(Quant-iT™ PicoGreen™ dsDNA Assay Kit - Thermo Fisher Scientific) and normalized to 10 nM and pooled in
Eppendorf tube. According to the Illumina protocol for a 2 x 300 cycle run; 10 pM library concentration; 30%
PhiX sequencing control V3 for MiSeq high-throughput sequencer were used (Illumina, San Diego, California,
United States): http://support.illumina.com/content/dam/illuminasupport/documents/documentation/chemis-
try_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf. The sequencing procedure was
performed at the Centre for Medical Genomics OMICRON, Jagiellonian University Medical College.
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Sequencing data analysis and statistical analysis. The samples were processed and analysed using
the Quantitative Insights Into Microbial Ecology (QIIME2, version 2018.11)'® custom pipeline. All following
procedures in this section were conducted in the QIIME2 environment (using QIIME2 plugins). Demultiplexed
paired-end reads from MiSeq (2 x 300 bp) were trimmed to remove primers and poor quality bases with
Cutadapt”. The trimmed sequences were denoised and joined with DADA2%. Then open-reference clustering
of features?! and reference-based chimera filtering were performed using vsearch*? and the Greengenes data-
base at 99% similarity?. The generated operational taxonomic units (OTUs) were assigned to taxonomy using a
pre-trained Naive Bayes classifier®.

The classifier was trained on the region of the target sequences that were sequenced. Briefly, we extracted
sequences from Greengenes 13.8, 99% OTUs with locus-specific sequences from V3-V4 Illumina 16 S Amplicon
Primers. Based on the taxonomy generated, we filtered our feature-table to include only assigned reads of the king-
dom Bacteria and to remove singleton features and elements with fewer than 10 reads. The filtered feature-table
was used to generate the tree for phylogenetic diversity analyses. Briefly, we de novo aligned sequences using
MAFFT? and masked highly variable positions®. Then, we applied FastTree? to generate an unrooted phyloge-
netic tree from masked alignment. In the final step, we rooted the tree at the midpoint of the longest tip-to-tip
distance in the unrooted tree. Rarefaction curve analysis of the data obtained was used to estimate the complete-
ness of microbial communities sampling. Subsequently, we computed several alpha (Shannon’s diversity index,
observed OTUs, Faith’s Phylogenetic Diversity, Pielou’s evenness) and beta diversity metrics (Jaccard distance,
Bray-Curtis distance, unweighted UniFrac distance, weighted UniFrac distance and generated principal coor-
dinates analysis PCoA) plot using Emperor®® for each of the beta diversity metrics. Group significance between
alpha and beta diversity indexes was calculated with QIIME2 plugins using the Kruskal-Wallis test and per-
mutational multivariate analysis of variance (PERMANOVA), respectively. Correlations with alpha diversity
indexes were calculated with QIIME?2 plugin using the Spearman correlation. Differential abundance between
groups on each taxonomic level was tested with ANCOM?, with a taxa-wise correction for multiple testing. The
ANCOM procedure compares the relative abundance of a taxon between two groups, by performing statistical
tests on data transformed by an additive log-ratio (Aitchison’s log-ratio) of the abundance of given taxon versus
the abundance of all other taxa, individually. The W-value generated by ANCOM method is a count of a number
of sub-hypotheses (Aitchison’s log-ratio) that were detected to be significantly different across tested groups for a
given taxon. The significance of a test for a given taxon is determined by the Benjamini-Hochberg correction that
controls for False Discovery Rate (FDR) at 0.05.

Results

A total of 82 children and adolescents aged 2-18 years (mean 148.52 months; SD = 41.09) were included in the
study. General characteristics of participants are given in Table 1. None of the patients presented with isolated L4a
or L4b location or exclusive perianal disease. In two-thirds of the patients, initial disease activity (according to
PCDALI) was assessed as mild to moderate. The endoscopic score (SES-CD) was 17.3 (SD = 8.04).

Quality of DNA isolates. Isolates with a concentration of >100 ng/ul and a purity ratio Ays/A,g > 1.7 were
used to prepare libraries and sequencing.

16 S rRNA V3-V4 region sequencing results. After clustering, removal of chimeras and filtering,
2,008,883 sequences from 82 samples with 619 OTUs were obtained. Percentage of annotated OTUs on the phy-
lum (L2), class (L3), order (L4), family (L5), genus (L6), and species (L7) level 100%, 100%, 98.8%, 93.7%, 72.2%
and 24.9% OTUs, respectively. The median frequency was 23,662 with IQR 15,919-31,744. Based on the rare-
faction curve, the alpha and beta diversity metrics were calculated on a rarefied frequency-feature table with a
minimum number of 4252 sequences per sample. One sample was excluded from diversity analyses due to low
read count.

Differences in the within-sample phylotype richness and evenness (alpha diversity) were detected between
controls and CD patients. Shannon’s diversity index (p < 0.001), observed OTUs (p = 0.003), Faith’s Phylogenetic
Diversity (p=0.049) and Pielou’s evenness (p < 0.001), were statistically different between controls and CD
patients (Fig. 1).

Statistically significant dissimilarities between samples (beta diversity) were seen in all distance metrics:
Jaccard distance (p =0.001), Bray—Curtis distance (p =0.001) unweighted UniFrac distance (p =0.001), weighted
UniFrac distance (p=0.002). PCoA 2D plots from beta diversities are presented in Fig. 2.

Relative abundance of the top bacteria at phylum level (L2) in control and CD groups were: Firmicutes
(77.03% vs 68.75%), Actinobacteria (17.17% vs 20.61%), Bacteroidetes (2.74% vs 4.01%), Verrucomicrobia
(2.12% vs 3.56%) and Proteobacteria (0.88% vs 2.63%), respectively.

Top bacteria at class level (L3) in control and CD groups were: Clostridia (71.22% vs 36.80%), Bacilli (3.74% vs
25.91%), Actinobacteria (13.77% vs 16.15%), Erysipelotrichia (2.08% vs 6.03%), Coriobacteriia (3.41% vs 4.45%),
Bacteroidia (2.74% vs 4.01%), Verrucomicrobiae (2.12% vs 3.56%) and Gammaproteobacteria (0.88% vs 2.49%),
respectively.

Composition of the bacterial community at the genus level (L6) for control and CD samples are shown in
Fig. 3.

ANCOM analysis at the genus (L6) and species (L7) levels showed that there are 11 genera (Table 2 and
Fig. 4A) and 17 species (Table 3 and Fig. 4B) differently expressed between controls and CD patients. The analyti-
cal method allowed to determine the exact species names for only 6 of them. We have found a significant increase
in the abundance of OTUs of the genus Enterococcus and a statistically significant reduction in Bifidobacterium
(B. adolescentis), Adlercreutzia, Clostridium (C. celatum), Coprococcus, Roseburia (R. faecis), Faecalibacterium (F.
prausnitzii), Gemmiger (G. formicilis), Ruminococcus (R. bromii) and Veillonellaceae (Dialister).
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Crohn’s disease Healthy controls
patients (CD) (n=64) | (HC) (n=18)

Sex: male 61% (39/64) 44% (8/18)

Age (months; SD) 151.41 (SD=42.41) 138.28 (SD =35.16)

Height (cm; SD) 150.77 (SD =20.6) 146.67 (SD=20.52)

Weight (kg, SD) 38.32 (SD=13.79) 41.75 (SD=17.37)

BMI 16.24 (SD =2.65) 18.3 (SD=3.49)

Disease distribution by Paris classification: (number of patients)

Ala 13

Alb 47

A2 4

L1 2

L2 8

L3 15

L4aL1 10

L4al2 11

L4al3 17

B1 41

B2 20

B2 B3 3

GO 40

Gl 24

p 1

PCDAL: 31.48 (SD=15.44)

<40 (mild and moderate) 43

>40 (severe) 21

Table 1. General characteristics of participants. CD - Crohn’s disease, m — months, SD - standard deviation,
PCDALI - Paediatric Crohn’s Disease Activity Index. Paris classification: age: Ala: 0-10y, Alb: 10-17y, A2:
17-407y; location: L1 - distal 1/3 ileum and/or limited cecal disease; L2 — colonic; L3 - ileocolonic; L4a — upper
disease proximal to ligament of Treitz; L4b - upper disease distal to ligament of Treitz and proximal to distal
1/3 ileum, behaviour: B1 - non-structuring non-penetrating; B2 - structuring; B3 - penetrating; B2B3 - both
penetrating and structuring disease either at the same or different times; p — perianal disease modifier; growth:
GO - no evidence; G1 - growth delay.

Correlation of microbiome structure and clinical parameters.  Alpha and beta diversity does not cor-
relate with most of the clinical parameters. We did not find associations between microbiome structure and Paris
scale parameters, SES-CD and PCDATI or infectious biochemical parameters like ESR and CRP, serum iron and
albumin level. However, we have observed differences in alpha (Fig. 5) and beta diversities (Fig. 6) with respect
to calprotectin: patients with calprotectin <100 ug/g (n=8) have higher richness and diversity of gut microbiota
than patients with calprotectin levels between 100 ug/g and 1800 pg/g (n=21) and above 1800 pg/g (n=33). We
also observed some microbiome change associations with PCDALI of less than

10 points (5 patients) vs those with mild (10-27.5 points; 21 patients), moderate (>27.5-39 points, 17
patients) and severe (>40 points; 21 patients) CD disease activity (Supplementary Fig. S1 online).

Discussion

In our cohort of treatment-naive CD patients, a reduction in microbiota diversity and richness compared to
healthy controls was shown. We found that 11 genera and 17 species differed significantly between CD patients
and HC. The respective alteration was observed in OTUs belonging to Actinobacteria and Firmicutes.

A significant increase in the abundance of OTUs of the genus Enterococcus in our paediatric CD patients
was consistent with the findings of other authors®***!. In our cohort, we also found a significant reduction in
the abundance of OTUs of the genus (and species): Bifidobacterium (B. adolescentis), Adlercreutzia, Clostridium
(C. celatum), Coprococcus, Roseburia (R. faecis), Faecalibacterium (F. prausnitzii), Gemmiger (G. formicilis),
Ruminococcus (R. bromii) and Veillonellaceae (Dialister). Similar observations, i.e. a gain in Enterococcus and
significant decrease in bacteria producing short-chain fatty acids (SCFA) like Coprococcus, Faecalibacterium,
Roseburia, Ruminococcus, Anaerostipes, Blautia, Lachnospira and Sutterella were reported by others, both in pae-
diatric'>*?-* as well as adult®*® CD patients.

Although numerous studies confirm that microbiome in IBD patients is different in terms of quantity and
quality compared to healthy people, based on the research carried out so far, it has not been possible to determine
a single strain of bacterial species responsible for causing inflammation associated with CD. Probably, a widely
understood change in the microbiome at various taxonomic levels and also in a different anatomic location in
the GI tract plays a pathogenic role. Similar to our observation, in adult CD patients, Joossens et al. reported
a decrease in Faecalibacterium prausnitzii, Bifidobacterium adolescentis, Dialister and did not characterize
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Figure 1. Alpha diversity analysis of control and CD patients. Within-sample diversity measured by Shannon
index (A), observed OTUs (B), Faith’s phylogenetic diversity (C) and Pielou’s measure of species evenness (D).
Kruskal-Wallis test was performed to analyse statistical significance.
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Figure 2. PCoA 2D plots of beta diversity analysis of control and CD patients. Between-sample dissimilarities
were measured by Jaccard distances (A), Bray-Curtis distance (B), unweighted UniFrac distances (C) and
weighted UniFrac distances (D). Permutational multivariate analysis of variance (PERMANOVA) was

performed to analyse statistical significance.
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Figure 3. Composition of the bacterial community at the genus (L6) level for control and CD samples. Relative
abundance of top 20 genera are shown.

clr mean
Control CD W-statistic value | difference
g Adlercreutzia 0.19% 0.04% 106 —2.02
g__Enterococcus 0.29% 17.62% 140 4.47
o__Clostridiales;__;__ 11.48% 3.55% 109 —3.35
f__Clostridiaceae;g__ 3.37% 0.03% 118 —3.57
g Clostridium 2.80% 0.50% 111 —3.05
f__Lachnospiraceae; 1.10% 0.58% 108 —2.72
g__Coprococcus 8.93% 3.55% 107 —3.06
gﬁRasehuria 1.94% 0.29% 116 —3.43
g Faecalibacterium 2,67% 0,49% 109 —2.83
g Gemmiger 7.03% 3.88% 105 —-3.23
g__Ruminococcus 5,94% 1,06% 115 —3.08

Table 2. Statistically significant ANCOM results at genus level. Relative abundance across all samples or
features within a group were summed. clr - centered log-ratio.

Clostridium species, and there was an increase in Ruminococcus gnavus. Their study cohort consisted of already
diagnosed and treated patients®. The presence of similar changes in the bacterial flora in children and adults
indicates the existence of a definite age-independent pattern for changing the microbiome in CD patients. What is
more, the dysbiosis existing in treated patients may suggest ongoing inflammation and incomplete response to the
treatment or shows that this type of dysbiosis is permanent and not related to the treatment or illness activity. In
the latter case, bacteria are rather indicators than mediators of IBD. This is in concordance with the observation of
Vrakas et al., who found changes in the microbiome characteristic for CD in both active as in-active individuals®.
On the other hand, O’Brien et al. didn’t find any imbalance or reduced microbial diversity in patients whose
only endoscopic lesions were aphthous ulcers. The authors suggest that dysbiosis improves when patients are in
remission®”.

Results of published studies are inconsistent and difficult to compare as the research differs not only in terms of
selection of the study groups, the age of patients, disease duration and methods of treatment, but also the method-
ology applied. Depending on study design, luminal (stool samples)®?>3*3>383 or/and mucosal (biopsy)!23¢-37:4041
microbial environment were investigated in IBD patients. Prevalence of one material over another is under dis-
cussion, although it seems that mucosal biopsy gives deeper insight into microbial alteration*2. On the other hand,
obtaining stool samples is easier, non-invasive and repeatable even in short periods of time.

Studies on the microbiome in children are still relatively few and most often concern small groups of patients.
In the big cohort study of treatment-naive new-onset paediatric CD patients, the imbalance was shown only in
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Figure 4. Volcano plots of differentially expressed OTUs between control and CD patients at genus (A) and
species (B) levels. ANCOM analysis was performed to analyse a statistical significance. Statistically significant
OTUs are represented as red rounds.

W-statistic clr mean
CONTROL CD value difference
Bifidobacterium adolescentis 6.56% 0.67% 151 —2.98
f__Coriobacteriaceae;g  ;s__ 0.70% 0.90% 146 —2.40
g Adlercreutzia;s__ 0.19% 0.04% 155 —2.04
g Enterococcus;s__ 0.29% 17.45% 191 4.34
o__Clostridiales;__;__;__ 0.86% 0.068% 160 —3.37
f__ Clostridiaceae;g  5s_ 3.37% 0.026% 177 —3.589
g Clostridium;s__ 0.578% 0.14% 139 —2.04
Clostridium celatum 1.42% 0.13% 159 —2.61
f__Lachnospiraceae; ; 1.10% 0.58% 162 —2.75
f_Lachnospiraceae;g_ ;s__ 1.55% 0.10% 144 —2.13
g__Anaerostipes;s__ 0.22% 0.06% 148 —1.83
g__Coprococcus;s__ 8.61% 3.47% 149 —3.00
Roseburia faecis 1.89% 0.27% 172 -3.39
Faecalibacterium prausnitzii 2.67% 0.49% 163 —2.85
Gemmiger formicilis 7.03% 3.89% 157 —3.25
Ruminococcus bromii 4.80% 0.62% 165 —3.07
g Dialister;s__ 0.92% 0.35% 148 —2.39

Table 3. Statistically significant ANCOM results at species level. Relative abundance across all samples or
features within a group were summed. clr - centered log-ratio.

the microbiome obtained from biopsy, not from stool samples'?. Also, Douglas et al. state that microbiome from
stool samples differs drastically when compared with mucosa samples*'. In contrast, our results are in agreement
with the results of those authors who were able to confirm imbalance both in numbers as well as in biodiversity
in faecal microbiome'**. In our study, we assessed a quite large, homogeneous group of patients and we decided
to use a non-invasive method (stool samples), which allowed us to include fully healthy children who did not
require a colonoscopy to HC group. Regardless of whether the microbiome is assessed in stool or biopsy samples,
the results obtained by different authors show some differences. For example, what is intriguing, Hansen et al.,
in biopsies, showed an increase in F. prausnitzii in de-novo diagnosed paediatric CD*. Generally F. prausnitzii
is an essential component of the intestinal microbiome of healthy people. Numerous studies indicate that this
bacterium can be considered a microbiological marker of inflammation in the gastrointestinal tract*#*. We, as
many authors mentioned, confirmed lack of F. prausnitzii in the stool of CD patients. The question is whether the
reduction in F. prausnitzii in the stool may precede its reduction in the mucous membrane, the natural habitat for
this gram-positive, anaerobic species, or conflicting results follow the method used. Perhaps to answer this ques-
tion it would be necessary to compare the biopsy results with those of stool in the same patient group.Another
study indicates that IBD dysbiosis was mainly characterized by decreased abundance of Alistipes finegoldii and
Alistipes putredinis, members of the core microbiota of healthy state. The authors did not observe large differences
in the abundance of F. prausnitzii*®. In our study, we have found a statistically significant decline in E prausnitzii
abundance while Alistipes finegoldii and Alistipes putredinis, although present, did not show significant differences
between disease and healthy state. In general, however, we support the authors” opinion that IBD microbiome is
characterized more by diminishing abundance of certain bacterial species than by an increase in pathogens. In
the study conducted by Kugathasan et al., 14 genera associated with CD were identified with the largest increase
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in Aggregatibacter and the greatest decrease in Roseburia and SCFA-producing bacteria®. Gevers et al. underline
the role of Fusobacterium as a biomarker of inflammation in IBD'? and Douglas et al. states that Desuflovibrio
and Akkermansia muciniphila are the IBD most informative genera*'. Our results support the theory that lack
of E prausnitzii and B. adolescentis in the stool can serve, although not always with statistical significance, as a
biomarker signal of dysbiosis typical for CD'>%. Pascal et al. have attempted to establish microbial biomarkers of
CD and the results obtained by them give hope for the creation of a promising non-invasive diagnostic method
in CD suspected patients with nonspecific signs of disease®. We have also observed a decrease in the abundance
of Roseburia in newly diagnosed children, which may contribute to the suggestion of Imhann et al. that these
changes can precede the onset of IBD®.

Environment, diet and genetic background seem to be key players in the creation of gut microbiota. Ashton
et al. observed compositional changes in microbiota between individual patients as well as differences between
patients and healthy controls®. Interestingly, the microbiome in untreated patients and their healthy siblings
showed some similarity which may confirm the role of environment and dietary habits in microbiome com-
position. On the other hand, Jjaz et al. showed that the microbiome in healthy adult relatives of paediatric CD
patients is more similar to the microbiome in healthy adult controls*. Joossens et al. did not reveal the same type
of dysbiosis as in CD patients either in unaffected relatives or healthy controls®. Those two studies may confirm
that alteration in microbiome composition is related more strongly to the illness itself than to genetic background
and nutritional habits or is related to some other environmental factors.

Assessment of microbiome composition in treatment-naive paediatric population gives an opportunity to
determine changes unaffected by treatment and accompanying health problems. One of the purposes of our study
was to find out the correlation between microbiome, clinical activity and manifestation of CD and the biochem-
ical indicators of inflammation. Kugathasan et al. have attempted to attribute changes in the microbiome to the
location of illness in the GI tract and typical complications, i.e. stenosis and fissures. They suggest a correlation
between Ruminococcus with structuring complication and Veillonella with penetrating form**. As for localization,
Pascal et al. detected increased abundance of Enterococcus faecalis when CD was localized in ileum compared
with ileocolon location®. We did not find a similar relationship in our patients.

The study investigating microbiome in treatment-naive new-onset paediatric CD patients confirmed that
alteration in abundance of several taxa and diminished richness of taxa was related to the intensity of inflamma-
tion'%. We have also observed a decrease in alpha and beta diversities with an increased level of faecal calprotectin
and higher disease activity index (PCDAI). This indicates a link between dysbiosis and inflammation of the gas-
trointestinal tract. The question is whether dysbiosis is the direct cause of inflammation or rather its consequence.
Perhaps, apart from the trigger factor, the mechanism of a vicious circle works: persistent inflammation deep-
ens dysbiosis and vice versa. Similarly to other authors, we show no change in the diversity of the microbiome
depending on other disease activity and biochemical markers (CRP, ESR)’. Those parameters were not statistically
significantly associated with changes in microbiome. This in turn may indicate that, taking into account micro-
biom, local inflammation (i.e. located in the gastrointestinal tract and reflected by high calprotectin level) is more
important than generalised inflammatory status.

The strengths of this study are a homogeneous group of patients, consistent data and sample collection. The
main weakness, in our opinion, is the lack of mucosa biopsies for assessment of mucosa-associated microbiome.
Additional study limitation is lack of a mock-community or spike-in positive control, which could accurately
characterized performance of our metagenomic workflow, and could be used as a reliable reference against which
to standardize sample between different experiments and studies.

Conclusion
Our work contributes to the data helping understand intestinal dysbiosis in new-onset, treatment-naive paedi-
atric CD patients.

If the change in intestinal microflora is one of the risk factors for the development and / or persistence of
inflammation in IBD, then the microbiome-oriented treatment should be a component of the therapeutic goals.
Such treatment methods as antibiotics, pro- and prebiotics as well as faecal microbiota transplant can be taken
into account. Furthermore, considering the relationship between microbiota and genetic predisposition, the use-
fulness of a microbiome-based preventive treatment in high-risk groups may be considered.

Consistent data confirming low abundance and diversity of Bifidobacterium in CD patients suggest that fur-
ther studies are needed to answer the question whether it is possible to use Bifidobacterium adolescentis as a
probiotic.

Although studies of the faecal stream may face limitations in detecting microbes associated with the mucus
layer and, thus, those more directly involved in disease initiation and perpetuation, the application of this method
is far less invasive and allows multiple and reproducible material collection which makes it possible to monitor
disease progression.

It is still an open field and active research area for investigation of the best therapeutic strategies to successfully
manipulate microbiota in CD patients.
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